
A Secure QR Code Scheme

Julian Brackins 1 and Mengyu Qiao 2

1,2Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

501 E St Joseph St, Rapid City, SD 57701
1Julian.Brackins@mines.sdsmt.edu

2Mengyu.Qiao@sdsmt.edu

Abstract

Quick Response code, an industrial standard originated from manufacturing in-
formatization, has been getting growing attention and utilization in the past few years,
due to the deep penetration of smart phones and the advancement of wireless net-
works. QR codes outperform other barcode standards because of their high capacity,
fast readability, strong error tolerance, and flexible encoding options, all of which en-
able QR codes to be used as a convenient method of information sharing and storage
for various computer and mobile applications including URL sharing, mobile app in-
stallation, social networks, electronic payment, ticketing and shipping services. The
increasing popularity also make QR codes a potential target of traditional and emerg-
ing threats. One of the security risks present with QR codes is the existence of phishing
schemes where attackers direct users to fake pages with the intention to intercept se-
cret information. This can be translated into the QR code realm when hackers modify
or print new QR codes present on posters, business cards, or other medium, allowing
the scanned QR codes to redirect a user to a dangerous web page. Since security has
always been a critical issue for mobile computing and communications, authentication
methods are needed in order to protect the data and origin integrity of QR codes.

The aim of this project is to develop a scheme along with a proof of concept proto-
type of a security countermeasure that authenticates QR codes using build-in security
features. This scheme involves the modification of QR code generation to embed
message authentication code. Upon scanning a secure QR code, the user will receive
the encoded message on the barcode as usual. However, there will also be an added
message validation layer involving the use of cryptographic systems. This implemen-
tation is expected to be non-intrusive and additive to existing QR code applications.
This means that if the scanning device were to be used on an old QR code without
the digital signature information, the scanner would still return the intended payload.
Meanwhile, the scanner would inform the user that the particular QR code lacks the
security feature. The finalized prototype is expected to be deployed to popular mobile
platforms to exemplify the anticipated functionalities.

1 Introduction
Quick Response (QR) code is a barcode standard developed by Japanese company Denso
Wave in the 1990s[1]. Compared to traditional barcodes, QR codes are 2-dimensional,
allowing for a greater amount of information storage. QR codes have a wide variety of
uses, including easy sharing of URLs, digital currency exchange, as well as video games
and other virtual entertainment. One recent example of the presence of QR codes is the
photo-sharing mobile app Snapchat[6], which allows users to send additional text or web
links in their snaps by including a QR code in their picture.

Figure 1: QR Code

With the popularity of these codes, it is
important to identify any potential security
vulnerabilities. Since QR codes are not
(easily) human-readable, users have to rely
on the scanning software to extract the mes-
sage. Scammers can exploit this opportu-
nity to tamper with existing QR codes. In
the case of URLs, phishing scams can be
implemented in the way that an attacker
replaces publicly available QR codes on
posters, signs, or business cards. This
could redirect users to fake websites with
the intention of collection personal creden-
tials [5]. In 2011, a QR code containing
a malicious application was circulated [7].
If scanned, this code would install a tro-

janized chat application, which would automatically send several premium-rate SMS mes-
sages at a rate of $6 per text. Because of these potential attack vectors, there is a strong
demand to investigate effective security features for QR codes.

1.1 Overview

Figure 2: Malicious QR Code [7]

This paper presents an novel scheme to im-
prove the security of QR codes by adding
an additional layer of security features into
QR codes.
The following sections of this paper cover
both a validation layer to be implemented
in QR code scanning applications, as well
as provide a modification to the encoding
of QR codes in order to generate the codes
with security features. Digital signatures,
a commonly used cryptographic tool, are
a system given the same legal standing as
handwritten signature [2]. Two features of digital signatures, authentication and integrity,
are crucial to the research detailed in this paper. Authentication of a digitally signed mes-

1

sage indicates the message was created by a trusted sender. Alterations of the message will
cause a discrepancy between the message and the original signature, so that digital signa-
ture insures that a digitally signed message has not been edited in transit. Digital signatures
have been used to authenticate emails, software, and other electronic messages, and the in-
tent of this work is to implement a system of embedded authentication code for QR codes
using digital signatures.
A successful envisioning of this implementation will allow for these security features to
also be completely optional. For some QR codes, such as those which contain simple
and noncritical messages, the possibility of message compromisation is not a pressing is-
sue. If a standard QR code containing none of the proposed security features is scanned
by the prototype application, the app will still return the intended QR code message pay-
load. However, the app will inform the user that the message does not contain any security
features, tasking the user to proceed with discretion when handling the message results.
The new, secure QR codes should also still be readable by currently existing QR code ap-
plications, without any destructive changes to the message structure. An incredibly trivial
iteration of security feature would be to simply append the digital signature of a QR code
to the end of the message itself during encoding, then parse the signature from the mes-
sage when decoding. However, this type of implementation would be incompatible with
other scanning apps, which would not anticipate separating the digital signature from the
intended message payload.
The rest of this paper is organized as follows. Section 2 gives a general overview of QR
code structure and the process of both generating and scanning the codes. Section 3 pro-
vides a discussion of the methods used to convert standard QR codes to digitally signed
QR codes, including depictions of the prototype phone application. Section 4 describes
an analysis of the digitally signed QR codes and possible insight on how to scale up this
protocol’s implementation beyond proof-of-concept, followed by conclusions in Section 5.

2

2 QR Code Standard Overview
Figure 3 gives a simplified description of the standard process of generating a QR code from
a provided message and scanning the code with a smart phone or a comparable device.

Figure 3: Simplified QR Code process. Details the generation & scanning of a QR code.

When provided a message string, the encoder converts the message into a byte string inter-
leaved with general QR header information, error correction bytes, and a masking element.
This modified byte string is then converted to a 2-dimensional matrix of 1’s (white) and
zeroes (black) which can be synthesized into an image. When this image is scanned by a
phone camera, the byte string is retrieved and converted to the intended message, viewable
by the person who initiated the scan. In order to implement a security protocol for QR
codes, both the encoding and decoding procedures must be developed.
The following sections detail a number of QR code features that will be utilized or modified
in this project.

3

2.1 QR Version Information
Each QR version has a distinct amount of black and white dots for composing the QR code.
Versions range from Version 1 (21× 21 dots) to Version 40 (177× 177 dots) [4]. The QR
code Version information can be identified in the sections of a QR code highlighted in blue
in Figure 4.

Figure 4: QR Code Structure. Image credit Bobmath on Wikipedia[3].

2.2 QR Format Information
QR code header information includes both Version Information and Format Information
regarding the specific QR code. This is detailed in Figure 5 and identifies the masking
pattern and level of Error Correction observed in the QR code.

2.3 Error Correction
QR codes have available functionality to restore data if the message is corrupted or dam-
aged [4]. There are four levels of Error Correction possible for QR codes. Level L, the
lowest Error Correction rate, can reconstruct a damaged message with up to 7% corrup-
tion. Level Q, the highest Error Correction rate, will reconstruct a message containing 30%
corruption. Level M, which has an error tolerance of 15%, is the most commonly used
level. QR codes with higher levels of Error Correction require more data bits, increasing
the code size. Error Correction is implemented according to the Reed-Solomon algorithm.
Reed-Solomon is a non-binary cyclic error correction method initially designed to reduce
communication noise for artificial satellites [8]. The error correcting method is capable of
performing corrections in data at the byte level, which has come in handy products such as
CDs, Blu-Ray Discs, and QR codes.

4

2.4 Masking Element
Figure 5 details all of the available masking patters, as well as identifies where in the
QR code this mask pattern specifications are located. Masking helps to produce an even
distribution of white and black dots in a QR code and reduces the possibility of large blank
spots in the barcode.

Figure 5: QR Format Information. Image credit Bobmath on Wikipedia[3].

5

3 Proposed Scheme
Figure 6 is an adaptation of Figure 3 detailing the added steps within the QR encoding /
decoding process. The sections in yellow are the previously existing steps in the procedure.
The pink sections are added methods in the encoding process, which involves signing the
QR message and embedding the signature in the QR code.

Figure 6: QR Code process from Figure 3 with proposed security features implemented.

The sections in blue detail the methods added in the decoding process, which would typ-
ically occur on a smart phone device. These methods involve converting the scanned QR
code to a byte string, extracting the digital signature, and comparing the signature and QR
message to determine if the message has been sent unaltered.
The encoder and decoder were both developed and executed on a MacBook Pro using Java.
The decoder was later ported to a Google Nexus tablet running Android OS.

3.1 Encoding QR Codes with an embedded hidden message
With the current implementation, each character of an embedded digital signature is stored
in the corrupted message bit string as noted in Algorithm 1. Each of these characters is
represented by a byte in the bit string. The first 7 bits of this byte represent the character
in the embedded message, translating to an ASCII value between 0 and 127. The 8th bit
in the byte is always flipped to guarantee a detectable difference within each corrupted

6

Algorithm 1 Embed Message in Corrupted Bits
procedure EMBEDMSG(message, qrBitString)

i← 0
for each asciiCharacter in message do

secret← Integer value of asciiCharacter
for each byte in qrBitString (8 bits) do

bit←MSB of secret
if bit != qrBitString[i] then

flip qrBitString[i]

i++
shift secret 1 bit to the right

flip the first bit in current byte of qrBitString
move 8 bits over to the next byte in qrBitString

byte of an embedded message. For instance, if a particular byte in the message bit string
was ”01000001” and the character to be embedded within that byte were to be a capital
”A”, the resultant byte would be ”01000001”, and would appear uncorrupted during the
decoding procedure. As a result, the most significant bit would be flipped, generating the
string ”11000001” instead.

3.1.1 Padding the Messages

In initial phases of the decoder, it was noted that the hidden messages were out of order in
the byte string retrieved by the decoder.
As a result, the QR message length is inflated to 310 characters, and the hidden message
length is inflated to 293 characters. Each message cannot exceed their respective predefined
length. These values were selected through an iterative process to ensure an adequate length
for the hidden message to hide a meaningful message, an adequate length for the standard
QR message to contain nearly any typical URL, and to guarantee the hidden message length
never exceeds the length of the standard QR message.

3.2 Decoding Secure QR Codes with a Mobile App
Decoding of the Secure QR Codes is detailed in Figure 6, with the blue sections indi-
cating the additional features. When a Secure QR Code is scanned, the application will
first generate two copies of the scanned byte string. One of these byte strings will be run
through the Reed-Solomon Error Correction method as before, restoring the standard QR
code message. This restored byte string will be compared byte-by-byte with the unchanged
corrupted byte string. Any bytes that have been altered between the two strings are the
bytes corrupted during encryption to embed the hidden message. Converting the first 7 bits
of each of these bytes into the ASCII character representation of the number will return
the hidden message. The following segment details the implementation of sending both
the standard QR code message and hidden QR code message both as plaintext in order to
verify this method can work in a real application.

7

3.2.1 Initial Development

The initial iteration of this research application sought out to determine the viability of
embedding a hidden message into a standard QR code, ignoring any actual cryptographic
protocol tools. If the application were to be successful in extracting a hidden message gen-
erated into a displayable QR code through a camera scanning feature, then the program
could be later enhanced to support a verification system by embedding an ASCII represen-
tation of a digital signature in the hidden message. This will be demonstrated in section
3.2.2.
The next few scans are an overview of a Lorem Ipsum QR code. The lorem ipsum text was
selected for this example as a general long form text string for testing out the retrieval of
both a standard QR code payload as well as a hidden message of comparable length. The
standard message is the first two sentences of the standard lorem ipsum text, with a length
of 232 ASCII characters. The hidden message is sentence from “De finibus bonorum et
malorum” by Marcus Tullius Cicero, with a length of 216, only a few characters shy of the
standard message. The following subsection details the results of this test, as well as some
observations of errors present.

(a) Successful Scan (b) Corrupted Scan

Figure 7: Successful and Corrupted Scans of a QR code containing plaintext.

Figure 7 is an example of a scan of the lorem ipsum QR code. In Subfigure 7a a successful
scanning of the QR code is observed. The decoded message contains the first paragraph

8

of the lorem ipsum text intact, and the hidden message is retrieved. If scanned by a stock
QR code scanner, only the first paragraph will be displayed. Subfigure 7b demonstrates
an example of the message being slightly obstructed, in this case by a finger. Because the
retrieval of the hidden message relies on the differences between incorrect and correct bytes
in a given QR code message, the hidden message is corrupted in this example. The first
paragraph, which is the main decoded message, remains intact.
This concept, when extended to a verification process detailed later, will not explicitly pre-
vent a user from scanning a QR code that does not successfully complete the verification
step, either from a lack of a hidden message or the obstruction of the hidden message
similar to this example. In all cases, the standard message in the QR code will be made
available. However, the application will inform the user of the QR code’s lack of success-
fully completing a verification of the QR code, allowing them to process the message at
their discretion.
The lorem ipsum text was used in order to identify a rough estimate of message length,
both for the standard message and the hidden message. The goal of this security feature is
to primarily verify QR codes containing URLs to webpages. Most standard web pages fall
under the character count displayed in the decoded message, and with the presence of URL
shortener sites such as bit.ly, nearly all web addresses would be able to fit into the modified
QR codes.

9

3.2.2 Verification

The final iteration of the prototype can be observed in Figure 9, where the application is
used on both a Secure QR code and a standard QR code containing the URL for Google.
Pressing the “Open URL” button will take the user to the intended website if the QR code
is a URL. When scanning the secure QR code, an additional message appears for the user,
indicating the QR contains an embedded digital signature. The app, which contains the
public key corresponding with the private key used to generate the digital signature, verifies
the signature of the QR code which will return a success if the standard message within the
QR code has remained unchanged. If the digital signature validation is unsuccessful, or if
the QR code does not contain a digital signature, the user will be informed by a message
that indicates that the code is not secure.

(a) Successful Scan, Verified Sender (b) Successful Scan, Unverified Sender

Figure 8: Prototype App scanning a secure QR code (Left) and a standard QR code (Right).

10

Figure 9: Secure QR code (Left) and Standard QR code (Right)

11

4 Additional Work

4.1 Improving Readability
The length of the QR message is dictated by the length of the hidden message. What this
means is that the hidden message cannot ever exceed the length of the actual QR message,
and therefore the QR message must be long enough to accommodate this. If the digital
signature can be embedded in the QR code with a smaller byte footprint, both the hidden
message and QR message could be shortened, potentially increasing the readability of the
secure QR codes.

4.2 Error Correction
As noted in Figure 7b, any obstructions present in the secure QR code will modify the
hidden message. Because of this, in order to verify a particular QR code, the entire code
must remain completely intact. This is an unfortunate side-effect from the implementation’s
abuse of the pre-existing error correction functionality of the standard QR code. On a
positive note, the standard message will still remain intact as long as the combination of the
obstruction and the previously corrupted portion of the code used for the hidden message
do not take up more than 30% of the QR code data area. Implementing another error
correction feature, such as parity bits, in the hidden message could compensate for any
unintentional flaws. This would require the hidden messages to be longer.

5 Conclusion
The QR code has many applications in marketing, commerce, and entertainment, and with
this ubiquity comes a multitude of security risks. The security features presented in this
research intend to mitigate the threats of malicious QR codes by establishing an authenti-
cation layer to help signify scanned codes were generated by trusted sources. By taking
advantage of the Error Correction capabilities of the QR codes, digital signatures can be
embedded in a QR code without modifying the original message by corrupting a number
of bytes within the Error Correction threshold. These digital signatures can then be subse-
quently extracted during the scanning phase by comparing the corrupted byte string to the
recovered byte string.
Standard QR codes will still return their intended messages when using this modified scan-
ning method, meaning currently existing QR code generation sites and services will not
be forced to change or adopt this security feature. However, the security features can be
used for messages where origin integrity and message authentication are a high priority,
including URLs and electronic payments. This added layer of security can help eliminate
many of the existing attack vectors present in standard QR codes.

12

References
[1] History of QR code. http://www.qrcode.com/en/history/ (Retrieved: 3/16/2017).

[2] Electronic Signatures in Global and National Commerce Act. the U.S. Government
Printing Office, 2000.

[3] BOBMATH. QR format information, 2011. [Online; accessed March 17, 2017].

[4] DENSO WAVE. QR Code, howpublished = ”http://www.qrcode.com (Retrieved:
3/16/2017)”, journal=DENSO WAVE.

[5] KIESEBERG, P., LEITHNER, M., MULAZZANI, M., MUNROE, L., SCHRITTWIESER,
S., SINHA, M., AND WEIPPL, E. QR code security. Proceedings of the 8th Interna-
tional Conference on Advances in Mobile Computing and Multimedia - MoMM ’10
(2010).

[6] KOKALITCHEVA, K. Here’s a secret secondary use for snapchat, May 2016.

[7] MASLENNIKOV, D. Malicious QR codes pushing android malware.
https://securelist.com/blog/virus-watch/31386/malicious-qr-codes-pushing-android-
malware/ (Retrieved: 3/16/2017), Sep 2011.

[8] REED, I. S., AND SOLOMON, G. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics 8, 2 (1960), 300304.

13

