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ABSTRACT 

This paper provides an overview of some of the basic vulnerabilities with in the heap. 

Two examples are provided to illustrate the vulnerabilities on an operational level. The 

first example depicts how easy it is within the LINUX operating system to find the heap 

for a given application. Once found a method is presented to overwrite the heap which 

results in a denial of service attack on the applications level. The second example focuses 

on memory management as accomplished by the “garbage collector” A simple analysis of 

the strength of objects within the heap is undertaken. It is found that overtime the strength 

deteriorates and there is a surprising amount of overhead required to perform the 

management function. The authors suggest that the examples provide a baseline from 

which to evaluate the vulnerabilities of the heap in more detail. Further, they suggest 

more research is needed, particularly in regard to how quickly object strength deteriorates 

over time. 
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INTRODUCTION 

 

Object oriented programming (OPP) offers many advantages to developers. Even twenty 

years ago the basic concepts such as reuse of code, better structured programs and easier 

transition from analysis to implementation were recognized (Guimaraes, 1995). Another 

related concept is the importance of interoperability. Given the diversity of applications 

that share information within today’s cloud based computing architectures it is critical 

that the developers follow a OOP approach (Aldrich, 2013).For this environment to 

function properly it is critical that the location of the objects as well as the memory 

segments themselves be managed effectively. Objects that are weak or are no longer used 

need to be removed and the memory recovered. Conversely, objects that are strong and 

still used need to be protected and optimized so that the application code runs securely 

and effectively. Keeping track of where in memory objects reside is typically instantiated 

in the heap (Callum, Singer, & Vengerov, 2015). It is relatively easy to find where in 

memory the heap resides. In the example below a java class entitled “TempServer” is 

instantiated under process ID 11355. A simple memory map for this process is displayed 

filtered by the string heap. This entry reveals that the heap resides at relative memory 

address range:  020d4000-020f5000.The difference in the address range reveals that the 

size of the heap is 21000x which translates to 135168 Bytes or 132 kB. This is a small 

fraction of the maximum heap size on this host of 1GB. The permissions on this segment 

are set to read, write and private (hidden from other classes within the package). 

CRL\den.gus@os:~$ ps -aux | grep java 

CRL\de+ 24865  0.1  0.6 2234956 25612 pts/2   Sl+  16:50   0:00 java TempServer 

CRL\den.gus@eros:~$ cd /proc/24865 

CRL\den.gus@os:/proc/24865$ cat maps | grep heap 

020d4000-020f5000 rw-p 00000000 00:00 0                    [heap] 

CRL\den.gus@os:~$ java -XX:+PrintFlagsFinal -version | grep -iE 

'HeapSize|PermSize|ThreadStackSize' 

uintx MaxHeapSize              := 1040187392      {product} 

This memory segment is important for a number of reasons. First, it is very small 

segment within all available memory and finding it randomly is hence difficult. Second, 

it is not loaded into the kernel space but rather into the user space which means that the 

user that owns the process generating the task can view and modify the heap (certainly 

the root could do this as well) (Linux Memory Management , 2016).  Therefore, a hacker 

with user level access to an application could simply contaminate the heap which could 

bring the whole application to a halt. This is certainly more problematic than a flood ping 



attack against the port to which the application is assigned. The scenario below illustrated 

how the gnu debugger could be used to extract the contents of the heap for process ID 

24865 and how objects are linked to a relative memory address. The examples also show 

that the jmap command could also be used to obtain memory mapping information and 

that the “set” command in the debugger could be used to over write a memory address. 

CRL\den.gus@os:/proc/24865$ gdb --pid 24865 

 

(gdb) dump memory ~/gbpap2 0x02200000 0x02200f00 

 

CRL\den.gus@os:~$ ls -l gb* 

-rw-r--r-- 1 CRL\den.gus CRL\domain^users 256 Oct  7  2016 gbpap2 

 

CRL\den.gus@os:~$ xxd gbpap 

0000000: 0000 0000 0000 0000 2100 0000 0000 0000  ........!....... 

0000010: 5093 520a ae7f 0000 0000 0000 0000 0000  P.R............. 

0000020: 2000 0000 0000 0000 4100 0000 0000 0000   .......A....... 

0000030: 2f75 7372 2f6c 6962 2f6a 766d 2f6a 6176  /usr/lib/jvm/jav 

0000040: 612d 372d 6f70 656e 6a64 6b2d 616d 6436  a-7-openjdk-amd6 

0000050: 342f 6a72 652f 6269 6e2f 6a61 7661 0000  4/jre/bin/java.. 

 

CRL\den.gus@os:~$ jmap 24865 

Attaching to process ID 24865, please wait... 

Debugger attached successfully. 

Server compiler detected. 

JVM version is 24.111-b01 

0x0000000000400000      6K      /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java 

0x00007f00c3d92000      437K    /lib/x86_64-linux-gnu/libpcre.so.3.13.1 

 

(gdb) set {char [256]} 0x0216f000 = "Acefffffffffffffffff" 

 

From the examples illustrated above it is clear that it is quite easy to find the heap as well 

as the objects that it is mapping for any given process. What is displayed is just a small 

fraction of what is potentially available. For information on how to obtain additional 

information please see: The JMAP Utility (Utility, 2016). In addition to potential denial 

of service attacks against the heap there are numerous performance related and logical 

attack scenarios that can be launched against the heap (Barbu, Thiebeauld, & Guerin, 

2010); (Barbu-, Hoogvorst, & Duc, 2012). The depth of this potential vulnerability is 

depicted in detail in (Drake, 2011). In this work he stated that the “java runtime 

environment (JRE) was found installed on 89% of end-user computer systems. 

Unfortunately JRE is plagued by a long history of security problems, including 

vulnerabilities in its components built from native code. Based on trending, it is safe to 

assume that many more vulnerabilities remain to be found.” Given this data additional 

research related to assuring the wellbeing of the heap is warranted. One of the simplest 

attacks that could be launched by a hacker would be to use a debugger to modify the 

contents of the heap with the goal of either creating a denial of service or to exploit 

vulnerabilities within the object mapping. In the example below the first byte of the heap is 

changed from its value above of binary 0 (represented by the two nibbles 00) to a binary 7 (07). 



 

(gdb) set {int}0x00ef1000 = 7 

(gdb) dump memory ~/gcpap3 0x00ef1000 0x00ef1010 

CRL\den.gus@os:~$ xxd gcpap3 

0000000: 0700 0000 0000 0000 2100 0000 0000 0000  ........!....... 

 

 

REVIEW OF LITERATURE 

 

Overview 
 

The depth of vulnerabilities related to memory management is well documented. A quick 

look at the CVE vulnerability list reveals hundreds of active vulnerabilities of severity 

scores greater than seven (on a 10 point scale) (CVE , 2016).  (Chen, et al., 2011) discuss 

the types of vulnerabilities that have been observed and the degree to which they are 

exploited. In terms of mitigating attacks they found that there are techniques which often 

protect against specific exploits of a vulnerability, but no one solution that is universally 

effective.  Further, they state that no effective techniques exist to handle semantic 

vulnerabilities related to violations of high-level security invariants. 

 

It is also worth noting that unexpected tampering with memory segments can be truly 

problematic to any application and often no protection mechanisms are in place. 

(Ferreira, et al., 2012) state that often the most critical software running on a node, the 

operating system (OS), is currently left relatively unprotected in main memory. Because 

the OS is at the top of the software hierarchy, resiliency is very important. Recent studies 

have shown that there are still significant memory errors in the region supporting the OS 

(Levy, Ferreira, Bridges, Thompson, & Trott, 2015). In the case of this paper this is 

important because the focus is on the heap within an application that resides in the low 

area of main memory. 

 

Of course memory management is a function of the operating system and the heart of the 

operating system is the kernel. Just because one gains root access via sudo does not mean 

they have rights in kernel space. For a detailed explanation see: (Stack Overflow, 2016).  

This design constraint means that it is much more difficult to compromise data stored in 

kernel managed memory, but not impossible if the hacker can recompile objects called by 

the kernel or the kernel itself. This problem is not new and in fact has been an issue for at 

least the past ten years (Criswell, Geoffray, & Adve, 2009). In fact the problem has not 

lessened, for example, (Xu & al, 2015) depicts a specific problem in that regard and 



explain how the kernel and its associated memory segment can be compromised. They 

further state that the methodology has gone beyond a brute force random design to a 

“collision” technique that can be used to zero in on a particular memory segment without 

having access to a system generated memory map. The fact that successful attacks against 

the kernel and its associated memory segments are taking place strengthens the 

arguments in this paper. Further, the general review offered herein is just the tip of the 

iceberg. There are numerous sites such as: (Zero, 2015) that provide information about 

the various types of attacks and explain their effectiveness. Among these buffer 

overflows are often the most effective and sensitive, ALL should be monitored 

accordingly (Avijit, Gupta, & Gupta, 2004). However the primary concerns of this paper 

are related to denial of service and performance issues related to the heap within the java 

runtime. 

 

Attacks Against the Heap 

 

Attacks against the heap are not new, in fact (Govindavajhala & Appel, 2003) reported 

vulnerabilities in most C based languages and stated that a compromise of just a single 

byte within the heap could lead to problems. The problem has continues to gain 

importance over the years and alternate memory managers have been devised to 

effectively combat the problem (Novark & Berger, 2010). 

 

The most common attack against the heap is a buffer overflow which allows an attacker 

to get their code into the memory associated with that program and execute it (CVE , 

2016).  An application written in a programming language is vulnerable to such attacks if 

the following criteria are met: 

 The language used allows buffer overflows to take place and,  

 data is copied from buffer to buffer within the on the stack while not verifying the 

size of the block transferred and,  

 proven prevention methods such as canary values are not implemented (Stack 

Overflow, 2016). 

The language used can have a big impact on potential vulnerability. An important factor 

is whether or not the language used allows direct memory access. The language used in 

this project java does not, but assembler and C/C++ do (Buffer Overflows , 2016). 

However, one should note that because java does not allow direct memory access it is not 

entirely safe. For example, if a hacker could find out the memory address of a java heap 

then they could use assembler or C/C++ to overwrite and create denial of service attack 

against the application that heap is supporting. In regard to the language used herein, 

java, it is considered safe because it protects against buffer overflow vulnerabilities since 

it is a managed memory model. However, in its associated modules such as JVM and 

JDK there can be buffer overflow vulnerabilities (Secunia Research Community, 2016). 



The importance of a canary value (came from canaries in coal mines that indicated the air 

was not safe to breath) cannot be overstated when protecting against buffer overflow 

attacks. It is a fixed or random value embedded in the buffer and if corrupted it means the 

data stored within that buffer has been corrupted. It has proved an effective memory 

protection mechanism. For an overview and research related to the current state of canary 

values see: (Petsios, Kemerlis, Polychronakis, Keromytis, & DynaGuard, 2015). 

To an extent the java heap is resilient to attacks involving small amounts of data, to be 

successful often 64KB blocks need to be overwritten (Bouffard, Lackner, Lanet, & 

Johannes, 2015). 

 

Further as one would expect there are differences in vulnerabilities based on the 

operating system (McDonald & Valasek, 2009). Out of the box as one would expect there 

are advantages in using sophisticated UNIX systems such as BSD (Novark & Berger, 

2010). Assuming the appropriate access level is obtained it is still fairly easy to launch a 

successful denial of service attack against the java run time heap of a class that is 

providing a service via network socket calls. The blueprint of a simple DOS attack 

against the heap in the next section will illustrate this vulnerability. 
 

 

 

METHODOLOGY 

 
 

Blueprint of a Simple DOS Attack Against the Heap 
 

In the example below the server side of a temperature conversion java socket call 

program is run and stays resident in memory while waiting for client connections. The 

running code is assigned process ID 24325. Then by changing to that processes’ directory 

in /proc and displaying the maps file and searching for the string “heap” the hex relative 

memory address range for the heap is obtained. 

 

CRL\den.gus@os:~$ ps -aux | grep java 

CRL\de+ 24325  0.3  0.6 2234956 25364 pts/6   Sl+  15:05   0:00 java TempServer 

 

CRL\den.gus@os:~$ cd /proc/24325 

CRL\den.gus@os:/proc/24325$ cat maps | grep heap 

017b0000-017d1000 rw-p 00000000 00:00 0       [heap] 

 

Once the memory range is obtained a debugger (allows direct memory access) can be 

attached to that process ID. It is then possible to use the set command to overwrite the 

current contents of the heap. In the example below we are overwriting the first 20000hex 

Bytes with a string of characters plus it will null value fill (hex 0s) whatever space is 

allocated beyond that string.  

 



CRL\den.gus@os:/proc/24325$ gdb --pid 24325 

 

(gdb) set {char [20000]} 0x017b0000 = "When the heap is compromised you are in 

trouble!" 

 

To see if the overwrite attempt was successful we dump the contents of the first 4096 

bytes of the memory location of the heap using the dump memory command within the 

debugger. As expected the string of characters appears followed by null values.  

 

(gdb) dump memory ~/gcpapH6 0x017b0000 0x017b1000 

 

CRL\den.gus@os:~$ xxd gcpapH6 | more 

0000000: 5768 656e 2074 6865 2068 6561 7020 6973  When the heap is 

0000010: 2063 6f6d 7072 6f6d 6973 6564 2079 6f75   compromised you 

0000020: 2061 7265 2069 6e20 7472 6f75 626c 6521   are in trouble! 

0000030: 0000 0000 0000 0000 0000 0000 0000 0000  ................ 

0000040: 0000 0000 0000 0000 0000 0000 0000 0000  ................ 

0000050: 0000 0000 0000 0000 0000 0000 0000 0000  ................ 

 

Before the heap was over written the client could attach to the service which was running 

on port 18002. After the heap is overwritten, the debugger is detached and a connection 

attempt fails because the service crashes. 

 

tcp        0      0 0.0.0.0:18002           0.0.0.0:*               LISTEN      1018168 450590      

24325/java   

tcp        0      0 127.0.0.1:52393         127.0.0.1:18002         ESTABLISHED 1018168 

450280      24902/java 

 

(gdb) detach 

 

CRL\den.gus@os:~/javaclass$ java TempClient 

Connecting to: localhost 

Enter a Tempreture in F: 44 

Exception in thread "main" java.net.SocketException: Connection reset 

        at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:118) 

        at java.net.SocketOutputStream.write(SocketOutputStream.java:138) 

        at java.io.DataOutputStream.writeBytes(DataOutputStream.java:276) 

        at TempClient.main(TempClient.java:86) 

 

Blueprint of Assessing the Strength of Objects within the Heap 
 

Setup  

To obtain the needed information about the strength of objects in the heap and the role of 

the garbage collector in this process a Java Profiler called Yourkit was deployed. Yourkit 

is available on all common operating system platforms such as Windows/Mac/Linux. 



Because the java code used herein was deployed on an Ubuntu Server which doesn’t 

support GUI, the required GUI can be provided by the client side by connecting to a Mac 

or Windows Machine. This can be achieved by installing the profiler on both the 

machines. 

The following steps describe this process: 

1) Download the Yourkit profiler for LINUX and extract it. 

2) Next, the profiler can be attached to java application using the command below. 

java -agentpath:<path to directory>/yjp-2016.02/bin/linux-x86-64/libyjpagent.so 

<Java class> 

3) To connect to this application, start the Yourkit profile on the Mac/Windows 

machine. 

4) Then select the “Connect to remote application” and enter the IP address of the 

machine that is running the java application as depicted in Figure 1. 

5) Now, the client is connected and allows monitoring of a given application. 

 

 

 

 

 

 

 

Figure 1: Yourkit Client Connection Screen 

 

Observing the strength of the objects: 

1
st
 Scenario – immediately after the execution 

In this case most of the objects are reachable from the GC (garbage collector) through a 

strong reference. There are also few unreachable objects which exist before the execution 

of the java code. The figure below is the screenshot that depicts these relationships. 

 

Figure 2: Initial Object Strengths 



In this client/server Scenario, a java class entitles DateServer creates the service which 

listens for connections. This class can be viewed as a socket call program in Java. When a 

connection to the DateServer is made to the client another java class called DateClient is 

used. Below in Figure 3 are the frequency observations while the Client makes calls to 

Server. One can see at startup the calls peak and there is a series of lessor spikes above 

the base line (approximately 175/s) when the client makes the calls. 

 

 

 

Figure 3: Frequency of client calls to the server 

For the sake of consistency the state of other memory segments was observed in Figure 4. 

This Figure shows that both the size of non-heap memory and the number of loaded 

classes increased as well.  

 

 

 

 

 

 

 

 

Figure 4: Non-heap memory usage and number of loaded classes 

2
nd

 Scenario – 1 day after the execution 

In order to assess the decay of object strength over time from the 1
st
 scenario the service 

was left running for a day. The results are depicted in Figure 5. Interestingly, most of the 

objects i.e. 84% are unreachable and further, they have not yet been collected by Garbage 

collector. However, there are still 16% of the objects which are reachable from strong 

references. There are a negligible number of objects which are available through weak 

reference. Because the service typically will still work after just one day one would 

expect that the reachable objects are the important ones. However, any application 



instantiated memory if given enough time without refreshing may be vulnerable to not 

working due to loss object references. 

 

 

Figure 5: Strength of Objects after 1 day 

As one would expect the heap memory is relatively constant because the Date service is 

pretty much idle. As one would expect to some extent the heap memory is freed up by the 

garbage collector during this period of time (such as survivor space). Figure 6 below 

shows the memory allocation observed in the heap. 

 

 

 

 

 

Figure 6: Heap memory allocation during idle time 

 

Correspondingly, as one would expect the number of classes loaded are fairly constant, 

because the system is pretty much idle Figure 7 depicts this relationship. 

 

 

 

 

Figure 7: Number of loaded classes during idle time 

 

 



3
rd

 Scenario – after editing the heap  

In this case, a portion of the heap from the 2
nd

 scenario has been editing with random 

values. There is drastic increase in the number of objects which are not reachable from 

the Garbage Collector. Figure 8 below provides a description of the relationships 

observed. 

 

Figure 8: Strength of objects after tampering with the heap 

 

Putting random values in the heap increased object allocation. Of course one would have 

to expect that the objects would be bogus and perhaps meaningless. Figure 9 below 

depicts the activity over about a 35 second time frame. 

 

 

 

 

 

Figure 9: Object allocation after the heap had been tampered with 

 

Correspondingly, as one would expect the heap memory is increased a little bit by about 

1 MB. Below is the graphic entitled Figure 10. 

 

 

 

 

Figure 10: Heap memory size after the heap had been tampered with 



 

Interestingly, a fairly significant amount of CPU usage is required to manage the objects 

and to edit the Heap Memory. At one point it peaks at almost 25% of the assigned CPU 

and this relationship is shown in Figure 11 below. 

 

 

 

 

 

 

Figure 11: CPU usage to manage bogus objects 

 

DISCUSSION/CONCLUSIONS 

It is most disturbing to see the extent a denial of service attack can be launched if access 

is gained to the memory space of any given application. In this case the vulnerability of 

the heap is illustrated and in fact its memory address range is available with a simple map 

call by the owner of the application. Object oriented programming is the foundation of 

much of the software development over the past decade. The benefits of object oriented 

programming are well documented and being able to reuse code has a very positive 

economic impact. However, mapping the objects is a necessary function and as the 

experiments showed if it’s compromised the entire application may well fail.  

The complexity of the mapping is amazing in terms of the number of classes used as well 

as the volume of space used for indexing. It is also clear that managing that space is 

challenging as well which means tuning the garbage collector can have positive effects. 

This is a dynamic process in that objects that are no longer used need to be removed and 

the space reallocated. Based on the number of references observed within the data herein 

it is a challenge to keep the size to a minimum thereby helping the lookup performance 

metrics. It is also important to realize that the strength of the object references deteriorate 

over time. A search of the literature provides limited information about the degree that 

this is a problem. However anyone that has worked as a system administrator knows that 

over time services get flakey or stop working altogether. Often the solution is just to 

reboot that service and performance is then restored at least for the short term. This 

behavior would be indicative of corrupted memory and would be consistent with the 

object map or heap losing some of its pointers. This is certainly an area that could benefit 

from further research. Research is needed with a variety of applications involving 



numerous objects to get a true understanding of the effect of the object references 

deterioration problem. 

In terms of educating students in regard to the vulnerabilities within memory, the goal 

was to devise some simple examples. This paper presented some examples that illustrated 

the problem. Further, these examples built on the capabilities of the LINUX operating 

system. Therefore, it gave students operationalized examples and a framework from 

which to pursue other memory related investigations. 

In terms, of protecting against such attacks it is clear that denying rights and preventing 

software with direct memory access from running on a given host is critical. Cloud 

computing associated with virtualization certainly offer some degree of protection. First 

the attacker must pierce the cloud and then perhaps a zone in the cloud (defined by sub-

netting). Next the attacker must compromise the host in question and obtain the rights 

and gain access to the appropriate software. The fact that the host may be virtual often 

alters the memory locations from that of a dedicated host. Hopefully, this layered 

approach offer a sound first line of defense. However, the literature indicates that there 

are numerous successes by hackers in attacking memory. Hopefully the information 

offered herein will be useful to students in gaining a foundation of how the process 

actually works. 
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