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Abstract 

 

Prompted by growing interest in study replication by the National Science Foundation, 
this report aims to produce an experiential replication study that tests the Intel Xeon Phi 
Many Integrated Core (MIC) platform’s performance in a realistic research setting.  To 
demonstrate the MICs’ performance, this report replicates the theoretical peak 
performance of 1 TFLOPS as reported by F. Masci of Caltech. These performance results 
are then compared to a MIC-enabled Smith-Waterman protein database querying 
implementation, the SWAPHI (Smith-Waterman Algorithm on Xeon Phi coprocessors) 
software developed by Y. Liu et al. The results from the SWAPHI paper were not as 
easily reproducible over the course of the proposed one-month period for a comparable 
replication research study. The difference between the experience and success of these 
two replication attempts highlights desired best-practices for researchers who aim to 
address a perceived “culture of irreproducibility” in computer science. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Introduction 
 
Computational biologists use protein database querying (PDQ) to study the function, 
structure, and evolutionary relatedness of proteins in both medical and general biology 
research. However, the computational cost of calculating pairwise alignments over 
increasingly large protein databases is prohibitive. As such, researchers often resort to 
algorithms that introduce a heuristic search to find query results more quickly than 
pairwise alignments (for instance, using BLAST [Camacho, 2009]). But unlike pairwise 
alignments, heuristics are not guaranteed to always return globally optimal sequence 
alignments.  
 
To mitigate this performance cost while still finding optimal results, researchers have 
been adapting the standard Smith-Waterman pairwise alignment algorithm for use on 
emerging parallel and distributed platforms. One such platform is the Intel Xeon Phi 
Many Integrated Core (MIC) architecture. Intel first designed the MIC as an accelerator, 
similar to a GPU, capable of providing additional computational power to a host 
platform. However, unlike GPUs, which are specifically designed for linear algebra 
computations, the MICs contain 61 or more generalized x86 compatible cores, depending 
on the model, each capable of executing four hardware threads.  
 
Since the MIC’s performance has been investigated to some degree, this paper first aims 
to replicate the results from a Caltech technical report that obtained approximately 1 
TFLOPS performance per MIC using optimized matrix multiplication as a benchmark 
[Masci, 2013]. The results from this replication will serve two principal purposes: to 
verify the MIC’s performance claims and to determine under which parallel execution 
models the maximum performance may be accomplished.  
 
Then, using the results from the performance replication, this paper will attempt to 
replicate Liu and Schmidt’s findings in their MIC optimized Smith-Waterman pairwise 
alignment implementation [Liu and Schmidt, 2014]. In doing so, this paper aims to 
understand how researchers may expect the MIC’s performance to translate to a typical 
research use case. This paper will also compare the MIC implementation of 
Smith-Waterman to a GPU implementation to evaluate the relative performance of 
different accelerator platforms [Liu and Schmidt, 2014; Liu et al, 2013]. 
 
Ultimately, this paper presents an experiential study into the process of computer science 
research replication, a topic which has seen renewed interest by both the National Science 
Foundation (NSF) and journal editorial staff alike. The principal concern centers around a 
lack of  sufficient information necessary to facilitate research replication in many studies 
published to computational journals, to the point that the study’s authors themselves 
cannot replicate their own results months later [Heroux, 2015]. Moreover, replication 
researchers have found that it is difficult to gain access to code cited in a published study, 
let alone run it and obtain accurate results [Collberg et. al., 2015]. As the review and 

 



replication of findings is foundational to the scientific process, this culture of 
irreproducibility in computer science research must be addressed. 
 
This paper is the culmination of a month long project aimed at simulating the initial 
stages of a research replication study, in which an independent team attempts to acquire, 
compile, and run code from an existing study as quickly as possible. The two related 
studies highlighted by this project present two drastically different replication 
experiences. From these experiences, this paper aims to highlight essential best practices 
necessary for a successful replicable study.  
 
 

Prior Work 

 

 

Protein Database Querying and Parallelism  

 

In 2009, Camacho et al presented an improvement over the ubiquitous BLAST which can 
handle much longer query or database sequences while still relying on the same 
heuristics. However, other projects have designed parallel pairwise alignment based on 
Smith Waterman. One such instance is SWIPE, which utilized within-core parallelism 
and between-core parallelism to achieve speedup [Rognes 2011]. GPU parallelism has 
also been explored in CUDASW++, currently in version 3.0, achieving speedup by 
coupling CPU and GPU SIMD instructions [Liu et al, 2013]. This same research group 
next implemented SWAPHI, which employed MICs to accelerate Smith-Waterman 
protein database querying [Liu et al, 2014].  
 
Two later papers also utilized MICs to accelerate Smith-Waterman protein database 
querying. LSDBS employed both the multi-core CPU and many-core MIC hardware to 
parallelize Smith-Waterman PDQ [Lan et. al., 2015]. LSDBS-mpi incorporated support 
for a cluster of MICs [Lan et. al., 2016]. Since SWIPE in 2011 and other early parallel 
SW-PDQ programs, each successive implementation has incorporated new computational 
approaches and/or greater acceleration and performance. However, no prior replication 
studies of any of these implementations have appeared.    
 
 
Intel MIC Performance Benchmarking 

 
According to a technical document produced by the Infrared Processing and Analysis 
Center at Caltech, each MIC is capable of approximately 1 TFLOPS performance when 
computing multiplication of two matrices [F. Masci, 2013]. Masci’s report also 
demonstrates the necessity of vector optimization, seeing speedup over the naive 
implementation performance of 120 GFLOPs. Saule et al. likewise note the theoretical 
peak performance of 1 TFLOPS in their study highlighting performance comparisons 
between the MIC architecture and cutting-edge CPUs and GPUs when running sparse 

 



linear algebra kernels [E. Saule, 2014]. Teodoro et al. compare CPUs, GPUs and MIC 
systems when specifically analyzing low-dimensional spatial datasets captured by 
microscopy apparatuses [G. Teodoro, 2014]. Their results demonstrate the impact of 
regular versus irregular data access on an accelerated system, noting that GPUs 
outperform CPUs when accessing data randomly, whereas MICs outperform GPUs when 
using a first-come-first-served data access strategy.  
 
There are, however, few to no replication studies of these performance testing, which 
presents a potential gap in the literature. Additionally, many studies rely almost 
exclusively on testing the performance of OpenMP over the MIC hardware, rather than 
exploring additional libraries and execution modes. These categories could lead to fruitful 
future work.  
 
 

Research Replication in CS 

 
The ​ACM Transactions on Mathematical Software ​ (TOMS) has initiated a Replicated 
Computational Results (RCR) review process, in which a reviewer must replicate the 
computational results of the submitted manuscript [Heroux, n.d.]. TOMS RCR occurs in 
addition to the standard review process at the author’s request, and it involves an 
independent confirmation that the results in a manuscript are correct and replicable. An 
RCR reviewer will be assigned to replicate the results, and s/he will work with the 
authors through the RCR process to either independently replicate the results or to review 
a corpus of computational result artifacts. If the RCR reviewer determines that the results 
were successfully replicated then the paper will receive a special RCR designation, and 
an RCR review report will be published in conjunction with the original paper [Heroux, 
2015]. Still others suggest that to promote replicability authors should share data, 
software, workflow, and details of execution. In addition, they should publish sufficient 
information such that someone in the field could use the shared digital scholarly objects 
without having to resort to contacting the original authors. Moreover, citation of software 
should be standard practice to give credit to the original authors [Stodden et. al., 2016]. 
The consensus view claims that the lack of reproducibility of computational results in the 
culture of CS research stems from the need for greater awareness of replication as a 
viable research genre. Common recommendations center on improving incentives for the 
original authors to make their software replication-friendly. For instance, funding 
agencies can require data management plans, software productivity, and sustainability 
plans. In addition, publishers can raise expectations for independent reproducibility of 
computational results.  
 
 

Hardware Platform Comparison 

 

As we intend this study to serve as an example of an independent replication study, we 
here provide information regarding the hardware systems that we used. We also provide 

 



similar information for the hardware systems used by the SWAPHI group for direct 
comparison. The hardware platform from the MIC benchmarking study will not be 
provided, as their RAM, Xeon E5 product number, and additional hardware 
specifications were not present in the document. In terms of CPU, our hardware platform 
and the SWAPHI group’s platform were identical, utilizing one Xeon E5-2670 per MIC. 
However, the two MIC configurations differed slightly. The preproduction MIC hardware 
on loan to St. Olaf College from Intel had a higher clock speed and more cores than that 
used by the SWAPHI group. The GPU configuration also differed between the two 
setups.  
 

 Intel Xeon  Intel Xeon  Intel Xeon 

Phi (MIC) 

Intel Xeon 

Phi (MIC) 

Nvidia 

GeForce  

Nvidia 

GeForce  

Product 

number 

E5-2670 E5-2670  SE10/7120 
 

B1PRQ-5110
P/5120D 

GTX 980 TI GTX Titan 
(Titan) 

Cores 8 8 61 60 2816  2688  

Threads 2  2 4  4 N/A N/A 

Frequency 2.6 GHz 2.6 GHz 1.238 GHz 1.05 GHz 1 GHz 875.5 MHz 

L1i Cache 32 KB 32 KB 32 KB 32 KB N/A N/A 

L1d Cache 32 KB 32 KB 32 KB 32 KB N/A N/A 

L2 Cache 256 KB 256 KB 30.5 MB 512 KB 3 MB N/A 

L3 Cache 20480 KB 20480 KB N/A N/A N/A N/A 

Table 1:​ ​ More detailed specifications on the processing units in our setup (white) and that of the SWAPHI 
group (blue).  
 
 
Software Environment 

 

To take advantage of the MICs’ capabilities, we are using the Intel Manycore Platform 
Software Stack (MPSS) version 3.3.5.  In addition, we are using the Intel Parallel Studio 
XE 2017 Cluster Edition Update 1, which includes ICC version 17.0.1 and OMP version 
4.8.5-11.  When running the SWAPHI software, OpenMP using offload mode and guided 
scheduling as well as a set of Intel C++ compiler functions were used. On the 
GPU-equipped machine, we are using NVCC version 8.0.44.  Similar specifications of 
the software environment were not present in the original studies. Please contact the 
authors for a software manifest containing a full list of libraries and utilities. 
 

 

 

 

 



Data and Results 

 

 

Benchmarking the MIC 

 
The original report implemented two variations of matrix multiplication: one referred to 
as the naive approach (test1.c), and the other using sgemm() matrix multiplication from 
Intel’s Math Kernel Library (MKL), which is highly optimized for the MICs (test2.c). To 
get a sense of the relative performance between the host and MIC hardware, test1.c and 
test2.c were compiled for both host-only and MIC-only execution. Both implementations 
facilitate on-node data parallelism using OpenMP. This report will not provide either the 
source code for the benchmarks or the commands to compile and run them as both are 
available as an appendix in the original technical report.  
 
 
Replicating the MIC benchmarks 

 
This report could not locate any measure of the granularity of the original data, as well as 
the exact values of performance in GFLOPS. In the technical report, only the 
performance graphs were provided (Figure 1). Thus, our report may only compare the 
general attributes of the performance graphs. 

 

Figure 1. ​MIC benchmarking performance plots provided by the original report. ​Left:​ performance as a function of 
thread count for naive matrix multiplication code. The blue curve represents host only execution up to the maximum 
number of threads for the host CPU, 32. The red curve represents the performance of native-mic execution up to 
maximum number of threads, 240. The dotted line approaches a limit of ~120 GFLOPS. ​Right: ​ performance as a 
function of thread count for optimized matrix multiplication. The blue curve represents host only execution, and the 
red represents native-mic execution. The lower dotted line represents ~400 GFLOPS, the higher dotted line 
represents ~1000 GFLOPS. 

 
For naive matrix multiplication, the host consistently outperforms the MIC hardware up 
until approximately 100 threads, at which point the two perform equally. This trend is not 
shared in the second graph, where the host-only consistently outperforms the MICs up 
until 32 threads. Using the Intel optimized matrix multiplication, the host’s performance 
increases towards a limit of 400 GFLOPS. Unlike the host system, the native-mic 
execution curve outperforms the host-only execution around 72 threads, and continues 
toward a limit of approximately 1000 GFLOPS.  

 



 
In an attempt to replicate the curves from the original report, this report executed test1.c 
and test2.c in host-only execution and mic-native execution for threads proceeding in 
steps of 2 from n=1 to n=36, and proceeding in steps of size 12 from n=36 to n=240, 
close to the maximum number of threads present on the MICs.  

 
 

  

Figure 2. ​MIC benchmarking performance plots provided by our report. ​Left:​ performance as a function of thread 
count for naive matrix multiplication code, test1.c. The blue curve represents host only execution up to the 
maximum number of threads for the host CPUs, 32. The red curve represents the performance of native-mic 
execution up to maximum number of threads, 240. Both the host and MIC approach a limit of ~220 GFLOPS. ​Right: 
performance as a function of thread count for optimized matrix multiplication. The blue curve represents host only 
execution, and the red represents native-mic execution. The host limit approaches ~450 GFLOPS, whereas the mic 
limit approaches ~1000 GFLOPS. 

According to the data gathered, the general trends persist (Figure 2). We see that, for 
test1.c, host-only execution again outperforms the native-mic execution for all threads 
from n=1 to n=32. The performance of the native-mic execution tends toward 220 
GFLOPS, rather than 120 GFLOPS, and the host only execution maxes around 220 
GFLOPS as well. In the second graph, we see a closer resemblance to the original study. 
The host only-execution tends toward 400-500 GFLOPS, whereas the native-mic 
execution tends toward a limit of 1000 GFLOPS.  
 
The discrepancies in performance are to be expected, as the host platforms cannot be 
directly compared. Unlike our host platform, consisting of 2 Intel Xeon E5-2670 8 core 
CPUs each with 2 hyperthreads, leading to a total of 32 threads, Masci’s host platform 
consisted of a single unspecified Xeon E5 16 core CPU with 2 hyperthreads, resulting in 
32 total threads. Additionally, the original report did not specify further hardware 
specifications, such as system memory, or software specifications (for instance, the 
compiler suite or OpenMP versions). Without proper knowledge about these attributes, it 
is difficult to directly account for how much our results should realistically diverge. 
 

 

SWAPHI Description 

 
The SWAPHI software utilizes both the MIC’s many cores as well as the 512-bit wide 
SIMD vectors within each processor core [Liu et. al., 2014]. The algorithm performs 
multiple alignments in individual SIMD vectors, with each vector lane computing one 

 



alignment. It also performs intra-sequence alignment, which computes the alignment of a 
single sequence pair in the SIMD vectors across minor diagonals in the matrix or the 
query sequence by means of either sequential or striped layout. Both the inter- and 
intra-sequence models have the same workflow:  

1. Construct a query profile for the query if applicable. 
2. Perform alignments by creating as many host threads as the number of MICs used 

(one host thread corresponds to one MIC). The host thread offloads operations to 
its MIC, and it loads database sequences onto the MIC chunk-by-chunk at runtime 

3. Wait for the completion of all host threads. 
4. Sort all alignment scores in descending order and output the alignment results.  

 
The SWAPHI group evaluated three variants of their algorithm: Inter-sequence model 
with a score profile (InterSP), Inter-sequence model with a query profile (InterQP), and 
Intra-sequence model with a query profile (IntraQP). See the original paper for further 
descriptions of and differences between the three variants. The SWAPHI group used 
twenty query protein sequences (ranging from 144 to 5,478 amino acids) from the 
2013_08 release of the TrEMBL protein database. For each variant, they analysed the 
GCUPS and runtime for each query length on one, two, and four MICs. In addition, they 
compared SWAPHI’s performance to that of SWIPE, BLAST+, and CUDASW++3.0.  
 
 
Replicating the SWAPHI Results 

 
After successfully compiling the source code from the 2014 paper, we ran performance 
tests in an effort to replicate the results found in the paper. Above all, we sought to 
compare the GCUPS (billion cell updates per second) and runtime numbers on our MICs. 
We first downloaded the same 20 proteins used in the original SWAPHI paper, with 
lengths ranging from 144 to 5,478 amino acids, along with the full TrEMBL database. 
These proteins can be found in the TrEMBL/Swiss-Prot database with the following 
accession IDs: P02232, P05013, P14942, P07327, P01008, P03455, P42357, P21177, 
Q38941, P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519, 
Q7TMA5, P33450. Then, we utilized the indexing feature of the SWAPHI program to 
build an index for the TrEMBL database with which we would compare our protein 
queries. Next, we used the align feature of the program to align each query protein 
sequence with the top ten database alignments, taking the average of three trials for each 
of the InterSP, InterQP, and IntraQP variants. Finally, we recorded the maximum and 
average results for each of these variants among all protein queries.  We focused our 
analysis on the two MIC setup, which had typical runtimes between 1 and 5 seconds. In 
our tests, the program would not finish when we used only one MIC, and as of yet we are 
unable to get the cluster of four MICs to work together. We ran tests on both of the MIC 
systems. 
 
The SWAPHI group noted that CUDASW++3.0 does not support databases as big as 
TrEMBL, so they utilized the UniProtKB/Swiss-Prot database (release 2013_08). In 
addition, they utilized the GPU-only version of CUDASW++3.0, which does not support 

 



subject sequences of lengths>3072. Thus, they created a reduced Swiss-Prot database by 
extracting all subject sequences of lengths <=3072 and only worked with query 
sequences that were also shorter than length 3072 (i.e. queries 1-15). In order to perform 
a faithful replication, we utilized the full TrEMBL database on one MIC to compare the 
SWAPHI variants (Machine 1, M1). And we utilized a reduced Swiss-Prot database on 
the other MIC to compare the performance between SWAPHI and CUDASW++3.0 
(Machine 2, M2). Moreover, like the SWAPHI group we also only used query sequences 
of length 3072 or less to compare SWAPHI and CUDASW++3.0. Similar to our 
SWAPHI variant analysis, we took the average GCUPS and runtime of three CUDA 
trials for each query sequence and then computed the average and maximum GCUPS and 
runtime for our overall results. Like the SWAPHI group, we used the InterSP model on 
our two MICs to compare the performance of SWAPHI with that of CUDASW++3.0.  
 

 
Comparison of SWAPHI and CUDASW++3.0 Results 

 
The SWAPHI group evaluated three variants of their algorithm (InterSP, InterQP, and 
IntraQP). They measured the runtime and GCUPS for each query with each variant on a 
single MIC and on four MICs. They also reported the average and maximum GCUPS and 
runtime for each algorithm-variant/number-of-MICs combination. As of this time, our 
group was only able to evaluate the three SWAPHI variants on two MICs. However, the 
SWAPHI group did not report the GCUPS or runtime associated with different query 
lengths on two MICs, so a direct comparison of our results to theirs is not possible at this 
time. Figure 3A depicts the GCUPS of each of the three variants on two MICs, and figure 
3B depicts the runtime of each of the three variants on two MICs. The average and 
maximum GCUPS and runtime for each variant on two MICs are summarized in Tables 2 
and 3, respectively. For the original SWAPHI results that we were not able to replicate, 
we direct you to their original paper.  
 
 

 
 
Figure 3. ​The GCUPS (​3A, left​) and runtime (​3B, right​) of the three SWAPHI variants on two 
coprocessors. MIC benchmarking performance plots provided by our report.  
 
 

 



 InterSP InterQP IntraQP  

M1 M2 M1 M2 M1 M2 CUDA 

Average 
GCUPS 

140.0 85.78 276.7 183.72 81.5 46.27 32.6 

Max 
GCUPS 

325.1 227.98 576.6 441.99 212.3 136.36 33.0 

Table 2:​ A summary of the results (GCUPS) of running SWAPHI on two MICs and on the local CUDA 
machine.  
 

 InterSP InterQP IntraQP  

M1 M2 M1 M2 M1 M2 CUDA 

Average 
Runtime 

2.69 2.68 1.266 1.30 5.08 4.97 38.72 

Max 
Runtime 

3.24 3.31 1.88 1.98 5.14  5.06 101.73 

Table 3:​ A summary of the results (runtime) of running SWAPHI on two MICs and on the local CUDA 
machine.  
 
The SWAPHI group compared the performance of the SWAPHI software to that of 
SWIPE, BLAST+, and CUDA++3.0. As of the time of this writing, we have only been 
able to run the CUDA++3.0 software on our local machine and so will focus our analysis 
on the SWAPHI and CUDA++3.0 comparison. The SWAPHI group recorded maximum 
performances of 53.2 GCUPS for one MIC, 90.8 GCUPS for two MICs, and 124.6 
GCUPS for four MICs. As for their CUDA implementation, they recorded an average of 
108.9 GCUPS and a maximum of 115.4 GCUPS. With two MICs, we recorded a 
maximum of 227.98 GCUPs and an average of 85.78 GCUPS. As for our CUDA 
implementation, we recorded an average of 32.67 GCUPS and a maximum of 33.04 
GCUPS.  In addition, we recorded an average runtime of 22.02 seconds and a maximum 
runtime of 65.79 seconds. Figure 4 ​ ​depicts the performance comparison of SWAPHI and 
CUDASW++3.0 as implemented by the SWAPHI group. Figure 5 depicts the 
performance comparison of SWAPHI and CUDASW++3.0 as implemented by us.  
 
 
 

 



  

Figure 4:​ SWAPHI and CUDASW++3.0 
comparison as performed by the SWAPHI group.  

Figure 5: ​SWAPHI and CUDA++3.0 comparison 
as performed by our group.  

 
 
Conclusion 

 
 
MIC Benchmark Experience 

 
The results of our MIC benchmark tests provided two clear results. First, we 
demonstrated the same significant discrepancy between optimized and unoptimized 
execution on the MICs, seeing almost five-fold speedup. Second, we replicated an 
experimentally-posited performance of 1 TFLOPS per MIC using native-MIC execution. 
Beyond confirming these key aspects of the original study, our benchmarks also 
supported general trends seen in the original data. For instance, when using unoptimized, 
naive matrix multiplication, MIC performance did not exceed that of the host as the 
number of threads increased towards the hardware limit.  
 
The greatest challenge in replicating the original benchmarking report was the lack of a 
complete hardware and software manifest of the system. The code was readily available, 
as were the instructions on how to repeat the compilation and build process. However, 
without any knowledge of the original target hardware and software environments, we 
cannot account for any discrepancies in performance. There are two reasons for this. 
First, the initial report provided no table of the data recorded.  Second, the report did not 
include a comprehensive hardware and software manifest, making any attempt to account 
for differing results impossible.  A more thorough performance analysis could have been 
conducted had these manifests been provided. Nonetheless, because of the original 
author’s extensive documentation, replicating the general trends in the original report was 
straightforward, and required little effort and no communication.  
 
 
SWAPHI Experience 

 
One of the challenging aspects of this comparison was that while the SWAPHI team 
provided results for their one and four MIC setups, we were only able to attain results 
from the two MIC setup. Thus, in our comparison, we had to estimate what performance 

 



they would have obtained with two MICs based on the other data they provided. A more 
complete analysis would include data for all three of the MIC setups. Furthermore, due to 
complications in fully understanding the code, we were only able to produce similar 
levels of performance. We were not able to fully understand some of the results of our 
tests, and whether this is due to gaps in our knowledge of the program or some kind of 
bug or oversight in the code, we cannot know without some form of collaboration with 
the authors. This collaboration would be particularly necessary because when using 
available SWAPHI software, our protein database querying did not return the database 
sequences most well-aligned to our query sequences.  
 
The most challenging part of the replication was getting the desired code from the authors 
and compiling the code the first time. Making any serious changes to the code was 
greatly hampered by a lack of documentation. Beginning by seeking papers with 
judiciously commented code would ease the process of replication for any future studies. 
In addition, a more fruitful replication would involve actual collaboration with the 
original authors of a given paper. The authors of the SWAPHI paper did not respond to 
our emails requesting collaboration, but given the short length of our research timeframe 
and how late into the process we found the paper, this is understandable. With more time, 
we would have sought a paper from authors readily willing to collaborate. This would 
have both expedited our process and led to a greater understanding of the source code, 
and therefore a more meaningful analysis. In addition, the authors themselves would be 
rewarded by strengthening the results of their paper thanks to the replication process.  
 

 

Conclusions 
 

The most significant contribution to replicability is extensive documentation. Reports 
must provide (either as an appendix or as a link to a maintained location) any and all code 
developed; data, hardware and software manifests; build and run instructions; and a valid 
channel for communication with the authors. Doing so, as was evident in our two 
attempts at replication, provides an easy and relatively painless route to replication of 
results. The benefits of replication cannot be understated, not only for the authors of a 
replication study, but for the authors of an original study. If, for instance, a bug is 
discovered in the algorithms or software packages provided by the original authors, then 
the replication researches will be able to quickly and painlessly troubleshoot and 
communicate with the original team. The overall result will be a more robust and 
accurate software package, which will contribute even further to the computer science 
community.  
 
 
Future Work 

 
For a more rigorous set of benchmarks, it would be interesting to run direct comparisons 
of multiple parallel libraries to see which performed the best.  We were able to replicate 
general performance trends with OpenMP using the method outlined in F. Masci’s 2013 

 



paper, and it would be worthwhile to rewrite this code using other libraries such as TBB, 
OpenCL, Qthreads, or MPI to better understand how different parallel and distributed 
execution models perform on the MIC hardware.  Further, applying these different 
parallel execution models to the SWAPHI code could yield significant performance 
speedup.  Taking a step back from the libraries themselves, similar comparisons using 
different execution modes could prove quite informative for future work.  In addition, 
future researchers could apply the Intel Advisor utilities to see whether they find more 
opportunities for taking advantage of the user’s hardware configuration.  
  
Unfortunately, we were not able to completely replicate the SWAPHI authors’ results. 
This was partially due to our hardware configuration.  We had access to four MICs 
distributed across two different computers whereas the SWAPHI authors had four MICs 
contained in a single computer.  We were, therefore, unable to run tests using four MICs 
simultaneously.  Researchers with this capacity could participate in the replication 
process in this way.  Reworking the SWAPHI code to utilize the MPI+X framework so 
that it could run on a setup like ours would be an interesting extension of this work as 
well.  Again, initiating contact with the original authors would enhance any future work 
with this project. 
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