
Applying Convolutional Neural Networks to
Per-pixel Orthoimagery Land Use Classification

Jordan Goetze
Computer Science Department
North Dakota State University
Fargo, North Dakota. 58102

jordan.goetze@ndsu.edu

Abstract
Recently, the proliferation of Convolutional Neural Networks has spurred research in a
wide range of fields such as image recognition, voice synthesis, and various other clas-
sification tasks. Over the last several years, the availability of satellite and other forms
of orthoimagery has also increased due to the decreasing cost of capturing devices. The
amount of annotated or labeled orthoimagery has not kept pace with the increased avail-
ability of imagery, largely due to the time complexity of labeling such data. Land cover
usage classifications in particular would have many uses in agriculture. The United States
Department of Agriculture’s National Agricultural Statistics Service provides land cover
usage data at a resolution of 30 meters, which compared with - for example - a 1 meter
imagery resolution, leaves a large discrepancy between the quality of the raw image data
and the labeling data. This research uses these low quality labels along with high quality
image data to train a model that attempts to perform per-pixel land use classification, in
hopes to create a classifier that is able to predict several different classes of land use, up to
or beyond the resolution accuracy of the much less adequate label data set. It is important
to note however, that it is very difficult to evaluate if a model provides relatively better
classifications based on the semantics of the input image, due to the low resolution of the
image labels. This is because, an individual pixel in the image label will only represent one
class per NxN meter area - in the case of our data set, a 30x30 meter area. That individual
pixel may be a poor representation of features actually represented in the higher resolution
image data. Thusly, we will attempt to demonstrate that, with enough data, a model may
generate higher a resolution classification than the original imagery labels with a reason-
able margin of error, and attempt to define a way to evaluate the effectiveness of the model
despite the poor resolution of the image labels.



1 Introduction
Per-pixel image classification, commonly referred to as image segmentation, has a wide
range of applications such as scene labeling for autonomous driving systems or inferring
relationships between objects in images. Land-use classification would fall under the realm
of scene labeling, wherein instead of looking at an image of a scene, the model is given
a birds-eye-view of a geographical feature. This style of imagery is commonly called
orthoimagery. Orthoimagery is typically collected with either satellites or drones, and due
to the decreasing cost of both apparatuses, the availability of orthoimagery has increased
greatly over the last several years.
One of many such projects to make orthoimagery available is the National Agricultural
Imagery Program (NAIP) which is administered by The United States Department of Agri-
culture’s Farm Service Agency. The NAIP data set imagery spans most of the continental
United States of America. NAIP imagery is acquired at one-meter ground sample dis-
tance (GSD) and provides red, green, blue, and near infrared image layers. The United
States Department of Agriculture’s National Agricultural Statistics Service (NASS) also
provides land-use classifications for the continental US, however, the resolution accuracy
of these classifications limits their usefulness for agricultural surveying. As compared to
the NAIP imagery resolution, one pixel of the NASS land-use classifications represents
50x50 pixels in a NAIP image, in other words a 50 square-meter area. Additionally, NASS
classifications have many mislabeled pixels, visible by overlaying a NAIP image with a
corresponding NASS classification image as seen in Figure 1. Additionally, as shown in
Figure 2, regions with curved, or organic edges are often clipped. Finally, as in Figure 3,
fine features are often not represented, or are poorly represented because they represent a
minority of pixels in the mapped region.

NAIP imagery overlaid with corresponding NASS land use classifications.

Figure 1: Mislabeled pixels. Figure 2: Clipped organic
features.

Figure 3: Fine features
poorly represented.

2



More accurate land-use classifications could be used for many tasks such as tracking crop
yields by year, tracking changes in land use(crop rotations, new crops), tracking changes
in forestry, and tracking changes in water sources such as rivers and lakes. Additionally,
with a model able to generate accurate classifications, up to date classification data may
be generated by processing new orthoimagery with the model. Unfortunately, successful
image segmentation is a challenging problem.

2 Related Work/Literature Review
Much of previous orthoimagery segmentation and classification research has been focused
on identifying roads and buildings, for use with mapping technologies such as Google
Maps or Open Street Map. There seems to be very little research into the problem of
generating classified segmentation for use with other applications such as natural resource
surveying. Because per-pixel classifications of orthoimagery fall under the realm of scene
recognition, we researched viable approaches to scene recognition. One of the notable
works on scene recognition was SegNet. The SegNet publications outline a deep convolu-
tion encoder-decoder network which when applied to the CamVid data set produced good
representations of features in the data set with relatively light computational requirements.
The CamVid data set consists of ten minutes of high quality video imagery with corre-
sponding semantically labeled images captured from a driving automobile. When applied
to the CamVid data set, SegNet is able to produce high accuracy labels in real time. When
searching for a staring point to begin with orthoimagery classification, it seemed worth
while to see if the usefulness of SegNet was transferable to a new realm of sudy. The low
computational requirements and the speed of the network were also attractive to minimise
the upfront costs of hardware needed for training and testing a model.
SegNet’s architecture[3] consists of several corresponding encoder-decoder layers. Each
encoder layer consists of a convolutional operation, followed by a batch normalization
operation, followed by a Rectified Linear Units (RELU) operation, followed by a max-
pooling operation. It is important to note that the max-pooling indices are saved for later
use. Each decoder layer consists of an upsampling operation, a convolution operation,
a batch normalization operation, and a RELU operation. A softmax classification layer is
placed at the end of the network to compute the probabilities of classes. For the upsampling
operation, the max-pooling indices from the encoder layer are used as the indices to unpool
the inputs. This upsampling method is one of the unique qualities of SegNet. Upsampling
in this manner allows for rapid training of a model because the decoder does not need to
learn how to upsample the down-sampled filter windows of the previous layer. Effectively
allowing us to produce per-pixel classifications at the same resolution as the input image.

3



Figure 4: SegNet architecture. The encoder network consists of four sets of encoder layers
of decreasing resolution. The decoder network consists of four sets of decoder layers of
increasing resolution. The bottom row depicts the architecture of one encoder layer and
one decoder layer. For every encoder layer, there is a matching decoder layer.

In more detail, each encoder layer performs a convolutionl operation to produce a set of
feature maps. The feature maps are then batch normalized and a RELU operation is applied.
Finally, a max-pooling operation is applied to the feature maps to “reduce translational
variance over small spacial shifts within the input image”[3]. The indices of the max-
pooled samples are saved for use with a corresponding decoder layer. In each decoder layer,
the corresponding indices are used to preform indice unraveling as a means of upsampling
the feature maps. The upsampled feature maps are then convolved upon, batch normalized,
and a RELU operation is applied. The resulting feature maps are then fed to a softmax
classifier and per-pixel label-wise probabilities are computed.

3 Data Set Preprocessing
As described above, our data sets consist of raw images from the National Imagery Program
(NAIP), and land-use classification data from the National Agricultural Statistics Service
(NASS). NAIP imagery is acquired at one-meter ground sample distance (GSD) and pro-
vides red, green, blue, and near infrared image layers [2]. Images from the NAIP data set
are available for download via the EarthExplorer tool hosted by the United States Geo-
graphical Services. EarthExplorer allows users to query various geographical datasets and
interfaces with a bulk data download application. Once the image data is downloaded, the
GDAL library (Geospacial Data Abstraction Library) tooling is used to generate a set of
shapefiles which are then uploaded to the NASS CropScape land use classification tool.
CropScape allows users to upload points of interest as shapefiles and fetch land-use classi-
fication data for a region contained by the shapefile. Once the land-use classification data
is downloaded, the GeoTiff files containing the data must be resized to match the reso-
lution of the NAIP imagery files. GDAL, using the gdalwarp command, is used for this
purpose. Because GeoTiff files are georectified, resizing the classification images does not
offset pixels in the image and we do not need to worry about pixels in the resized image

4



Forestry Forest, Shrubland, Christmas Trees, Other Tree Crops, Deciduous For-
est, Evergreen Forest, Mixed Forest, Woody Wetland

Developed Fallow/Idle Cropland, Developed, Developed Open Space, Developed
Low Density, Developed Medium Density, Developed High Density,
Grass/Pasture

Field
(abridged)

Corn, Cotton, Rice, Sorghum, Soybeans, Sunflower, Peanuts, Tobacco,
Sweet Corn, Pop or Oat Corn, Mint, Barley, Durum Wheat, Spring
Wheat, Winter Wheat, Other Small Grains, Double Crop Winter Wheat
and Soybeans, Rye, Oats, Millet, Speltz, Canola, Flaxseed, Safflour,
Rape Seed, Mustard, Alfalfa, Other/Non-hay Alfalfa, Camelina, Buck-
wheat, Sugarbeets, Dry Beans, Potatoes, Other Crops, Sugarcane,
Sweet Potatoes, Misc. Vegitables & Fruites

Water Water, Aquaculture, Open Water, Herbaceous Wetlands
Background A catch-all class for the other classes that are either not used or too

poorly represented.

Figure 5: Model classes to NAIP class breakdwon. Note that not all NAIP classes are rep-
resented in our classification data as most of our classifications come from North Dakota.

Forestry Developed Field Water Background
0.63% 4.84% 76.26% 16.05% 2.22%

Figure 6: Break down of class representation by percentage.

being anti-aliased or smoothed in some way which might produce invalid data. A script
then slices the NAIP image and the NASS classifications into 256x256 pixel swatches, and
stores each channel of the NAIP image in its own greyscale PNG file. The near-infrared
layer is converted to a Normalized Difference Vegetation Index (NDVI) scaled from 0 to
255 (more on this is covered in the Architecture section). Classification images from NASS
contain 255 different possible labels. In order to simplify these labels we grouped labels
into one of 5 groups: forestry, developed, field, water, or background which we use as our
labels to predict. The breakdown of which NASS labels were grouped into each label can
be seen in Figure 6. Each classification swatch is stored as a greyscale image. Images are
stored in this manner to allow easy visualization of the images. Because the input image
consists of four layers: red, green, blue, and NDVI - the NDVI layer is interpreted by im-
age viewers as an opacity layer which would make manual inspection of swatches difficult.
During training and testing, these sets of image swatches are loaded in batches and passed
into the model.

4 Architecture
For the most part, our model encompasses a vanilla implementation of SegNet. The orig-
inal SegNet model takes 4-band images as input. The first three bands correspond to the
conventional red, green, and blue layers. The fourth band is a depth map scaled between 0
and 255. The fourth band in the image of our model is a Normalized Difference Vegetation

5



Index (NDVI)[1] scaled between 0 and 255. The NDVI layer of our images is computed
using the red and near-infrared layers of our source images using the following formula:

NDV I = NIR−RED
NIR+RED

NDVI is useful for tasks where vegitation is involved, this is due to the way near-infrared
light reflects differently off of vegetation and non-vegetation.
Another difference between our model and the original SegNet model, is varying convo-
lutional kernel sizes. We are currently experimenting with using different convolutional
kernel sizes. SegNet recommends a 7x7 convolutional kernel size. This seems to work
well for the SegNet data set image size and its task, however such a large convolutional
kernel reduces sensitivity to fine features and does not work as well in our much smaller
images (smaller images means noticeably finer features than in the CamVid data set). We
have two different variations of our model which use 5x5 kernels and 3x3 kernels. The
5x5 kernel allows for detection of finer features than SegNet’s 7x7 kernel. The 3x3 kernel
allows for detection of even finer features than the 5x5 kernel. We expected that because of
the higher sensitivity of the 3x3 kernel, the predictions would be more noisy as the model
may begin to pick up on some of the image noise. We are also investigating using kernel
sizes that vary for each encode decoder layer. For example, the first two encoder-decoder
pairs would use a kernel size of 3x3 and the second two encoder-decoder pairs would use
a kernel size of 5x5.

5 Training and Evaluation
The model is trained on 90% of the available image swatches (approximately 72,000 image
swatches) in batches of 15 for 25 epochs. While training we save checkpoints every 100
steps. Post training we then select the checkpoint with the highest evaluation accuracy. The
model is evaluated on 10% of the available images (approximately 8,000 image swatches).
Evaluating and training with k-fold cross validation is planned for the future.

6 Analysis
As our model is still in relative infantsy, results are still rather disappointing. With accu-
racies close to but still less than 76% (as seen in Figure 7), we can see that for the vast
majority of images, the model assumes that all pixels are of the field class. From there, it is
attempting to recognize patterns in the image, and often times it picks up on image features,
but does not correctly classify the pixels. Some of this may be because the label images are
very low quality. A comparison between the label images and the model predictions can be
seen in Figure 8.

3x3 Convolutional Kernel 71.61%
5x5 Convolutional Kernel 73.33%

Figure 7: Evaluation accuracy of model variants.

6



Figure 8: Model prediction producted by the 5x5 convolutional kernel model variation.

Figure 9: Model prediction evaluation corresponding to the predictions in Figure 8.

In Figure 8, the label image appears to be incorrectly labeled, as there appears to be no for-
est (trees or shrubland) in the input image. When we look at the comparison between the
input image and the model prediction, we can see that the model prediction represents fea-
tures in the input image much more closely than the label image. This comparison is more
easily visible in Figure 9 where we have overlaid the input image with the model predic-
tion. So while the model doesn’t produce accurate labels when compared with the highly
inaccurate label image, the model appears to visually provide a reasonable approximation
(albeit noisy) of features in the image that can be differentiated by humans. This leaves
us with the problem of figuring out how to correctly determine accuracy and error for the
model. To further this point, the image on the right side of model 9 depicts the pixels that
were classified correctly according to the label image. In this image white pixels represent
a correct classification, and black pixels an incorrect classification. The blocky-ness of the
borders between correctly and incorrectly labeled pixels (such as in the bottom half of the
image) indicate that the model is struggling to cope with the difference in the resolution of
the label images. As a result, the poorness of the image labels sometimes causes correct
classifications to be counted as incorrect as in the right most image of Figure 10. The clas-

7



sification is a rounded, very organic feature. However, because of the low resolution of the
image label, sharp corners appear in the classification accuracy image, resulting in a falsely
lower reported accuracy for the image.

Figure 10: Model prediction produced by the 5x5 convolutional kernel model variation.

7 Future Work
Though this research is an ongoing project, it is clear that significant changes need to
be made to the model and process in order to achieve desirable results. We need to find
some way of addressing the resolution discrepancy between the label images and the input
images. Possible thoughts to this effect include attempting to find some way to take label
images of two different resolutions, and somehow using them as a way of projecting a third
higher resolution label image.
Another idea is to define training and evaluation error differently. Training error would
still be calculated based on the loss between the predictions and the NASS label images.
Evaluation error would be based on a randomly sampled set of test images which we would
manually label. We would then find some way of determining the error between the NASS
label images and the manual label images and then remove that quantity of error from
the prediction error. This approach works on the assumption that a human can accurately
classify the image data, and that the amount of error between the NASS image labels and
the manual image labels is somehow proportionate to the amount of error caused by the
poor resolution of the label images as is visible in Figure 10. We would also like to migrate
to a more extensive training and evaluation setup where we would run the model with k-fold
cross validation to get a more reliable measure of accuracy.
Finally, we would like to experiment more with the varying combinations of convolu-
tional kernel filter widths to attempt to reach a balance between micro-features and macro-
features, and ideally prevent the model from picking up on image noise while still retaining
visibility of fine features.

8 Conclusion
We have presented our modified SegNet model and have detailed our ongoing research into
pixelwise image classification using orthoimagery. Though current results are nominal, we
have plans to address the various concerns we believe are leading to this deficiency.

8



References
[1] Measuring vegetation (ndvi and evi). https://earthobservatory.nasa.

gov/Features/MeasuringVegetation/measuring_vegetation_2.
php, 2014.

[2] Naip imagery. https://www.fsa.usda.gov/programs-and-services/
aerial-photography/imagery-programs/naip-imagery/, 2017.

[3] Vijay Badrinarayanan et al. Segnet: A deep convolutional encoder-decoder architecture
for image segmentation, 2016.

9


