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Abstract 
 

A many-key chaotic image encryption scheme based on the Lorenz system is 

presented. Using the time-delay Lorenz system, the proposed approach performed the 

pixel permutation on a bit-by-bit basis in the diagonal and antidiagonal directions, 

providing the necessary pixel confusion. Then, the Lorenz system is employed again to 

generate a sequence of random bytes that are used in the diffusion step. Numerical 

analysis is also presented showing that the system (with diffusion) should be resistant to 

any type of attack. We also show that, even though we have a very large key space, that 

without the diffusion step, the method could be susceptible to an attack. 

 



Introduction 

CubeSats [1] have generated significant interest due to their low cost and ease of launch 

vehicle integration. However, despite their small size (approximately 10 cm x 10 cm x 10 

cm and a mass of 1.33 kg), CubeSats contain numerous systems and subsystems and can 

be designed to accomplish a wide variety of tasks. A student-run CubeSat program at the 

University of North Dakota (UND), called the Open Prototype for Educational Nanosats 

(OPEN) [2], is an interdisciplinary, CubeSat program whose goal is to provide students 

with the opportunity to get involved in all aspects and levels of a spacecraft development 

program. The OPEN program has a second mission and this is to create a CubeSat design 

that is very affordable (< $5000.00). To help keep costs down Cubesats commonly use 

amateur radio frequencies; frequencies that FCC regulations ban using any form of 

encryption with [3]. However, given the growing popularity of Cubesats and the 

increased launch opportunities [4, 5], we expect that the need for data confidentiality will 

outweigh the FCC’s restrictions. Finally, as the UND Cubesat will be an Earth observing 

satellite we are interested in developing a very secure image encryption methodology.   

 

Cryptography has a long history. Julius Caesar is credited with creating one of the earliest 

cryptographic systems to send military messages to his generals. Governments and 

military leaders have used cryptographic systems since. Focusing on image encryption, 

our domain of interest, a variety of different encryption methods have been proposed, 

including the Hartley transform and Logistic map [6], chaotic maps (chaos-based) [7], and 

a circular bit shift and XOR operations [8]. 
 

Perhaps the most active area right now is that of the chaos-based algorithms. These 

algorithms exhibit some exceptionally good properties in many aspects regarding 

encryption, such as complexity, non-periodicity, speed, and sensitivity to the initial 

conditions. These properties make this approach ideal for images as the more traditional 

encryption algorithms such as DES, IDEA and RSA as it is rather difficult to 

efficiently shuffle and diffuse data by these traditional means of encryption. As noted, 

the chaos-based algorithms are also highly sensitive to the initial conditions, meaning 

that even a slight change to the key will result in a significant change to the encrypted 

image. All of these characteristics lead to efficient methods for image encryption. Which 

is why we selected this approach. 

 
 

Chaotic systems 
 

In 1999, Professor G. Chen first presented a three-dimensional (3D) chaotic system [9], 

which improved on the small key space and weak security known to exist in the one-

dimensional (1D) chaotic systems [10].  

 

The system Chen presented is described by equation 1: 
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where a, b and c  are parameters. Choosing a=35, b=3, c ∈ [20, 28.4], the system enters a 

chaotic domain.  

 

The system we are using is a variation of Chen’s and is a Lorenz system based on the 

work of Huang, Ye, and Wong [11].  This system is described by equation 2: 

bzxyz

xzyrxy

xymx







'

'

)('

       (2) 

where m, b and r are parameters. Choosing m=10, r=28, b =8/3, the system enters a 

chaotic domain. Thus, given initial values xo, yo, and zo, the system will quickly diverge 

and generate values vastly different from a system given only slightly different values for 

xo, yo, or zo [11]. 
 

 

A Many-key Approach 
 

The approach to confusion we are taking is an extension to the approach taken by 

Jackson, Kerlin, and Straub [12] wherein they employed a chaotic block-based cypher 

which used diagonal and anti-diagonal shuffling of an image’s pixels using a Lorenz 

System. The core process of their approach is quite simple in the design, but highly 

effective as a 1-way function. First the input data is read into a n x n matrix (with padding 

or subdividing as needed/desired). Then a 4-value key is used to seed a Lorenz System, 

the output of which is used to shuffle the data matrix against first its diagonals and then 

its anti-diagonals. The first critical point, with respect to this shuffling, is that the n x n 

matrix is treated as a circulant matrix, in which all diagonals and anti-diagonals will have 

n members. This permits the resulting diagonal and anti-diagonal matrices to be n x n, 

thus preserving the dimensional uniformity of the matrix throughout the translations 

while still providing significant entropy. The second critical point, with respect to the 

shuffling, is the use of a Lorenz System. Lorenz Systems have the property of being 

highly divergent for similar seeds, this makes them highly chaotic and an excellent 1-way 

function for the purposes of encryption. Jackson, Kerlin and Straub [12] utilized a Lorenz 

System requiring three inputs, so their keys end up being four values: three values are 

used as inputs (or seeds: xo, yo, and zo) to the Lorenz System and the fourth value is used 

for number of iterations through the Lorenz System before output is taken (i.e. it controls 

how divergent/chaotic the values are). Using the output from the Lorenz System, each 

datum in the n x n matrix is provided with a value. The datum are then sorted (by Lorenz 

value x) along their circulant diagonals. This process of sorting is then repeated, but now 

the datum are sorted (by Lorenz value y) along their circulant anti-diagonals. Post 

shuffling, a block-based diffusion is performed in order to increase the entropy of the 



output. This diffusion process uses modular arithmetic as a 1-way function for creating a 

different multiplicative for use on each block of the data matrix. 

 

In addition to diagonal and anti-diagonal shuffling of an image’s pixels one will also want 

to introduce some level of pixel diffusion into an encryption algorithm. There are two 

reasons to do this. The first is that the diffusion process can render the discretized chaotic 

map non-invertible. The second is that the diffusion process can significantly change the 

statistical properties of the image (e.g. the histogram). For example, the top row of figure 

1 shows an image, its histogram, and the diagonal and anti-diagonal shuffled image. The 

bottom row of figure 1 shows the shuffled image’s histogram. As one can see the two 

histograms are identical. Therefore, for a secure encryption scheme, a diffusion 

mechanism is desired. 

 

   

 
Figure 1: Seal image. 

 

To improve upon the security of an encryption scheme, one can expand upon the idea to 

use more keys (parameters). Gao et al. [13] increased the number of parameters to six 

and, as in [14], two Logistic maps were employed to enlarge the key space.  

 

For this work we use multiple keys and multiple Logistic maps. We use eight sets of n x n 

circulant matrices, one for each of the eight bits (we are assuming a grayscale 8-bit per 

pixel image). Therefore, we are using eight sets of four keys. The first four keys are three 

inputs to the Lorenz System and the number of iterations before output is taken. These 

values are used to perform the diagonal and anti-diagonal shuffling of the image. 

However, unlike in the work of Jackson, Kerlin, and Straub [12], we are now performing 

the shuffling on a bit by bit basis; however, as we will show, a diffusion step is still 

necessary. In a sense, we are treating the image as a 3D dataset, similar to what Koduru 

and Chandrasekaran did [15]. 

 



The top row of figure 2 shows an image, its histogram, and the diagonal and anti-diagonal 

shuffled image. The bottom row of figure 1 shows the shuffled image’s histogram. If we 

were to expand this encryption scheme to 24 bit color images, we could employ up to 24 

sets of n x n circulant matrices and 24 sets of four keys. 

 

   

 
Figure 2: Seal image with bit shuffling. 

 

The approach works well when applied to binary images, images with pixel values of 0 or 

255, as well. As with figures 1 and 2, figure 3 shows a binary image, its histogram, the 

diagonal and anti-diagonal shuffled image, and the shuffled image’s histogram. 

 

   

 
Figure 3: Binary ship image with bit shuffling. 

 



Of course, we can still employ a separate diffusion algorithm. And that component may 

require another key(s), or that key(s) could be extracted from the existing sets. We chose 

a rather simple diffusion process, with its inverse, shown in equation 3. 
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Where Ck are the input pixels with C0 set to 128, N is 256, Ik are the resulting diffused 

pixels with I0 set to 128, and Sk is a random value generated by a Lorenz function. The 

specific function used to generate S is shown in equation 4.  
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Where x, y, and z are values generated by the Lorenz function shown in equation 2 above 

using four new keys. 

 

In the following examples, we applied the diffusion process after the diagonal and anti-

diagonal shuffling of the bits. As with the previous figures, figure 4 shows the seal image, 

its histogram, the diagonal and anti-diagonal shuffled image, and the shuffled image’s 

histogram when the extra diffusion step is applied. Figure 5 shows the binary ship image, 

its histogram, the diagonal and anti-diagonal shuffled image, and the shuffled image’s 

histogram when the extra diffusion step is applied. 

 

   

 
Figure 4: Seal image with bit shuffling and diffusion. 

 



   

 
Figure 5: Binary ship image with bit shuffling and diffusion. 

 

 

Key Analysis 
 

A good encryption algorithm must satisfy several requirements. These include a large key 

space, sensitivity to the cipher keys, and no correlation between two adjacent pixels. 

 

Key space – In the proposed approach (with diffusion), for a grayscale image, the key 

space is determined by 9 * 4 * N. 9 sets of 4-valued keys where each value is described 

by N digits. For example, if we set N to be 8, our overall key size would then be 288*4 

digits. If we now assume that we can store each digit (0-9) with 4 bits, we would have an 

overall key size of 1152 bits. However, as Huang, Ye, and Wong have shown, when using 

a circulant operation, one can achieve key sensitivity out to the 15th digit [11]. This 

suggests another way of allocating/storing keys. With this approach one would use 

floating point values for the first three keys of each set and an integer (byte) value for the 

forth key of the set. This allocation would create a key set determined by equation 5. 

 

9 * (3 * Nf + Nb)        (5) 

 

Where Nf is the number of bits required to store the floating point value (32 or 64) and 

Nb is the number of bits required to store the byte value (8).  

 

Assuming C/C++ float types, we would have a key space requiring 9 * (3 * 32 + 8), or 

936 bits. For 24-bit color images, this would become 2808 bits.  

 

Sensitivity analysis – Both Huang, Ye, and Wong [11] and Chen, Mao, and Chui [7] have 

addressed the sensitivity analysis of these types of encryption schemes. Therefore, we will 

not expand further on that work. 

 



Histogram analysis – The histograms shown in figures 2, 3, 4, and 5 clearly indicate that 

it would be difficult to employ a statistical attack as the pixel values are evenly 

distributed (when the added diffusion step is included) or, at least, very different from the 

original image (when the added diffusion step is not included). 

 

Pixel correlation analysis – We used equation 6 [16] with 1500 randomly selected pixels 

(500 for each direction) to evaluate the adjacent pixel correlation.  
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And where x and y are the values of the two selected adjacent pixels in the image and N is 

total number of pixels (500) selected from the image for the calculation. Tables 1-3 show 

the results for the original image set, the encrypted image set with bit shuffling only, and 

the encrypted image set with bit shuffling and diffusion. As shown, the values are nearly 

zero indicating little correlation. 

 

Image Seal Cenote Tetons Huts Ship 

Horizontal 0.13113 0.20000 0.13169 0.05017 0.12516 

Vertical  0.12061 0.03095 0.58492 0.46717 0.21124 

Diagonal 0.02523 0.04194 -0.01916 0.00105 -0.00836 

Table 1: Correlation coefficients for image set (original). 

 

Image Seal Cenote Tetons Huts Ship 

Horizontal -0.02404 0.08899 0.13796 0.13142 0.10398 

Vertical  0.06112 -0.02773 0.22178 0.17631 -0.00049 

Diagonal 0.00626 -0.09521 -0.00015 -0.00474 -0.04606 

Table 2: Correlation coefficients for image set (encrypted). 

 

Image Seal Cenote Tetons Huts Ship 

Horizontal 0.02504 -0.00812 -0.03923 0.01609 -0.04842 

Vertical  0.03934 0.03643 0.06635 -0.00540 0.01244 

Diagonal -0.10148 0.06879 0.00000 0.03436 0.06052 

Table 3: Correlation coefficients for image set (encrypted). 



Differential attack – We used two methods to evaluate the influence of changing a single 

pixel by a single bit in the original image on the encrypted. The first method used was the 

number of pixels change rate (NPCR), the second was the unified averaged changed 

intensity (UACI) [17]. The NPCR measures the percentage of different pixels between 

two images. In this case a two-dimensional array D is defined to have the same size as the 

two images C1 & C2. Where C1 is the original unencrypted image and C2 is a copy of C1 

with one pixel (in our case [128, 128]) changed by 1 bit. We then apply equation 7. 
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And M and N are the size of the encrypted image. 

 
UACI measures the average intensity of differences between two images. UACI is 

defined by equation 8. 
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We calculated the NPCR and UACI for the image set by using the many-key encryption 

scheme, shown in tables 4 and 5. NPCR was over 99% for all cases showing that the 

encryption scheme is very sensitive to small changes in the unencrypted image. However, 

when the diffusion step was not included, the results were unsatisfactory. UACI was in 

the low to mid 30% range again showing that the encryption scheme is very sensitive to 

small changes in the unencrypted image. However, when the diffusion step was not 

included, the results were again unsatisfactory. 

 

Image Seal Senote Tetons Huts Ship 

Value 0.009155 0.003052 0.003052 0.003052 0.001526 

Value 99.48425 99.67041 99.646 99.58038 99.03107 

Table 4: NPCR coefficients. 

 

Image Seal Senote Tetons Huts Ship 

Value 0.000377 0.000018 0.000018 0.000018 0.000006 

Value 32.93685 32.87933 33.25742 33.67321 35.56585 

Table 5: UACI coefficients. 



Entropy analysis – Entropy analysis is another tool that can be used to measure the 

strength of an encryption system. It is defined by equation 8 [18]. 
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Where p(si) is the probability of occurrence of si. Note that for any ideal random sequence 

H(s) is 8. Table 6 shows the results for the image set with bit shuffling only on the top 

row and bit shuffling with diffusion on the bottom row. All images benefit from the 

added diffusion step.  

 

Image Seal Cenote Tetons Huts Ship 

Value 7.252669 7.481663 7.852982 7.950469 3.010717 

Value 7.996749 7.997534 7.997175 7.997135 7.997581 

Table 6: Entropy coefficients. 

 

 

Conclusion  
 

Proposed is a many-key approach using the Lorenz System that incorporates bit by bit 

diagonal and anti-diagonal shuffling of the pixels in an image, employing a large ley 

space of 936 bits for grayscale images and 2808 bits for 24-bit color images. However, as 

demonstrated, a large key space is not enough. If one’s desire is to provide maximum 

security, one must also ensure that some form of diffusion is used. The many-key 

approach described, when combined even with a rather simple diffusion step, does appear 

to provide a very secure image encryption mechanism. 
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