

The Structural Analysis and Logical Controller Abstraction

of Curator Software

Alex Staebell and Yi Liu

Department of Electrical Engineering and Computer Science

South Dakota State University

Brookings, SD 57007

alexander.staebell@jacks.sdstate.edu, yi.liu@sdstate.edu

Abstract

Since the inception of Software Engineering, computer systems and programs have been

built with specific design decisions in mind. In a world where computing power and

memory are inexpensive, customer needs change constantly, development cycles are

shortened, and the number of consumer platforms steadily increase; software engineers

must develop their systems to support modifiability, reusability, and flexibility design

decisions. Curator, developed by the authors, is a web-centered management application

made for professors and laboratory project leaders to manage files, budgets, instruments,

and information of projects that they oversee. While Curator’s design already exhibits

strength in modifiability, reusability, and flexibility, this study examines methods to further

improve these traits. This study analyzes the software architecture of Curator and improves

its controller classes through logical controller abstraction. Through the abstraction, we

establish patterns between each class by the method signatures they share. These patterns

can then be quickly recognized by logically intelligent developers and through this

recognition can more quickly learn how Curator works at the controller/view model level.

Through an improved learning process, developers could then more easily modify

Curator’s functionality, reuse its code, and make it more flexible. This paper briefly

presents the architecture of Curator and illustrates the details of the logical controller

abstraction implementation. The paper further presents the logical intelligence theory and

analyzes how the abstraction done in this study can effectively improve Curator’s

modifiability, reusability, and flexibility.

mailto:alexander.staebell@jacks.sdstate.edu
mailto:yi.liu@sdstate.edu

1 Introduction

Our study revolves around a program known as Curator. Curator is a web-centered data

management application made for professors and laboratory project leaders to manage

files, budgets, instruments, and info of projects that they oversee. The objective of this

study is to research and implement architectural and design patterns to improve Curator’s

modifiability, reusability, and flexibility. Throughout our research Curator proved to be

well optimized in the aforementioned areas already. However, when examining Curator’s

controller classes, we see an improvement opportunity through logical controller

abstraction. Though the abstraction does little to improve Curator’s structure, there is

evidence that this abstraction will improve a developer’s ability to learn how Curator

works, which could make Curator easier to modify and reuse, and more flexible. This paper

discusses background information in section 2, the architectural pattern in section 3, the

case study detailing the logical controller abstraction implementation and accompanying

logical intelligence theory in section 4, and giving a conclusion in section 5.

2 Background

Curator is useful for Professors and researchers who manage laboratory and research

projects. For a single project created, a manager can create and manage a budget, track

instruments being used, give a description, provide contact info, assign a status, post files,

and specify user viewing and editing permissions for said project. Furthermore, this

software can accommodate multiple projects for one or multiple managers. Most

importantly, due the web-based nature of this application, clients can interact with the

system in real time via the internet allowing them to view and/or edit data from nearly

anywhere in the world. While there exists many programs and methods to do each task

independently, Curator streamlines management overall by allowing users to perform all

necessary tasks in one online program which constantly updates its data.

2.1 Curator Functionality

Curator’s Functions are summarized as follows according to Curator’s Software

Requirements Specification [1]:

This software will provide project management to scientific research. The major uses of

this software will be to assist Principal Investigators (PI) in managing and organizing the

different projects they are involved with; be it past, present or future projects.

 An Authenticated User logs into the system and the initial view is of a list of

projects that they are authorized to view and/or edit.

 The user then can select a project that they wish to access and the software will

navigate the page to a different screen that displays the details of the project with

a list of the different instruments that are connected with the project.

 Additionally, there will be a budget table that can be accessed, and edited, that the

Authenticated User will be able to alter at any time [they] want.

2.2 Original Curator Design Decisions

When Curator was originally designed, its creators addressed reliability, availability,

security, maintainability, and portability [1].

The goal regarding reliability was centered around a Mean Time Between Failures (MTBF)

of once every 20,000 hours or 1 year with a Meant Time To Repair (MTTR) of 2 hours.

Curator was designed to be three nine’s (99.9%) reliable, which equates allowing for

roughly 9 hours of downtime per year.

The security decision was accomplished by implementing versioning and administrator-

assigned security roles for users to protect data from being edited and/or viewed by

unauthorized users.

Maintainability was secured by having code shared between the Curator client and server

as well as have a test environment be built for function testing. It is noteworthy to state that

extensibility and reliability improves through these design decisions as well.

While the first four decisions revolved around optimizing the attributes they were

addressing, the last attribute, portability, was addressed as an attribute that could be

implemented with the help of MONO, but portability was ultimately “not guaranteed and

[would] not be tested”.

3 Architectural Pattern

This section describes the architecture behind Curator. First we detail some system

generalities behind Curator such as the system it was built on and the languages it

utilizes. Secondly we examine Curator’s model, view, view model or MVVM structure.

Lastly we describe Curator’s thin communication structure.

3.1 System Generalities

Curator was coded using two languages: C# and cshtml. C#, because of its object-oriented

design, was used to code the model, controller, view model files for Curator. cshtml, html

that is also capable of rendering ASP.net modules which provides handler mapping and

MVC engine loading, was used to code the view files for Curator as described in [2].

Looking more at Curator’s server side, its core database is MySQL and uses a Windows

Communication Foundation (WCF) framework to encode user-to-server commands ferried

by the client as expressed in [1]. To load its web content, Curator used server framework

IIS 7.5 Express as shown in [1]. Most noteworthy, Curator makes great use of ASP.NET 5

which has its MVC Web Pages and Web API was all merged together ensuring web page

views can be created more quickly as described in [3].

3.2 MVVM Structure

Curator uses a variation of the Model View Controller (MVC) known as Model View View

Model (MVVM) as its primary architecture. Figure 1 shows how MVVM parts work

together as seen in [4]. The View portion of MVVM correlates to Curator’s webpage

coding that creates the interface to view and manipulate laboratory management data and

files. Commands from the View are sent to the View model portion of MVVM where they

are processed the view model code updates the appropriate models. View Model also

formats data from the models so that the view code can interpret and display it correctly.

Curator’s model files outline the structure of each special data type to be managed in

Curator’s database and notifies the view model when the model state changes.

Figure 1: MVVM structure diagram from [4]

Curator’s code files are different from a typical MVVM setup because it features both

controller and view model sections rather than just a view model section. In Curator, the

controller classes control the data access and mutation method logic while the view model

classes define the complex data types used by the Curator controller and view classes to

fulfill the view model duties defined in Figure 1.

3.3 Thin Communication Structure

While the underlying architectural structure of Curator is MVVM, it was defined

conceptually as a thin client-server model as seen in Figure 2, which is described in [5].

All view web pages would be presented on the client-side while all viewmodel/controller

processing and model data management would be done on Curator’s server-side.

Figure 2: Curator’s Thin Client-Server Model as described in [5]

4 Case Study: Implementing Controller Abstraction in

Curator

This section leads with a quick preface on what other improvements were considered for

Curator before establishing logical controller abstraction. We further describe what coding

was implemented to make controller abstraction in Curator possible. The definition of

logical learning, its connection to controller abstraction in Curator, and the theoretical

benefits of implementing such a learning abstraction; are also discussed in this section.

Extensive research was done in fields of interfaces, generics, delegates, extension methods,

and anonymous types to meet the Curator improvement goals. Unfortunately, none of the

aforementioned methods could be applied to Curator’s structure due to the specialized

nature of Curator’s controller and view model methods. However, through research into

human learning, there is promise of improving modifiability, reusability, and flexibility

through logical controller abstraction.

4.1 Logical Controller Abstraction Implementation

This logical controller abstraction relies on creating abstract classes to hold related method

signatures that are shared between controller classes and then having the existing controller

classes inherit and override the method signatures specified in the abstract classes.

Implementing logical controller abstraction required us to create four new abstract class

files in our Curator.Controllers hierarchy that inherit the corresponding classes (note that

Controller.cs is a pre-existing abstract class that must be inherited to ensure the existing

controller classes can perform correctly). We also modified six existing class files in the

Curator.Controllers hierarchy.

Figure 3: Logical Controller Abstraction File Hierarchy

Notice that the naming convention of the abstract class files correspond to the existing

class files that share method signatures, for example in A_BL_I_Shared.cs:

 A = Attachments

 BL = Budget Lines

 I = Instruments

All abstract class files share the same using directive block as seen in Figure 4.

Figure 4: Beginning Using Directive Block Used by All New Abstract Class Files

The new abstract class files are shown in Figures 5, 6, 7, and 8 in the order they were

listed in the first bulleted list in section 4.1.

Figure 5: A_BL_I_Shared.cs Abstract Class

Figure 6: A_I_Shared.cs Abstract Class

Figure 7: P_PM_PST_Shared.cs Abstract Class

Figure 8: P_PST_Shared.cs Abstract Class

All the modified controller class files that existed prior to these improvements only change

in that they are told to inherit new parent files as specified in Figure 3 and have an override

keyword adjacent to the methods being overridden.

4.2 Logical Intelligence and Logical Controller Abstraction

At first glance, tis logical controller abstraction seems novel. However, its significance is

revealed through the idea of logical intelligence.

Logical/mathematical intelligence refers to an individual’s ability to work with data, think

logically, solve problems contemplatively, and see patterns as shown in [6]. People

possessing this kind of intelligence gravitate towards activities like collections, math,

graphs/charts, system analysis, working with numbers, brain teasers, ciphers, and creating

computer programs; indicating that those working in computer science have strong logical

intelligence as referenced in [7].

So, why create abstract classes for the already complete controller classes to inherit? It is

all in the name: logical controller abstraction. By creating the four abstract classes above,

we are establishing patterns between each class by the method signatures they share. These

patterns can then be quickly recognized by logically intelligent developers and through this

recognition can more quickly learn how Curator works at the controller/view model level.

Through this improved learning process, developers could then more easily modify

Curator’s functionality, reuse Curator’s code, and make Curator more flexible.

5 Conclusion

Curator is a fantastic system for helping professors and staff manage laboratory research

projects with its structure already exhibiting promise in modifiability, reusability, and

flexibility. The addition of logical controller abstraction further improves on those listed

traits by making the system easier for logically intelligent developers to see patterns within

Curator’s controller methods and thus easier to modify and/or develop.

Furthermore, this logical controller abstraction case study shows promise for incorporating

logical learning principles in software design to help simplify software modification for

developers. By designing software that is easy to learn for logical thinkers, there can be

benefits such as faster development times for inexperienced developers (crucial in a world

with demanding development schedules, evolving client needs, and rising cyber security

risks) and faster initiation-to-contribution timing for new developers (that is, allowing for

new coders to contribute to their assigned teams much faster).

References

[1] C. Bodoh, et al., “Software Requirements Specification (SRS) of Curator.”

Unpublished manuscript, South Dakota State University, Brookings, SD. Nov. 29,

2015.

[2] J. Harbison. What is CSHTML. http://johnharbison.net/what-is-cshtml/ . Last

accessed: March 8th, 2017

[3] D. Roth, “ASP.NET 5: Introducing the ASP.NET,” Special Connect(), vol. 29, no.

12A, 2014. https://msdn.microsoft.com/en-us/magazine/dn879354.aspx. . Last

accessed: March 8th, 2017

[4] Microsoft Phone Developer Network. The MVVM Pattern.

https://msdn.microsoft.com/en-us/library/hh848246.aspx. Last accessed: March 8th,

2017

[5] C. Bodoh, et al., “Design Document of Curator.” Unpublished manuscript, South

Dakota State University, Brookings, SD. Dec. 6, 2015.

[6] E. Giles, S. Pitre, and S. Womack. Multiple Intelligences and Learning Styles.

Department of Educational Psychology and Instructional Technology, University of

Georgia, Athens, GA.

http://epltt.coe.uga.edu/index.php?title=Multiple_Intelligences_and_Learning_Style.

Last accessed: March 8th, 2017

[7] L. Miller. Characteristics and Strategies for Different Learning Styles

(Intelligences). California State University, Sacramento, Sacramento, CA.

http://www.csus.edu/indiv/p/pfeiferj/edte305/learningstyle.html.

Last accessed: March 8th, 2017

http://johnharbison.net/what-is-cshtml/
https://msdn.microsoft.com/en-us/magazine/dn879354.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
http://epltt.coe.uga.edu/index.php?title=Multiple_Intelligences_and_Learning_Style
http://www.csus.edu/indiv/p/pfeiferj/edte305/learningstyle.html

