Setting Up Python Development Environment for Use in a
Small Classroom

Roman Yasinovskyy, Karina Hoff, and David Oniani

Department of Computer Science
Luther College
Decorah, IA 52101
{roman, hoffka04, oniada01} @ luther.edu

Abstract

In this paper we describe a way to set up a classroom environment using the com-
mon tools used in software development with the focus on Python. We cover version
control system Git, testing framework pytest, source formatter black, and linter flakeS8.
Proper use of these tools helps students preserve history of code changes, provides
feedback before a student submits their assignment, and eliminates subjective style
preferences from the code review process.

The proposed setup works on Linux, macOS, and Windows without major modifica-
tions. We recommend publishing a standard requirements.txt for students to install the
required packages and using Python’s built-in module venv to isolate a class from the
rest of the system. This approach helps eliminate (or at least greatly reduce) the com-
mon “works on my machine” problem by locking both Python version and installed
packages.



1 Introduction

As students advance through the computer science sequence and become more proficient
with Python they also discover more and more development tools. While it is possible to
learn syntax using Python’s IDLE or one of many online editors, at some point students
realize the limitations of those tools and switch to a text editor or an IDE. Add a couple
of operating systems to the mix and now instructors have to deal with different file naming
strategies, formatting conventions, and Python versions used.

Regardless of the development environment, two major challenges students face in pro-
gramming classes are making sure their code works as expected and getting feedback from
instructors if it does not. On the other hand, instructors need to ensure consistent and pre-
dictable grading criteria, set up reproducible environment, and have a way to distribute and
collect assignments efficiently.

The proposed setup allows instructors to enforce particular code style and project structure
in their classes while providing immediate feedback to the students and not distracting from
the course content. It was piloted in a typical CS2 (Algorithms and Data Structures) course
and later successfully adopted in a CS3 (Advanced Algorithms and Data Structures) and
other courses in our Computer Science curriculum.

We believe this setup works the best for small classes where instructors review each sub-
mission and provide feedback directly to students but it is reasonable to assume that the
grading process can be automated or distributed among teaching assistants.

This approach can be seen as a variation of test-driven development, though tests are pro-
vided by instructors and not written by students. We are not going to argue the advantages
of TDD as it has been done in multiple studies[2, 1, 5]. We focused on practical aspects
of setting up a class and leave it for the individual instructor to be more intentional as they
adopt TDD in their class.

2 Tools

2.1 Python

Python 2 reached its end-of-life on January 1st, 2020 and we would discourage its use in a
new project or a class. Annual surveys by JetBrains[4, 3] show Python 3 adoption rate at
84% in 2018 (increased to 87% in 2019) and the majority (84%) of respondents were using
the two latest released versions of the language available at the time (3.7 and 3.6).

We used Python 3.6 to set up the class environment on Ubuntu 18.04 and macOS 10.13;
Python 3.7 was used on Windows 10 Pro (1909). The biggest challenge we have noticed in



classes with this setup is that instructions for Windows must take into account method of
installation (executable downloaded from Python.org or an app from the Microsoft Store)
on a machine. Windows users may have to use python or py -3 instead of python3 and
system-specific path separator.

2.2 Virtual Environment

A virtual environment is a directory that contains an installation of a particular version of
Python and any additional packages required by an application. It can be isolated from the
rest of the system to create a reproducible, locked environment. There are several ways
to accomplish this task, including pipenv and virtualenv. We chose veny for it is included
in the standard library since Python 3.3 and requires no changes to the usual development
workflow once the environment is activated.

Listing 1 shows the sequence of commands necessary to create and activate a new vir-
tual environment using the version of Python aliased as python3 on Ubuntu. Once acti-
vated, the environment uses that version of Python as default, so there is no need to specify
python3 inside the environment.

Virtual environments have the following benefits:

e No need to have administrative privileges to install packages. This is especially use-
ful if students are working in a lab rather than on a personal machine.

e Different versions of packages can be installed simultaneously (e.g. for different
classes).

e They can be created and removed without changing the system installation of Python.

roman@ubuntu : 7/ mics2020$ python3.6 —m venv .venv
roman@ubuntu : 7/ mics2020$ source .venv/bin/activate
(.venv) roman@ubuntu:”~/ mics2020$ python —version
Python 3.6.9

(.venv) roman@ubuntu:~/ mics2020$ python —m pip list
pip (9.0.1)

pkg—resources (0.0.0)

setuptools (39.0.1)

Listing 1: Activating Virtual Environment on Ubuntu

Once the environment has been activated, instructors can install all the required packages
and generate the requirements.txt (see Listing 2) while students can recreate it with one
command inside their own virtual environment (see Listing 3).

2




$ python —m pip install black flake8 pytest
$ python —m pip freeze > requirements. txt

Listing 2: Freezing the Installed Packages

$ python —m pip install —r requirements. txt

Listing 3: Installing the Required Packages

Windows users can invoke the activation scriptas .\ . venv\Scripts\Activate.ps1 when
using PowerShell (see Listing 4) or .venv\Scripts\activate.bat from the command
prompt.

PS D:\ mics2020> python —m venv .venv

PS D:\ mics2020> .\.venv\Scripts\Activate.psl
(.venv) PS D:\mics2020> python —version
Python 3.7.4

(.venv) PS D:\mics2020> python —m pip list
Package Version

pip 19.0.3
setuptools 40.8.0

Listing 4: Activating Virtual Environment on Windows

As long as the instructor and students use the same major version of Python the behavior
of the code should be consistent and reproducible, potentially eliminating “works on my
machine” explanation of code problems.

2.3 Source Version Control

Over the last ten years Git became the leading version control system used for open-source
and proprietary projects, replacing Subversion as a de-facto VCS. While it is designed to
handle large teams and distributed projects, individual students can benefit from the history
of changes too. As Git grew in popularity, repository hosting services emerged too, notably
GitHub, Bitbucket, and GitLab. We use GitHub to host public class repositories. Student
repositories can be hosted on other platforms but usually it is GitHub too.

Code provided in Listing 5 assumes a private repository has been created using GitHub
web interface and its local copy is stored in mics2020 directory. Students should invite
instructors as collaborators to their repositories, so only two of them would have access to
the student’s code. Student’s local repository should now be connected to both the class
public and their private repositories (see Figure 1).




git init

git remote
git@github
git remote
git@github

LBV LYV s

git remote

cd mics2020

add origin \
.com:yasinovskyy/mics2020. git

add upstream \
.com:yasinovskyy/mics2020—pub. git

git pull upstream master
git push —u origin master

—V

origin git@github .com: yasinovskyy/mics2020. git
origin git@github .com: yasinovskyy/mics2020. git
upstream git@github.com: yasinovskyy/mics2020—pub
upstream git@github.com: yasinovskyy/mics2020—pub

(fetch)

(push)
.git (fetch)
.git (push)

Listing 5: Student’s Repository Configuration

lass public repo
upstream

pull push

Local repo

Figure 1: Student’s repository




Once the repository is configured, students can use the usual pull, add, commit, and push
commands to retrieve new assignments, lecture notes, and later submit completed projects
for grading.

Instructors can use the public repository to publish assignments, class notes, and quickly
post minor fixes and clarifications. Depending on their operating system instructors may
use a script or a Git alias to collect assignments from the whole class rather than rely
on their school’s LMS. Once collected, code can be reviewed in the instructor’s editor of
choice.

Services like codePost, Gradescope, or GitHub Classroom offer code distribution, collec-
tion, and review functionality, but the advantage of our approach is its similarity to a “real”
project setup. Our goal is not to hide VCS but to encourage its extensive and explicit use by
the students. Our experience shows that a small non-graded project during the first week
of a class is sufficient to make students comfortable using Git and resolve any issues.

Using any cloud service raises a question of its compliance with FERPA and potential
academic integrity infringements. We recommend using private repositories for individual
students, thus protecting their code from unauthorized access. Private repositories do not
appear on a user’s GitHub main page so an outsider will not be able to determine that a
student is enrolled in a specific class.

2.4 Testing Framework

pytest is a Python testing framework that uses assert statements to test conditions and
can be used to run unit tests created for other frameworks, including standard Python
unittest. Its core functionality is sufficient for the purposes of our example and can
be extended using plugins. For example, pytest-timeout allows setting time limit on
individual tests and marking inefficient solutions as failed.

Listing 6 shows a function (defined in a file greetings.py) that returns “Hello, ” concatenated
with the parameter and Listing 7 shows a test that seems to verify this function.

def hello(audience: str) —> str:
77” Greet the audience”””
return “Hello, ” + audience

Listing 6: Hello World

Parametrized tests are one of the features of the pytest framework. Instructors can specify
edge cases and students can tweak their implementations trying to pass all test cases. Pa-
rameters for the test in Listing 8 combine input and expected output while Listing 9 tests if
the function raises an error with the expected message.




import pytest
from greetings import hello

def test_hello ():
?””Testing the output”””
assert hello(”class”) == "Hello,

class”
assert hello(”world”) == “Hello,

world”

Listing 7: Test for hello

AUDIENCE = [

(”World”, ”"Hello, World”),

("MICS 20207, ”Hello, MICS 20207),
]

@pytest. mark. parametrize (” data ,
def test_hello(data, expected):
?””Testing the output”””

assert hello(data) == expected

expected”, AUDIENCE)

Listing 8: Improved Test for hello

AUDIENCE_ERR = [42, None, [1, 2]]

@pytest. mark. parametrize (" data”, AUDIENCE_ERR)
def test_hello_err(data):
»””Testing the exception”””
with pytest.raises (TypeError) as exc:
hello (data)

assert str(exc.value) == “Unable to greet ” + str(data)

Listing 9: Error Handling for hello



With function test_hello_err added to the test file, our naive implementation from List-
ing 6 fails those tests. At this point students should read the error message provided by
pytest (see Listing 10), update the function to check the type of the parameter, and raise a
TypeError if it is not str.

=—==—=—=—==—==—==—===== short test summary info = == =—===
FAILED test_hello.py::test_hello_err[42] — AssertionError:

assert ‘must be str, not int’ == ’Unable to greet 42’
FAILED test_hello.py::test_hello_err[None] — AssertionError:
assert 'must be str, not NoneType’ == ’Unable to greet None’

FAILED test_hello.py::test_hello_err[data2] — AssertionError:
assert 'must be str, not list’ == ’Unable to greet [1, 2]’

Listing 10: pytest Output

Instructors may assign points to each passed test, thus decreasing uncertainty and bias
from the grading process. It is also possible to order test by the increasing complexity of
the tested functions, making sure students implement simpler units before attempting more
complex tasks.

2.5 Automated Code Formatter

While Python’s enforced use of indentation makes most code readable, it is still possible
to have poorly formatted multi-line expressions, long lists, and misaligned dictionaries in
one’s source. We should encourage students to write PEP-8 compliant code but a formatter
has the advantage of helping students focus on the solution substance rather than style.

One possible concern is that predefined function names and formatting rules make it more
difficult to tell two submissions apart and detect cases of plagiarism. While we did not
address this in our study, a tool like Algae could be integrated in the toolchain on the
instructor’s end to detect infringements.

black is not the only one code formatter available for Python and the recommendations for
its use should apply to yapf and autopep8. It can be used as a standalone command line
tool, configured to be invoked by an IDE, or as a pre-commit hook.

2.6 Linter

If writing proper code is one of the learning goals of a course, then automated code format-
ters may be considered “cheating”. In that case students may be directed to use a linter like
pylint or flake8 and read their hints as if they are error messages, debugging and eliminating
them just like source code bugs.



3 Student Feedback

In general, after some initial confusion students embraced the use of this environment con-
figuration and unit tests helped them be more successful in class. We did not address this
question in the course evaluation survey and only one student mentioned tests at that time
(see the first comment in the list below).

Later we asked 15 students of the class the following question: “Do you think using unit
tests helped you be more successful in class?” Seven of them responded (comments 2—8
in the list below). While mostly positive, it should be noted that the answers were not
anonymous.

1. I think that the homework assignments and projects could have had more tests be-
cause sometimes the tests felt like they weren’t testing the main focus of the assign-
ment, but more superfluous things.

2. Unit testing helped me think through problems and consider edge cases, ultimately
avoiding silly programming errors and saving a lot of time. Besides, having test
cases in mind, it was a lot easier to refactor the code or change the programming
logic. More importantly, practicing unit testing in the classroom got me familiar
with how testing frameworks work and taught me the practicality, flexibility, and
maintainability of well-tested code. Unit testing was a great success for the class!

3. Ilove unit tests always. I think it helped me a lot in understanding the problems. It
definitely contributed a lot to my success in the class.

4. The pytest module was pretty helpful for me, because it gave concrete examples for
you to test your programs against. Talking about “algorithms” as an abstract topic
often makes them seem more daunting than they actually are, so being able to test
code I wrote against edge cases and more involved cases helped a lot. Additionally,
it saved me time because I didn’t have to waste time double checking answers that I
had come up with for tests were actually right; instead, I could easily get a handle on
the algorithm in question based on the expected pytest answers.

5. I think that including testing was both helpful and important. My only point for
improvement, is that I wish we had spent a little more time building tests ourselves
or learning about how that process worked for Test Driven Development experience.

6. Yes, the test helps writing the code and to find the error. Maybe, a little more guid-
ance for students may be needed to help understand the test. For example, how the
test work, what the test assert and check etc.

7. At first I found the approach a little strange. Before, I had to be the one who was
manually doing the testing. However, after I got used to the change, I found it a lot
easier to test out my code. I no longer had to think of obscure examples that may



break my program. Most cases were taken care of with the tests that we should have
passed.

8. In my opinion, unit testing allowed us to work on more challenging problems and
dive deeper into understanding the course material. It allowed us to not only under-
stand the algorithms and data structures broadly, but also allowed us to understand
quirks about them because the tests pointed out the quirks to us. Additionally, I felt
more confident as a student having something verifiable to let me know that I was on
the right track or that I had gotten it. It was great and I wish something like it were
in all of my classes.

4 Conclusion

The proposed approach helps bridge the gap between academia and industry, promotes
consistency of students’ code, and decreases grading time. Using testing framework like
pytest allows students to test their program multiple times before submitting it and reduces
the amount of uncertainty in the grading process.

One of the advantages of this setup is that individual components can be introduced into
the course sequence separately. For example, students in CS1 may not be ready to dive
into version control to submit their code but they could execute git clone and git pull
commands to download class notes and code templates. If the full-featured unit testing
framework is beyond the scope of a course, Python’s assert statements could be used to
make a hypothesis and check if code is correct.

5 Acknowledgments

This work originated as a student research project supported by a grant from the Dean of
Luther College.

We thank students of the Advanced Algorithms and Data Structures class for their feedback.

References

[1] Joel Adams. “Test-Driven Data Structures: Revitalizing CS2”. In: Proceedings of the
40th ACM Technical Symposium on Computer Science Education. SIGCSE *09. Chat-
tanooga, TN, USA: Association for Computing Machinery, 2009, pp. 143—147. ISBN:
9781605581835. DOI: 10.1145/1508865.1508920. URL: https://doi.org/10.
1145/1508865.1508920.



(2]

(3]

(4]

[5]

Stephen H. Edwards. “Using Software Testing to Move Students from Trial-and-Error
to Reflection-in-Action”. In: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education. SIGCSE ’04. Norfolk, Virginia, USA: Association
for Computing Machinery, 2004, pp. 26-30. 1SBN: 1581137982. por1: 10 . 1145/
971300.971312. URL: https://doi.org/10.1145/971300.971312.

Python 2019 - The state of Developer Ecosystem in 2019 Infographic. https://www.
jetbrains.com/lp/devecosystem-2019/python/. (Accessed on 03/19/2020).

Python Developers Survey 2018 Results. https://www. jetbrains.com/research/
python-developers-survey-2018/. (Accessed on 03/19/2020).

Dee A. B. Weikle, Michael O. Lam, and Michael S. Kirkpatrick. “Automating Sys-
tems Course Unit and Integration Testing: Experience Report”. In: Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. SIGCSE ’19.
Minneapolis, MN, USA: Association for Computing Machinery, 2019, pp. 565-570.
ISBN: 9781450358903. DOI: 10 .1145/3287324 . 3287502. URL: https://doi .
org/10.1145/3287324.3287502.

10



