
Improving Clojure Error Messages for
Programming Novices with clojure.spec

Myeongjae Song and Elena Machkasova
Computer Science Discipline

University of Minnesota Morris
Morris, MN 56267

songx823@morris.umn.edu, elenam@morris.umn.edu

Abstract

Functional programming paradigms have been getting mainstream attention recently be-
cause of their elegant concurrency handling and conciseness of source code. University of
Minnesota, Morris has a strong tradition of using functional programming languages, in
particular those in the Lisp family, in the introductory CS curriculum. A Lisp language is
often the very first language that our majors encounter. Clojure is a relatively new language
in the Lisp family that is becoming increasingly popular nationally and worldwide. While
it would be desirable to use Clojure as a beginner language in CS curriculum, there are
several challenges in adopting it for novice programmers. One of the most significant chal-
lenges is its error message system which uses terminology and concepts that are unfamiliar
to beginners. A current project at UMM aims at developing a system of beginner-friendly
error messages for Clojure. A recently added system of contracts in Clojure, known as
clojure.spec, is the evidence that the Clojure community at large is also interested in im-
proving error reporting. This system came out in summer 2016, and we have been exploring
its ability to facilitate more robust and flexible error messages, particularly ones aimed at
helping beginners. This paper describes our current system of providing beginner-friendly
information in error messages and presents our recent work on switching to clojure.spec
for this purpose.



1 Introduction

Clojure is a relatively new programming language in the Lisp family, introduced by a devel-
oper Rich Hickey in 2007 [5]. It is a Lisp language with a dynamic type system. It compiles
to Java bytecodes and runs on the JVM. This means that a Clojure program can access any
Java libraries. It quickly gained a worldwide popularity in industry and has a large and very
active community of developers. As a Lisp language, Clojure follows functional method-
ology with an emphasis on immutability, functional abstraction, and recursion – concepts
that are essential in CS education, as discussed in [3]. As such, Clojure could be suitable
as a first language taught to computer science students, continuing a rich tradition of MIT
Scheme [1], on par with the Racket programming language, also in the Lisp category [2].

However, there are several issues that make introducing Clojure to beginner programmers
quite challenging. The most notorious of these issues is the lack of beginner-friendly er-
ror messages. Our research group at University of Minnesota, Morris (UMM) has been
working on developing a system of error messages that are helpful to beginners. As our
work on this system was progressing, Clojure has introduced a new feature that would al-
low us to interface with Clojure core much easier. This feature is a system of contracts
for data validation, known as clojure.spec. Thus our current goal is to transition our older
ad-hoc system of collecting information about an error to clojure.spec. This paper presents
a comparison between our two approaches and demonstrates our current progress in this
transition, including some challenges that we have overcome.

The paper proceeds as following: Section 2 introduces Clojure and clojure.spec, Section 3
presents our system of error processing before clojure.spec, Section 4 discusses the new
approach, and Section 5 summarizes our current progress and discusses future work.

2 Background

This section is an introduction to Clojure and the clojure.spec library.

2.1 Clojure

Clojure is a Lisp-dialect with some distinct features in comparison to other popular lan-
guages, such as Java or Python. One such feature is the use of prefix notation in Clojure
syntax. In Clojure, every instruction or expression is enclosed in parentheses. To invoke
a function, you need to specify a function name right after the opening parenthesis and
then list all arguments before the closing parenthesis. Parentheses are even required for
functions that do not take any arguments. A simple addition of 3 and 4 in Clojure looks
like:

(+ 3 4)

1



In Clojure, + is a just function, not a special operator, and the same is true of what would
be other common operators in other languages. This syntax might look odd, but it is very
efficient and easy to parse for machines since the system does not need to calculate operator
precedence. Moreover, it easily accommodates a variable number of arguments, which
means you can provide any number of arguments to some functions, such as the + function.
For instance, both (+ 3 4 5 6) or (+ 3 4 5 6 10 15) work.

Defining a function is very intuitive in Clojure. Inside a pair of parentheses, you list defn,
the function name, the argument list, and the expression. An example of a function that
multiplies a given number by two looks like:

(defn multiply-by-two [n] (* n 2))

In this example:

• defn indicates the declaration of a function.

• multiply-by-two is the function name.

• [n] is the argument list: there is only one argument named n.

• (* n 2) is the expression that multiplies n by 2. The result of this expression will
be returned from the function.

Calling this function with an argument 3 would look like this: (multiply-by-two 3),
and returns 6.

Another functional programming feature that Clojure adopted is immutable variables. In
Clojure, once you bind a name to a value, you cannot change what the name is bound
to. This is the main source of confusion for developers from imperative programming
backgrounds since they are used to changing variables to store different values. The main
benefit of using immutable variables is minimizing side effects, which means developers
do not need to worry about variables being modified from unanticipated operations. There
are mutable variables in Clojure, but they need to be explicitly declared and modified with
special syntax. Thus, side effects are not as serious concern as in imperative programming
languages.

Among various data structures that Clojure supports, sequences are unique in the way they
behave. In particular, a sequence can be lazy. In a lazy sequence, element(s) do not exist
when the sequence is first created, but they can potentially be computed later when they
are needed. In other words, lazy sequences are like a set of rules capable of generating
as many elements as are needed. Such sequences just exist as a lazy sequence type until
some functions force them to be evaluated. Because of its laziness, it is possible for a lazy
sequence to represent an infinite sequence. The following is a function that returns a lazy
sequence representing the Fibonacci sequence. In this case, the starting values are n1 and
n2. Theoretically, it could generate elements of the Fibonacci sequence indefinitely.

(defn fibonacci [n1 n2]
(lazy-seq (cons n1 (fibonacci n2 (+ n1 n2))))

2



Another commonly used Clojure data structure is hash maps. It is essentially a collection
of key - value pairs. It is very useful when representing data with relationships. Following
is an example of a hash map to represent a college course: course number is paired with
a course name. The key and value are separated by a space, and each key - value pair is
separated by a comma.

{:csci3501 "Algorithms", :csci2101 "Data Structures"}

In this example:

• The curly braces represent that this is a hash map.

• :csci3501 and :csci2101 are the keys.

• "Algorithms" and "Data Structures" are the values.

2.2 Introduction to clojure.spec

The cloure.spec library introduced in Clojure 1.9 in May 2016 [4], and technically is still in
development. It is a contract system that allows Clojure developers to specify and validate
expected data at runtime. In addition to data validation, clojure.spec provides easy-to-parse
error messages when the data is invalid. To start using specs, we need to define a spec first.
Each spec is just a specification for data. You can use s/def to define specs.

The following are some simple spec definitions with Clojure predicates:

(s/def ::check-int integer?)
(s/def ::check-function ifn?)

You can use the above spec definitions to check data types with s/valid?, which returns
a boolean. If the data satisfies the spec, s/valid? returns true. Otherwise, it returns
false. For example, (s/valid? ::check-int 3.5) will return false because
3.5 is not an integer number.

It is possible to assemble simple specs to create a more complicated spec. For instance, we
can write a spec that verifies the argument types of a function by combining ::check-int
and ::check-function with s/cat which stands for concatenation.

(s/def ::check-int-function
(s/cat :first-arg ::check-int

:second-arg ::check-function))

If the above spec is attached to a function my-function that takes two arguments,
(my-function 4 +) will be valid because the first argument 4 is an integer and the
second argument + is a function.

One really powerful feature of spec is the use of regular operators such as s/cat, s/*,
and s/?. As we have mentioned above, s/cat stands for concatenation. s/* represents
zero or more repetitions of a data pattern, and s/? represents zero or one of a data pattern.

3



Using these regular operators, we can describe a variety of data structures, including lazy
sequences and nested data.

To define input and output specifications for functions, clojure.spec uses s/fdef. Even
though it is possible to define the output spec for a function, it is only usable in spec testing.
For our purposes, we will be focused on the input verification. To start spec input validation
of a function, it should be turned on by (stest/instrument ‘function-name).
Otherwise, the spec is completely ignored at runtime. Let’s take a look at an example
of s/fdef. The following is a simplified definition of even? function and a possible
function spec for it. Whenever even? function is called, the spec is invoked and checks if
the argument is an integer.

(defn even? [n] (= (mod n 2) 0))
(s/fdef even?

:args (s/cat ::check-int integer?))
;; turn on the function spec
(stest/instrument ’even?)

The spec will allow the function to be called only when its parameter is an integer. Any
other type of the parameter would produce a run-time error.

3 Clojure error messages

3.1 Overview of Clojure error messages and our approaches

Since Clojure compiles to Java bytecodes and runs on the JVM, Clojure error messages are
just Java exceptions and uses Java datatypes and terminology. For instance, (+ 2 true)
is an attempt to add a number and a boolean. Since Java does not automatically convert
booleans to numbers, this code results in an error:

ClassCastException java.lang.Boolean cannot be cast
to java.lang.Number
clojure.lang.Numbers.add (Numbers.java:128)

This is quite cryptic for beginners since they are not familiar with a term “class” for a
datatype, “casting” for type conversion, and “exception” for an error. Moreover, even if a
term “boolean” has been introduced to them for true/false values, the prefix java.lang
does not correspond to their experience. Also, note that the class Number has a prefix
clojure.lang which is different from java.lang . To worsen the confusion, instead
of referring to the function +, the error message refers to the method add, and the class in
which it is defined is clojure.lang.Numbers. Those familiar with Java may identify
this method as a static method (mostly based on the naming convention: Numbers is
pluralized). For new Clojure programmers not familiar with Java, however, the message
carries very little, if any, information. Even if these new programmers memorize common

4



error messages terminology after a while, it would still not have any grounding in their
experience.

Clearly, this situation is not acceptable in an introductory computer science class. Thus,
one of the directions of our project is to provide a set of error messages that would be more
consistent and meaningful in the context of novice programmers experience.

Our error messages translate standard Clojure error messages into terms that are less con-
fusing for beginners. For example, the above-mentioned expression (+ 2 true) would
result in the error message

In function "+" the second argument "true" must be a number,
but is a boolean.

In this error message it is clear what function is being called, which argument is causing a
problem, what is expected, and what is given.

Our approach to replacing standard error messages has two main cases and a default case:

1. For commonly used functions we provide a direct assertion to check if we are passing
the right number and types of parameters, and report an error if we do not. These
errors are more informative than default errors.

2. For other cases we perform a lookup of an error message in our “dictionary” us-
ing pattern-matching, and replace the wording so that it is more understandable to
beginners.

3. For rare cases that are not listed in the dictionary we have no choice but to report an
error as it is.

For this paper we are focusing on the first case: providing an assertion to check the number
and type of the arguments. We discuss how we have been handling this situation in the
past and how using clojure.spec allows us to collect the same information as before (and
sometimes more) in a way that is less error-prone.

3.2 Assertions for common Clojure functions

The approach to providing assertions to check function arguments that we used prior to
incorporating clojure.spec was to write our own function with the same name as a standard
one, provide a precondition for it to check if the arguments are valid, and if they are, call the
function provided by core Clojure. Here is an example of this approach used for function
+ that specifies that it can take any number of arguments, but all of these arguments must
be numbers:

(defn + [& args]
{:pre [(check-if-numbers? "+" args 1)]}
(apply clojure.core/+ args))

In this example:

5



• the name of the function is +,

• the [& args] is the arguments list. The & sign indicates that what follows is a list
of arguments of arbitrary length.

• The next line (with :pre in curly braces) is the precondition, followed by a list (in
square brackets) of conditions to check.

• In this case there is only one condition to check. It is given by our own function
check-if-numbers? and passing to it args (the arguments passed to +), the
name of the function we are checking, which is “+”, and the starting number of the
arguments being checked (in this case we are checking all of the arguments, so the
starting number is 1).

• If check-if-numbers? returns true, the body of the overwritten function + gets
executed. If it return false, an assertion error is thrown by the precondition.

• The last line (apply clojure.core/+ args) applies the + function in
clojure.core to the list of arguments. One can think of clojure.core/+ as
a path to the function + in the core package of Clojure.

Clojure preconditions don’t record enough information to generate a helpful error message.
In particular, they don’t record the name of the function they are attached to or the argument
number. Thus our custom-made predicates, such as check-if-numbers?, record all
necessary information about failing arguments to augment the preconditions.

Before spec there was no good way of packaging necessary information into a failed asser-
tion exception itself, so we used a global variable (known as an atom in Clojure) to store
this information. The stored information included:

• The type that the predicate is checking for, such as a number in the case shown above,

• The actual type of the argument,

• The value of the argument,

• The name of the function for which the assertion fails,

• The number of the argument, such as first, second, etc.

Revisiting the example above, the call (+ 2 true) will make the predicate
check-if-numbers? be called with the function name "+", the arguments list (2,
true), and the starting number of an argument: 1. The predicate then checks the first
argument in the list, 2, and it is indeed a number. Then a recursive call is made with the
second argument, true. The argument number is incremented by 1 to indicate that it is a
second argument. Since true is not a number, failure information is recorded in the global
variable: the function name is +, the “offending value” is true and its type is boolean,
the expected type is number, and the argument number is 2.

After the information is recorded, the predicate returns false to indicate that the pre-
condition has failed. Because the precondition failed, an exception AssertionError
is thrown to the place of the program that has made the call to + with a wrong argument.

6



The exception is then caught. Based on its type AssertionError, it is passed to a han-
dling function that retrieves the information from the global variable and forms the error
message:

In function "+" the second argument "true" must be a number,
but is a boolean.

The global variable is then “cleared”, i.e. the information is deleted from it. This is done
so that this information is not accidentally retrieved later when it would become irrelevant
and confusing.

In addition to check-if-numbers? function, we have similar predicates to check if
an argument is a function or a sequences or any other type that may be required. Note,
however, that there are not as many type requirements in Clojure as in a statically typed
language, such as Java, so less than a dozen such predicates are needed.

While this approach produces a correct error message, it has drawbacks: using a global
variable to pass this information from one part of the program to another may be problem-
atic in a multithreaded program. This process would also be fragile if multiple errors are
taking place in a cascading fashion, i.e. handling one error triggers another. The switch to
clojure.spec eliminates potential inconsistencies between the global variable and the error
being handled.

3.3 Lazy sequences and challenges in argument printing

As mentioned in Section 2.1, Clojure has lazy sequences. Lazy sequences are values in Clo-
jure, so they can be passed to other functions unevaluated until their elements are needed.
This means that if we pass a lazy sequence (for instance, one generated by a function
(constantly 5) that produces a lazy infinite sequence of 5s) instead of a number, the
value will not be evaluated when an error is detected, it will just be kept as a lazy sequence.

However, one of the functions that forces an evaluation of a lazy sequence, is print. Thus
we have to be careful to not print an infinite (or just very long) sequence accidentally when
printing the error message. We handle this issue with a preview function that evaluates only
the first up to 10 elements of the sequence.

Switching from this approach to clojue.spec has created some issues that we will discuss
in Section 4.2

4 Improving error messages with clojure.spec

4.1 Benefits of using clojure.spec

If there is no spec attached to a function, and the function fails, it throws an error which
has the information about the type of error, error message, and stack trace. The value that

7



caused the error is rarely given in the error message. Let’s say a user tried to add 2 to
true. Because addition only works for numbers, true of type boolean is the value that
caused the error or the ’failing value’ in this case. Even when the failing value is given,
we still need to parse the specific value out of the error message string. The same problem
occurs when it comes to the line number indicating where it failed. Because an accurate
line number is not given in the error message, users need to go through the stack trace
to find where the error actually happened. We used to handle these issues by providing
assertions as we explained in Section 3.2.

Unlike default Clojure errors, if a spec-attached function fails, an exception object
clojure.lang.ExceptionInfo is thrown. This exception object has a hash map
of failure information, which can easily be parsed with Clojure ex-data function. A
simplified hash map of a spec error for the (even? false) function call might look
like:

{:clojure.spec/problems [:pred integer?, :val false, :in [0]}],
:clojure.spec/args (false),
:clojure.spec.test/caller {:file "spec_error.clj", :line 87}}

The stored information included:

• :clojure.spec/problems containing the predicate, failing value, and location
of the value (the argument number, in this case 0, which indicates that it is the first
argument).

• :clojure.spec/args containing all the arguments of the function.

• :clojure.spec.test/callers containing the file name and line number.

One prerequisite to providing user-friendly error messages is having enough information
about the function failure. Since default Clojure error does not provide sufficient data such
as the name of failing function or the failing value, our research group had to use a global
variable to store this information, as we explained in Section 3.2. With clojure.spec, we no
longer need a global variable because the hash map of clojure.lang.ExeptoinInfo
object has much more information about the failure compared to the default Clojure error.
The information that the embedded hash map provides, contains which predicate failed,
what the failing value was, and what the number of the argument was (if the function takes
multiple arguments). In addition, they can be easily parsed, as we mentioned earlier.

4.2 Approaches to improve error messages

With clojure.spec, we have used two different approaches to improve error messages. One
way is using a function spec. If function specs are attached to the Clojure core functions,
the spec error is thrown when some core function call fails. Then, we can simply parse
necessary information from the hash map embedded in the spec error, and process it before
we show them to the user. For instance, min function takes one or more numbers, and

8



returns the smallest number. We can verify the input of the min function by providing a
function spec like the following:

(s/fdef clojure.core/min
:args (s/cat :check-numbers (s/+ number?)))

This function spec definition checks if clojure.core/min function takes at least one
argument and if all arguments are of type number.

The main advantage of using a function spec is that we do not need to overwrite Clojure
core functions. We can simply attach our function specs to the Clojure core functions. It is
also very flexible in that it can be turned off if necessary.

However, we eventually decided to use another approach using spec assert, after we dis-
covered some issues with the simpler approach of just using a function spec. One serious
issue is that function specs do not work for inline functions, which are a type of function
that is inserted by the complier when they are used. Many of Clojure core arithmetic func-
tions are inline functions for better performance. Beginners often use arithmetic functions,
including +, -, and *, so not being able to use specs for them is a significant downside of
the function spec. Moreover, function specs have problems dealing with lazy sequences.
When a lazy sequence, that has an error inside, is passed to the function as an argument,
the Clojure default error is thrown. For example, let’s revisit the even? function that we
explained in Section 2.2. The even? function has an attached spec.

(even? (map even? [3 4 true]))

The function map normally takes two arguments, a function and a collection of elements.
What it does is simply apply the given function to each of the collection’s elements. If
there is an expression (map even? [1 2 3]), the even? function is applied to 1,
2, and 3. As a result of its computation, map returns a lazy sequence false, true, and
false because only 2 is an even number.

Let’s go back to the above example using two even? functions. First, the argument of
outer even? is checked. Then, the lazy sequence (map even? [3 4 true]) is
evaluated in some internal Clojure spec checking space. The problem is the function spec
for even? does not exist when the inner (even? true) is evaluated. Therefore, the
default java.lang.IllegalArgumentException is thrown.

Because of the issues mentioned above, our research team is currently using s/assert in
lieu of the function spec. This approach is very similar to our pre-spec approach that uses
:pre and requires overwriting Clojure core functions. However, we can solve the issues
concerning the inline functions in that the s/assert checks the overwritten function’s
input before the call to the core function is made.

Following is the overwritten min with spec assert. The function do just evaluates the
expressions in order, which means s/assert is checked prior to the function call to
clojure.core/min.

(defn min [arg1 & args]
(do

9



(s/assert (s/cat :check-numbers (s/+ number?)) [arg1 args])
(apply clojure.core/min arg1 args)))

Just like the function spec, s/assert starts validating data once the switch is turned
on by (s/check-asserts true) Because our s/assert is embedded inside the
overwritten function, lazy sequence checking is not an issue anymore as in function spec.

5 Conclusions and future work

5.1 Conclusions

Clojure.spec provides a more appropriate approach for generating meaningful error mes-
sages than our previous ad-hoc approach. It automatically collects information necessary
to provide useful information about causes of errors. It is also significantly more flexible:
we can easily control what kind of information we present to programmers. This opens
a possibility of creating multiple levels of error messages, depending on programmers’
experience.

In the process of working with clojure.spec we have resolved several technical challenges,
such as dealing with inlined functions and lazy sequences. There are still a few unresolved
issues, in particular related to multiple errors (errors that happen when evaluating a failing
value for another error). However, with clojure.spec being still in development we may just
need to wait until they are resolved by the Clojure community.

Overall, using clojure.spec has a promise of creating a robust and customizable system
of error handling that relies on features embedded in the language itself, rather than in a
separate system.

5.2 Future work

There are still many challenges to overcome before Clojure can be easily adopted in an in-
troductory CS classroom. One of the future directions of our work is to continue evaluating
what error messages are helpful to beginners. Another significant roadblock is a lack of a
beginner-friendly IDE for Clojure, despite the effort of the Clojure community to develop
one. Another challenge is to figure out which features of Clojure should be available to
beginners: another relatively new Clojure feature, known as transducers, makes certain ex-
pressions that beginners can write by mistake be syntactically valid, but almost certainly
unintended and confusing. Whether it is possible to “hide” these features from beginners,
ideally by using clojure.spec, is a subject of future work.

10



6 Acknowledgments

This work was supported in part by HHMI summer undergraduate research funding at
UMM.

References

[1] ABELSON, H., AND SUSSMAN, G. J. Structure and Interpretation of Computer Pro-
grams, 2nd ed. MIT Press, Cambridge, MA, USA, 1996.

[2] FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S. How
to Design Programs: An Introduction to Programming and Computing. MIT Press,
Cambridge, MA, USA, 2001.

[3] FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S. The struc-
ture and interpretation of the computer science curriculum. J. Funct. Program. 14, 4
(July 2004), 365–378.

[4] HICKEY, R. clojure.spec - Rationale and Overview. https://clojure.org/
about/spec. Accessed: 3/24/17.

[5] HICKEY, R. The clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages (New York, NY, USA, 2008), DLS ’08, ACM, pp. 1:1–1:1.

11

https://clojure.org/about/spec
https://clojure.org/about/spec

	Introduction
	Background
	Clojure
	Introduction to clojure.spec

	Clojure error messages
	Overview of Clojure error messages and our approaches
	Assertions for common Clojure functions
	Lazy sequences and challenges in argument printing

	Improving error messages with clojure.spec
	Benefits of using clojure.spec
	Approaches to improve error messages

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgments

