
Improved Minutiae Search in Latent Fingerprint

Dennis Kovarik

Department of Computer Science and Engineering

South Dakota School of Mines and Technology

501 E. St. Joseph Street, Rapid City, USA, 57701

dennis.kovarik@mines.sdsmt.edu

Mengyu Qiao

Department of Computer Science and Engineering

South Dakota School of Mines and Technology

501 E. St. Joseph Street, Rapid City, USA, 57701

mengyu.qiao@sdsmt.edu

1

Abstract

Latent fingerprint presents an invisible pattern to naked eyes, and thus needs special post-

capture processing for identification. A crucial step of fingerprint identification is feature

extraction. Most existing systems use level 2 features, which are regarded as minutiae. In

this paper, we propose a novel method for image enhancement and minutiae extraction for

the latent fingerprint images collected by using NIR-NIR upconversion nanoparticles. In

the proposed method, a latent fingerprint image is segmented, filtered, adjusted to achieve

a standard format. Then, minutiae features are extracted with their types, locations, and

orientations. The proposed method uses a moving window with pre-defined masks to

identify ridge endings and bifurcations. A verification step is then introduced after feature

extraction to remove unreliable features by using quality measures. According to the

experimental results, the proposed method was able to extract high-quality minutiae

features and achieve accurate matching.

2

I. Introduction

Fingerprints, as a unique and irreproducible pattern, are one of the most popular methods

for person identification and authentication for applications of law enforcement, business,

and personal use. Fingerprint identification is the process of identifying individuals using

their fingerprints [1]. Because of their uniqueness and permanence, fingerprints have been

used to identify people since the 19th century [2]. A latent fingerprint is defined as “a

fingerprint left on a surface by deposits of oils and/or perspiration from the finger” [3]. By

collecting latent fingerprints found at crime scenes, law enforcement can use fingerprint

identification in order to help link suspects to crimes [4]. There have been significant

efforts in the past to automate this process, but despite the many advances made, it is still

an area of continuing research.

A critical step in automatic fingerprint recognition systems is feature extraction. In this

step, computational methods are used to identify and extract characteristic, quantifiable,

and comparable features from the fingerprint. These features can be placed into 3

categories, which are referred to as level 1, level 2, and level 3 features. Level 1 features

are the general patterns exhibited by the ridge orientations. Examples of these patterns

include whorls, loops, and arches. Level 2 features refer to certain points found on the

fingerprint, which are called minutiae. These minutiae usually identify the ridge endings

and ridge bifurcations (where the ridge splits into two) that are found on the fingerprint.

Finally, level 3 features include features such as sweat pore configurations and the ridge

contours [5].

The features extracted during the feature extraction step are used in the matching step.

During this step, the extracted features are used in a matching algorithm to determine how

similar the latent fingerprint is to another fingerprint stored in some databases [6]. Most

automatic fingerprint recognition systems extract and use level 2 features in order to match

the fingerprints [7]. Although the poor quality of latent fingerprints can negatively affect

the number and quality of the extracted minutiae, level 2 features have been shown to be a

reliable set of features for use in the matching step for automatic fingerprint recognition

systems.

The purpose of this study is to develop a method to automatically extract minutiae from

images of latent fingerprints collected by using upconverting nanoparticles exhibiting near

infrared NIR-to-NIR upconversion luminescence. We propose a minutiae extraction

algorithm that is much like Crossing Number minutiae extraction method that works on

thinned binarized images. After the fingerprint image is binarized and thinned, our

algorithm uses a 3-by 3 mask containing predefined minutiae patterns to extract the

minutiae. This is followed by a postprocessing step where the minutiae located along the

edge of the fingerprint are removed. This study is a part of a larger project which is

developing a portable field system to collect sensitive, interference-free latent fingerprints

using these upconverting nanoparticles. The latent fingerprints collected using these

nanoparticles results in images that look much like that presented in Figure 1. This study

aims to develop part of the software that will perform the automatic fingerprint recognition

for this device.

3

Figure 1: Original Latent Fingerprint

The rest of this paper is organized as follows. Section II briefly reviews related work on

different minutiae extraction methods. Section III describes our approach for minutia

extraction, which includes image preprocessing, feature extraction and verification.

Section IV presents experiments with discussions followed by conclusions in Section V.

II. Related Work

Minutiae extraction is widely investigated topic where several methods have been

proposed. These methods can be classified by whether they work on binarized images, or

directly on gray-Level images. Furthermore, the minutiae extraction algorithms that work

on binarized images can be further classified based on if they work on thinned or unthinned

binarized fingerprint images.

2.1. Algorithms Based on Gray-Level images

This set of algorithms extract minutiae directly from the grayscale fingerprint images.

There are several advantages for doing this, one of which is to avoid loss of information

during the binarization step.

2.1.1. Minutiae Extraction by Following Ridge Flow Lines

This approach attempts to extraction the minutiae directly from the grayscale fingerprint

image without the use of binarization. Using the fingerprint directional image, this

technique follows the fingerprint ridgelines until the ridge either terminates or it intersects

another ridge, at which point, a minutiae point is detected [8].

2.1.2. Fuzzy Techniques for Minutiae Extraction

In grayscale fingerprint images, there are two levels of pixel values, which can be classified

as either DARK or LIGHT (corresponding to ridges or valleys in the fingerprint. These

levels can be modeled using fuzzy logic, and then fuzzy rules can be applied in order to

extract the minutiae [5].

4

2.2. Algorithms Based on Binarized images

In these algorithms, the fingerprint image is first enhanced and binarized before the

minutiae are extracted. From the original image, a new image is created where each pixel

can only take on one of two values. For example, a pixel value of 1 can indicated that a

ridge is present at that pixel while a value of 0 can indicated the presence of a valley (or

vice versa). These algorithms can further be divided into two categories, where one group

works on unthinned binarized images while the other works on thinned binarized images.

2.2.1. Algorithms Based on Unthinned Binarized images

This group of algorithms work on binarized image where the ridges are unthinned, which

means that the ridges in the fingerprint are not thinned down to be a single pixel wide.

2.2.1.1. Chaincode Processing

The binarized image is scanned from top to bottom and left to right looking for the ridge

boundaries (where the pixel values transition from light to dark). After this is found, then

the algorithm traces the boundary of the ridge in a counterclockwise direction. Ridge

endings are detected when a significant left turn is made, while bifurcations (forks) are

detected by a significant right turn [5].

2.2.1.2. Run Representation

This algorithm is based on horizontal and vertical run-length encoding from binary

fingerprint images. The images are represented as a cascade of runs after run-length

encoding. Then the adjacencies of the runs are checked, and characteristic runs are

detected. This method is efficient in that it can reduce the memory requirement while

speeding up image processing time [5].

2.2.1.3. Ridge Flow and Local Pixel Analysis

In this method, the average pixel value as calculated within a 3 by 3 window for each pixel.

A pixel is considered to be a ridge ending if the calculated average is less than 0.25, while

a pixel having an average greater than 0.75 is considered to be a bifurcation [5].

2.2.2. Algorithms that work on Thinned Binarized images

The second group works on binarized fingerprint images where the ridges within the

fingerprint were first thinned until they were just a single pixel wide.

2.2.2.1. Crossing Number

This method is widely used on thinned binarized images because of its efficiency and

simplicity. For each pixel in the image, the crossing number for the neighborhood is

computed in a 3 by 3 window. The crossing number is computed by counting the number

5

of adjacent pixels whose pixel value represents that it is part of a ridge. The crossing

number is then used to determine that point is a minutia. For example, a crossing number

of 1 indicates the presences of a ridge ending while a crossing number of 3 indicates a

bifurcation [5].

2.2.2.2. Morphology based

This method is based on mathematical morphological operations. The image is first

preprocessed by morphological operators in order to remove false minutiae such as spurs

and bridges. Following this, a hit or miss transform is used to extract the true minutiae [5].

III. Proposed Approach

3.1. Image Enhancement

The images of latent fingerprints were filtered and enhance using the algorithm in Figure

2. Each image was converted to an 8-bit grayscale image and resized to a standard size of

533 by 400. Each image was converted to its complement. This way, each image is

converted to a form where the ridges are black, and the background is white.

Figure 2: Image Enhancement Steps

Then a segment mask representing the location of the fingerprint in the image was found.

This was accomplished by iteratively computing the standard deviations for the pixel

values in the images with increasing block sizes (blksze). The standard deviations for each

block would be stored in a separate image. More specifically, the image would be broken

up into blksze x blksze blocks, and the standard deviation for each block would be

computed with respect to the pixel values, which would be stored in the second image. This

would be done iteratively with increasing values for blksze starting at 2 and increasing by

1 up till blksze equals 20. During each iteration after the image was block processed for

the standard deviations and stored in a separate image called stddevim, an averaging filter

of size 300 was applied to this temporary image, followed by global thresholding using

Otsu’s method. The resulting images for each iteration were added together and stored in

6

another temporary image called ‘avg’. Then to remove holes in the segmentation mask, the

image ‘avg’ had an averaging filter iteratively applied to it with increasing block sizes

ranging from 30 to 100 pixels (increasing by 10 each iteration). All iterations were

averaged together in order to produce the final mask representing the location of the

fingerprint on the image. It is important to note that the fingerprint is not segmented until

the end of the image filtering and enhancing step. This is because segmenting the image

before the ridge orientations are found sometimes results in false ridges appearing in the

final image. Instead, the mask produced from this step is saved for performing the image

segmentation later.

In preparation for estimating the ridge orientation and frequencies, the image would be

normalized to have zero mean and unit standard deviation. This is accomplished by first

finding the mean and standard deviations of all the pixel values in the image. Each pixel

would then be subtracted by the image mean pixel value before each pixel is divided by

the standard deviation.

Then estimates of the local orientation of the ridges in the fingerprint were computed and

stored in a temporary image called ‘orientim’. Note that the following operations were

applied to each pixel within the normalized image. The image gradients were found by

computing the 1st and 2nd derivatives of the image using the 7-tap coefficients. Then the

local ridge orientation was found by finding the principal axis of variation in the image

gradients. This produced the covariance data for the image gradients, which was then

smoothed using gaussian filters.

The analytic solution of principal direction was found through using the following

equations:

𝑑𝑒𝑛𝑜𝑚 = √𝐺𝑥𝑦2 + (𝐺𝑥𝑥 − 𝐺𝑦𝑦)
2
+ 𝑒𝑝𝑠 (1)

𝑠𝑖𝑛2𝑡ℎ𝑒𝑡𝑎 =
𝐺𝑥𝑦

𝑑𝑒𝑛𝑜𝑚
 (2)

𝑐𝑜𝑠2𝑡ℎ𝑒𝑡𝑎 =
𝐺𝑥𝑦

𝑑𝑒𝑛𝑜𝑚
 (3)

A gaussian filter was applied to the images produced for sin2theta and cos2theta with a

block size of 30 and a sigma of 5. Then finally, the image representing the orientation of

the ridges was computed by applying the following equation:

𝑜𝑟𝑖𝑒𝑛𝑡𝑖𝑚 =
𝑝𝑖

2
+
atan 2(𝑠𝑖𝑛2𝑡ℎ𝑒𝑡𝑎,𝑐𝑜𝑠2𝑡ℎ𝑒𝑡𝑎)

2
 (4)

Following this, the median ridge frequency was computed using the ridge orientation image

produced in the previous step. The image is broken up into small blocks, and the ridge

frequency within each small block is estimated. Each block is rotated and cropped so that

the ridges are vertical. The columns are summed down to get a projection of the grey values

down the ridges. Then the peaks are found in projected gray values by performing a

greyscale dilation and then finding where the dilation equals the original values. Then the

spatial frequency is determined by dividing the distance between the 1st and last peaks by

the number of peaks. If no peaks are detected, or the wavelength is outside the allowed

7

bounds, the frequency image is set to 0. Then the median ridge frequency is found among

all the ridge frequencies computed.

The fingerprint image is then filtered via oriented filters. An array of filters is generated

corresponding to the median ridge frequency and orientations present in the fingerprint

image. The image is then filtered by using the generated filters corresponding to the median

frequency and the local ridge orientations.

The filtered image is converted to a binary image where ridges are represented by a value

of 1 and the valleys and background are represented by a value of 0 [9]. Finally, the image

is segmented using the segment mask produced from the fingerprint segmentation step

described earlier.

3.2. Minutiae Extraction

Using the binary image produced from the image filtering and enhancement step, the ridges

were thinned down until they were only 1 pixel wide, producing an image which we will

call thinnedRidges. The minutiae were then extracted from the thinnedRidges image using

Algorithm 1. The thinnedRidges image was scanned from top to bottom and left to right

with a 3-by-3-pixel mask. This mask had predefined patterns which represented the valid

ridge endings and bifurcations that could be observed within the 3 by 3 window. When one

of these predefined minutiae patterns were found, its (x, y) location and minutia number

(ID identifying the structure of the minutiae) was stored in a separate image called

‘locations.

Procedure extractMinutiae(thinnedRidges)

 height = height of thinnedRidges image

 width = width of thinnedRidges image

 // thinnedRidges in the thinned binary enhance image

 // Initialize images to store the location and the angle

 // of orientation for the extracted minutiae/

 locations = zeros(height,width)

 ϴ = zeros(height,width)

 // Scan image

 for i = 4 to height-4

 for j = 4 to width-4

 if thinIm(i,j) > 0

 window = cropImage(thinIm, j, i, 3, 3)

 locations (i,j) = isMinutiae(window)

 ϴ (i,j) = findϴ(i, j, locations(i,j), thinIm)

 return locations, ϴ

Procedure isMinutiae(window)

 // window is a 3x3 binary image

 // minutiaeSet is an array of 3x3 mask of predefined

 // minutiae patterns

 minutiaeSet = createMinutiaeSet()

 // Match window to set of known minutia

 for i = 1 to number of masks in minutiaeSet

 if minutiaeSet(i) == window

 // return the ID of the minutiae

 return i

 // A minutiaeID of 0 indicates invalid minutiae

 return 0

Algorithm 1: Minutiae Extraction Pseudocode

In addition to the minutiae’s (x,y) coordinates in the fingerprint image, minutiae matching

software such as the BOZORTH3 tool require the angle of orientation for each minutiae.

The angle of orientation for the extracted minutiae followed the ANSI/NIST standard, and

8

it was calculated using Algorithm 2. In order to find the orientation angle for a ridgeline, 2

reference points will be used. The coordinate of the minutiae will be the first reference

point (x1, y1). Then the pixel located 10 pixels away along the ridgeline will be used as the

second reference point (x2, y2). After these two points are found, the ridge orientation (in

degrees) was found by using the following equation (5). Note the that values of x and y

below are in reference to the origin (0, 0) located in the top left of the image.

𝜃𝑟𝑖𝑑𝑔𝑒𝑙𝑖𝑛𝑒 =

{

 tan−1

|𝑦1−𝑦2|

|𝑥1−𝑥2|
∗
180

𝜋
, 𝑦2 ≤ 𝑦1 𝑎𝑛𝑑 𝑥2 > 𝑥1

180 − (tan−1
|𝑦1−𝑦2|

|𝑥1−𝑥2|
∗
180

𝜋
), 𝑦2 ≤ 𝑦1 𝑎𝑛𝑑 𝑥2 < 𝑥1

180 + (tan−1
|𝑦1−𝑦2|

|𝑥1−𝑥2|
∗
180

𝜋
), 𝑦2 > 𝑦1 𝑎𝑛𝑑 𝑥2 ≤ 𝑥1

360 − (tan−1
|𝑦1−𝑦2|

|𝑥1−𝑥2|
∗
180

𝜋
), 𝑦2 > 𝑦1 𝑎𝑛𝑑 𝑥2 ≥ 𝑥1

 (5)

If the extracted minutia was a ridge ending, then there is only one ridgeline orientation

present, and the ridge ending angle of orientation in the ANSI/NIST standard could be

found by the following equation (6).

𝜃𝑟𝑖𝑑𝑔𝑒 𝑒𝑛𝑑𝑖𝑛𝑔 = (𝜃𝑟𝑖𝑑𝑔𝑒𝑙𝑖𝑛𝑒 + 180) % 360 (6)

Finding the minutiae orientation for bifurcations was a little more complicated. A

bifurcation is defined by 3 ridgelines converging at a single point, so first reference point

will be the convergence point. Then, the orientation of all three ridges will be found using

equation (5), and the same algorithm used for calculating the angle of orientation for a

ridgeline (Algorithm 2). The angles of orientations for these three ridgelines will be

represented in the following 3 equations as ϴ1, ϴ2, and ϴ3. For each of these ridgelines, the

minimum difference in the angle of orientations between the neighboring ridgelines will

need to be calculated. The difference between two neighboring ridgelines (ϴ1 and ϴ2) can

be found using equation (7).

𝜃 𝐷𝑖𝑓𝑓 1,2 = {
|𝜃1 − 𝜃2| 𝑖𝑓 |𝜃1 − 𝜃2| ≤ 180

360 − |𝜃1 − 𝜃2| 𝑖𝑓 |𝜃1 − 𝜃2| > 180
 (7)

Where ϴ1 is the angle of orientation for ridgeline 1, ϴ2 is the angle of orientation for

ridgeline 2, and ϴ Diff1,2 is in reference to ridgeline 1 and represents the difference in the

angle of orientations between ϴ1 and ϴ2. Following this, the minimum difference in the

angles of orientations between a ridgeline’s neighbors (in this case ridgeline 1’s neighbors)

can be found using equation (8).

𝑚𝑖𝑛 𝜃 𝐷𝑖𝑓𝑓 1 = min(𝜃 𝐷𝑖𝑓𝑓 1,2, 𝜃 𝐷𝑖𝑓𝑓 1,3) (8)

 Where min ϴ Diff1 refers to the minimum difference in the angles of orientations

between the neighboring ridgelines for ϴ1, ϴ Diff1,2 is the difference in the angles of

orientation for ϴ1 and ϴ2, and ϴ Diff1,3 is the difference in the angles of orientation for ϴ1

and ϴ3. Finally, the angle of orientation for the bifurcation can be determined by finding

the ridgeline with the highest absolute difference in the angles of orientation between the

other 2 ridge neighboring ridgelines. This is represented in equation (9).

9

𝜃 𝐵𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 = max(𝑚𝑖𝑛 𝜃 𝐷𝑖𝑓𝑓 1, 𝑚𝑖𝑛 𝜃 𝐷𝑖𝑓𝑓 2, 𝑚𝑖𝑛 𝜃 𝐷𝑖𝑓𝑓 3) (9)

Procedure findϴ(i, j, minutiaeType, thinIm)

 // thinIm is the binary thinned image

 // thinIm(i,j) is the current row and column location

 if minutiaeType == ridge ending

 nextI = row, along the ridgeline, adjacent to thinIm(i,j)

 nextJ = column, along the ridgeline, adjacent to thinIm(i,j)

 ϴRidge = calcϴRidgeline(thinIm, i, j, nextI, nextJ, minutiaeType)

 return (ϴRidge + 180) mod 360

 elseif minutiaeType == Bifurcation

 // Find the orientations for the ridgelines adjacent to minutiae

 for p = 1 to 3

 nextI = row, along the ridgeline 1, adjacent to thinIm(i,j)

 nextJ = column, along the ridgeline 1, adjacent to thinIm(i,j)

 // dirs is an array of the ridgeline orientations

 dirs(p) = calcϴRidgeline(thinIm, i, j, nextI, nextJ, minutiaeType)

 // Determine the min diff between each ridge’s neighbors

 // minDiffs is an array holding the minimum differences

 for p = 1 to 3

 angle1 (p) = abs(dirs(1) - dirs(2))

 if angle1 > 180

 angle1 = 360 - angle1

 angle2 = abs(dirs(1) - dirs(3))

 if angle2 > 180

 angle2 = 360 - angle2

 minDiffs(p) = min(angle1, angle2)

 // Find max dir diff

 max = -1;

 maxDiffIndex = 1

 for d = 1:3

 if minDiffs(d) > max

 max = minDiffs(d)

 maxDiffIndex = d

 // return the orientation of the ridgeline with the max difference

 return dirs(maxDiffIndex)

return -1 // indicate error occurred

Procedure calcϴRidgeline(thinIm, i, j, p, q, minutiaeType)

 // thinIm(i,j) is the location of the minutiae

 // thinIm(p,q) is the direction of the reference pixel

 refI = row of reference pixel ten steps along the ridgeline

 refJ = column of reference pixel ten steps along the ridgeline

 // Find the current orientation angle in radians

 orient = atan(abs(refI - startI) / abs(refJ - startJ))

 if refI <= startI and refJ < startJ // quadrant2

 orient = 3.141593 - orient

 elseif refI > startI and refJ < startJ // quadrant3

 orient = 3.141593 + orient

 elseif refI > startI and refJ >= startJ // quadrant4

 orient = 2 * 3.141593 - orient

 // convert orientation angle to degrees and return

 return orient * (180 / pi)

Algorithm 2: Minutiae Angle of Orientation Pseudocode

10

3.3. Post Processing to Eliminate False Minutiae

In addition to the algorithms described above, post processing steps were taken in an

attempt the improve the quality of the extracted minutiae. This was done by eliminating

the minutiae extracted along the edge of the segmented fingerprint (which were determined

to unreliable).

The edge of the fingerprint could be determined by using the segmentation mask generated

in the Image Enhancement and Binarization step. The edge of the segmentation mask

represented the edge of the fingerprint. Any minutiae that was extracted within 5 pixels

from the edge of the fingerprint was simply removed.

IV. Results and Discussion

4.1. Testing Dataset

The dataset used for testing consisted 23 images of whole fingerprints. Each of these

images were collected using nanoparticles exhibiting near infrared NIR-to-NIR

upconversion luminescence. The fingerprints in the dataset where manually matched, and

it was determined that there was a total of 51 correct fingerprint matchings.

4.2. Third-Party Software Used to Analyze and Compare Results

To compare the results of the minutiae extraction algorithm presented in this paper, it was

compared to the performance of the minutiae extraction software called MINDTCT, which

was developed by NIST [10]. NIST released and set their software as the benchmark for

fingerprint recognition software performance. MINDTCT is a part of NIST’s fingerprint

recognition software that performs the minutiae extraction, so MINDTCT would serve as

a good comparison for the performance of the minutiae extraction algorithm presented in

this paper [11].

The BOZOTH3 tool requires the extracted minutiae to be stored in a separate file and given

the file extension ‘.xyt’. Within these files, each line in the file would represent an extracted

minutia, and each line would contain 3 to 4 space separated integers. The first two integers

would represent the minutiae’s x and y position within the fingerprint image (in accordance

with the ANSI/NIST standard). The third space separated integer is the minutiae’s angle of

orientation. Finally, there is a fourth optional integer that specifies the quality of the

extracted minutiae [11]. Although MINDTCT includes the fourth integer by default, the

minutiae extraction algorithm presented in this paper does not include this measure when

compiling the ‘.xyt’ files for the extracted minutiae.

The BOZORTH3 tool takes as input two files with the file extensions ‘.xyt’. This tool will

compute and output a score indicating how well the minutiae for the two files match, where

11

a higher score indicates a better match between the two files [10]. NIST suggests that any

score that is over 40 indicates a match between two fingerprints, so 40 will be the one of

the thresholds used in this paper to indicate a match between two fingerprints [12]. In

addition, since all of the tests ran using a threshold of 40 identified 100% of the true

positives, another set of matching tests where run with a threshold of 80 in order to get a

better understanding of performance for each of the minutiae extraction techniques being

tested.

4.3. Matching Results

The minutiae from each of these fingerprints were extracted using three different minutiae

extraction techniques and analyzed independently. The minutiae extraction techniques

used includes the following: MINDTCT, the algorithm described in this paper (Algorithm

1) without removing the minutiae around the edge of the fingerprint, the same algorithm

(Algorithm 1) with the edge minutiae removed. The average number of minutiae extracted

by MINDTCT is 78. The average number of minutiae extracted using Algorithm 1 without

removing the edge minutiae was 175, while the average number of minutiae extracted by

Algorithm 1 with removing the edge minutiae was 108. An overview of the matching

results using a matching threshold of 40 is presented in Table 1, while an overview of the

matching results using a matching threshold of 80 is presented in Table 2.

Minutiae Extraction Technique

BOZORTH3 Threshold of 40

Total Correct

Matches

True

Positives

False

Positives

MINDTCT 51 51 0

Algorithm 1 Without Removing Edge

Minutiae
51 51 2

Algorithm 1 With Removing Edge

Minutiae
51 51 0

Table 1: Overview of Matching Results using a threshold of 40 for the Bozorth3

Matcher

Minutiae Extraction Technique

BOZORTH3 Threshold of 80

Total Correct

Matches

True

Positives

False

Positives

MINDTCT 51 35 0

Algorithm 1 Without Removing Edge
Minutiae

51 43 0

Algorithm 1 With Removing Edge Minutiae 51 45 0

Table 2: Overview of Matching Results using a threshold of 80 for the Bozorth3

Matcher

For the first set of results obtained using a matching threshold of 40 for the BOZORTH3

tool (which is the recommended threshold by NIST), all minutiae extraction techniques

identified 100% of the correct matches. The only difference in the results for these 3

12

techniques is with the false positives for Algorithm 1 without removing the edge minutiae.

This technique falsely had 2 false positive matches, which results in 4% of all the matches

identified by this technique resulting in a false match.

Figure 3: Extracted Minutiae from Algorithm 1 with Removing the Edge Minutiae

To obtain a better understanding of the performance for each of these three minutiae

extraction techniques, a threshold of 80 for the BOZORTH3 tool was used to perform

matching using the same extracted minutiae from earlier. These results are presented in

Table 2. Unlike before, there are no false positive matchings identified by any of the 3

minutiae extraction techniques. The MINDTCT tool identified 69% of all correct matches,

which amounts to it revealing 35 true positive matches of the 51 totally. Algorithm 1

without removing the minutiae around the edge of the fingerprint did significantly better

by identifying 84% of the total correct matches. Using this technique, 43 true positives

were identified out of the 51 correct matches. Finally, Algorithm 1 with removing the

minutiae around the edges of the fingerprint caught 88% of the correct matchings, finding

45 true positives from the 51 total correct matchings.

V. Conclusion

5.1. Summary

The minutiae extraction algorithm presented in this paper has shown to be effective while

also being simple to implement. By outperforming the MINDTCT tool, it was able to pass

the baseline performance set by NIST on this dataset. Using the BOZORTH3 matcher with

a threshold of 40, 100% of the correct matches in the test dataset where able to be identified,

and when the minutiae around the edge of fingerprints are removed, it identified no false

positive matches.

When the matching threshold for the BOZORTH3 tool was doubled to 80, the proposed

minutiae extraction algorithm presented without edge minutiae removal was able to

outperform the MINDTCT tool by 15%. Since many of the minutiae present along the edge

13

of the fingerprint are unreliable (due to the creation of false ridge endings from

segmentation), the performance of the presented minutiae extraction technique was

improved by simply removing the minutiae present along the edge of the fingerprint.

5.2. Future Work

Since the dataset used to evaluate the performance of the presented minutiae extraction

algorithm was small, further evaluation of its performance would need to be completed by

testing it on a much larger dataset containing images of less quality. Work will need to be

done on extracting level 1 and 3 features from the latent fingerprints. By mitigating

unfavorable factors in the use of latent fingerprint, a comprehensive scheme based on the

fusion of diverse features of Level 1-3 is expected to achieve high accuracy and reliability.

In addition, the extracted features will need to be represented in a way that would facilitate

the ability to match fingerprints against a large database of fingerprints. One possible

avenue to accomplish this is to investigate using machine learning for matching

fingerprints.

Acknowledgment

This work was supported by the National Institute of Justice grant 2017-IJ-CX-0026.

Opinions, findings, and conclusions or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views of the Department of Justice.

I would like to thank Dr. Mengyu Qiao for advising me on this project. Special thanks to

Dr. William Cross, and Dr. Jon Kellar for their continuous support, feedback, and guidance

on this project. In addition, I would like to acknowledge Dr. Rodney Rice for his help in

developing the framework and sharing his expertise in technical writing.

References

[1] Mayhew, S. (2012). What is Fingerprint Identification? Retrieved August 2, 2019,

from https://www.biometricupdate.com/201205/what-is-fingerprint-identification

[2] Watson, S. (2018). How Fingerprinting Works. Retrieved June 19, 2019, from

https://science.howstuffworks.com/fingerprinting3.htm

[3] US Legal, Inc. (n.d.). Latent Fingerprint Law and Legal Definition. Retrieved July

29, 2019, from https://definitions.uslegal.com/l/latent-fingerprint/

[4] Fingerprints: An Overview. (2016). Retrieved June 19, 2019, from

https://nij.gov/topics/forensics/evidence/impression/Pages/fingerprints.aspx

[5] Bansal, R., Sehgal, P., & Bedi, P. (2011). Minutiae Extraction from Fingerprint

Images - a Review (Rep. No. 1694-0814). Retrieved June 20, 2019, from IJCSI

International Journal of Computer Science Issues website:

https://arxiv.org/ftp/arxiv/papers/1201/1201.1422.pdf

14

[6] Ratha, N. K., & Bolle, R. (2011). Automatic fingerprint recognition systems. New

York: Springer.

[7] Nguyen, D. and Jain, A. (2019). End-to-End Pore Extraction and Matching in

Latent Fingerprints: Going Beyond Minutiae. GroundAi. [online] Available at:

https://www.groundai.com/project/end-to-end-pore-extraction-and-matching-in-latent-

fingerprints-going-beyond-minutiae/1#bib.bib2, Accessed 19 Jul. 2019.

[8] D. Maio and D. Maltoni, “Direct gray-scale minutiae detection in fingerprints”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):27–40.

[9] Kovesi, P. (2005). Retrieved from

https://www.peterkovesi.com/matlabfns/#fingerprints

[10] Mariano, L. (2015, March 4). Retrieved from https://github.com/lessandro/nbis

[11] Watson, C. I., Garris, M. D., Tabassi, E., Wilson, C. L., McCabe, R. M., Janet, S.,

& Ko, K. (n.d.). User's Guide to Nist Biometric Image Software (Nbis).

[12] Watson, C. I., Garris, M. D., Tabassi, E., Wilson, C. L., McCabe, R. M., Janet, S.,

& Ko, K. (n.d.). User's Guide to Export Controlled Distribution of NIST Biometric Image

Software (NBIS-EC).

