

APPLICATION LEVEL MEMORY MANAGEMENT

STRATGIES VIA THE “GARBAGE COLLECTOR”:

PERFORMANCE AND SECURITY

RAMIFICATIONS

Raqeeb, Abdul

St. Cloud State University

rabdul@stcloudstate.edu

Guster, Dennis C.

St. Cloud State University

dcguster@stcloudstate.edu

Schmidt, Mark B.

St. Cloud State University

mbschmidt@stcloudstate.edu

ABSTRACT

This paper provides an overview of some of the basic vulnerabilities with in the heap.

Two examples are provided to illustrate the vulnerabilities on an operational level. The

first example depicts how easy it is within the LINUX operating system to find the heap

for a given application. Once found a method is presented to overwrite the heap which

results in a denial of service attack on the applications level. The second example focuses

on memory management as accomplished by the “garbage collector” A simple analysis of

the strength of objects within the heap is undertaken. It is found that overtime the strength

deteriorates and there is a surprising amount of overhead required to perform the

management function. The authors suggest that the examples provide a baseline from

which to evaluate the vulnerabilities of the heap in more detail. Further, they suggest

more research is needed, particularly in regard to how quickly object strength deteriorates

over time.

mailto:rabdul@stcloudstate.edu
mailto:dcguster@stcloudstate.edu
mailto:mbschmidt@stcloudstate.edu

INTRODUCTION

Object oriented programming (OPP) offers many advantages to developers. Even twenty

years ago the basic concepts such as reuse of code, better structured programs and easier

transition from analysis to implementation were recognized (Guimaraes, 1995). Another

related concept is the importance of interoperability. Given the diversity of applications

that share information within today’s cloud based computing architectures it is critical

that the developers follow a OOP approach (Aldrich, 2013).For this environment to

function properly it is critical that the location of the objects as well as the memory

segments themselves be managed effectively. Objects that are weak or are no longer used

need to be removed and the memory recovered. Conversely, objects that are strong and

still used need to be protected and optimized so that the application code runs securely

and effectively. Keeping track of where in memory objects reside is typically instantiated

in the heap (Callum, Singer, & Vengerov, 2015). It is relatively easy to find where in

memory the heap resides. In the example below a java class entitled “TempServer” is

instantiated under process ID 11355. A simple memory map for this process is displayed

filtered by the string heap. This entry reveals that the heap resides at relative memory

address range: 020d4000-020f5000.The difference in the address range reveals that the

size of the heap is 21000x which translates to 135168 Bytes or 132 kB. This is a small

fraction of the maximum heap size on this host of 1GB. The permissions on this segment

are set to read, write and private (hidden from other classes within the package).

CRL\den.gus@os:~$ ps -aux | grep java

CRL\de+ 24865 0.1 0.6 2234956 25612 pts/2 Sl+ 16:50 0:00 java TempServer

CRL\den.gus@eros:~$ cd /proc/24865

CRL\den.gus@os:/proc/24865$ cat maps | grep heap

020d4000-020f5000 rw-p 00000000 00:00 0 [heap]

CRL\den.gus@os:~$ java -XX:+PrintFlagsFinal -version | grep -iE

'HeapSize|PermSize|ThreadStackSize'

uintx MaxHeapSize := 1040187392 {product}

This memory segment is important for a number of reasons. First, it is very small

segment within all available memory and finding it randomly is hence difficult. Second,

it is not loaded into the kernel space but rather into the user space which means that the

user that owns the process generating the task can view and modify the heap (certainly

the root could do this as well) (Linux Memory Management , 2016). Therefore, a hacker

with user level access to an application could simply contaminate the heap which could

bring the whole application to a halt. This is certainly more problematic than a flood ping

attack against the port to which the application is assigned. The scenario below illustrated

how the gnu debugger could be used to extract the contents of the heap for process ID

24865 and how objects are linked to a relative memory address. The examples also show

that the jmap command could also be used to obtain memory mapping information and

that the “set” command in the debugger could be used to over write a memory address.

CRL\den.gus@os:/proc/24865$ gdb --pid 24865

(gdb) dump memory ~/gbpap2 0x02200000 0x02200f00

CRL\den.gus@os:~$ ls -l gb*

-rw-r--r-- 1 CRL\den.gus CRL\domain^users 256 Oct 7 2016 gbpap2

CRL\den.gus@os:~$ xxd gbpap

0000000: 0000 0000 0000 0000 2100 0000 0000 0000 !.......

0000010: 5093 520a ae7f 0000 0000 0000 0000 0000 P.R.............

0000020: 2000 0000 0000 0000 4100 0000 0000 0000 A.......

0000030: 2f75 7372 2f6c 6962 2f6a 766d 2f6a 6176 /usr/lib/jvm/jav

0000040: 612d 372d 6f70 656e 6a64 6b2d 616d 6436 a-7-openjdk-amd6

0000050: 342f 6a72 652f 6269 6e2f 6a61 7661 0000 4/jre/bin/java..

CRL\den.gus@os:~$ jmap 24865

Attaching to process ID 24865, please wait...

Debugger attached successfully.

Server compiler detected.

JVM version is 24.111-b01

0x0000000000400000 6K /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java

0x00007f00c3d92000 437K /lib/x86_64-linux-gnu/libpcre.so.3.13.1

(gdb) set {char [256]} 0x0216f000 = "Acefffffffffffffffff"

From the examples illustrated above it is clear that it is quite easy to find the heap as well

as the objects that it is mapping for any given process. What is displayed is just a small

fraction of what is potentially available. For information on how to obtain additional

information please see: The JMAP Utility (Utility, 2016). In addition to potential denial

of service attacks against the heap there are numerous performance related and logical

attack scenarios that can be launched against the heap (Barbu, Thiebeauld, & Guerin,

2010); (Barbu-, Hoogvorst, & Duc, 2012). The depth of this potential vulnerability is

depicted in detail in (Drake, 2011). In this work he stated that the “java runtime

environment (JRE) was found installed on 89% of end-user computer systems.

Unfortunately JRE is plagued by a long history of security problems, including

vulnerabilities in its components built from native code. Based on trending, it is safe to

assume that many more vulnerabilities remain to be found.” Given this data additional

research related to assuring the wellbeing of the heap is warranted. One of the simplest

attacks that could be launched by a hacker would be to use a debugger to modify the

contents of the heap with the goal of either creating a denial of service or to exploit

vulnerabilities within the object mapping. In the example below the first byte of the heap is

changed from its value above of binary 0 (represented by the two nibbles 00) to a binary 7 (07).

(gdb) set {int}0x00ef1000 = 7

(gdb) dump memory ~/gcpap3 0x00ef1000 0x00ef1010

CRL\den.gus@os:~$ xxd gcpap3

0000000: 0700 0000 0000 0000 2100 0000 0000 0000 !.......

REVIEW OF LITERATURE

Overview

The depth of vulnerabilities related to memory management is well documented. A quick

look at the CVE vulnerability list reveals hundreds of active vulnerabilities of severity

scores greater than seven (on a 10 point scale) (CVE , 2016). (Chen, et al., 2011) discuss

the types of vulnerabilities that have been observed and the degree to which they are

exploited. In terms of mitigating attacks they found that there are techniques which often

protect against specific exploits of a vulnerability, but no one solution that is universally

effective. Further, they state that no effective techniques exist to handle semantic

vulnerabilities related to violations of high-level security invariants.

It is also worth noting that unexpected tampering with memory segments can be truly

problematic to any application and often no protection mechanisms are in place.

(Ferreira, et al., 2012) state that often the most critical software running on a node, the

operating system (OS), is currently left relatively unprotected in main memory. Because

the OS is at the top of the software hierarchy, resiliency is very important. Recent studies

have shown that there are still significant memory errors in the region supporting the OS

(Levy, Ferreira, Bridges, Thompson, & Trott, 2015). In the case of this paper this is

important because the focus is on the heap within an application that resides in the low

area of main memory.

Of course memory management is a function of the operating system and the heart of the

operating system is the kernel. Just because one gains root access via sudo does not mean

they have rights in kernel space. For a detailed explanation see: (Stack Overflow, 2016).

This design constraint means that it is much more difficult to compromise data stored in

kernel managed memory, but not impossible if the hacker can recompile objects called by

the kernel or the kernel itself. This problem is not new and in fact has been an issue for at

least the past ten years (Criswell, Geoffray, & Adve, 2009). In fact the problem has not

lessened, for example, (Xu & al, 2015) depicts a specific problem in that regard and

explain how the kernel and its associated memory segment can be compromised. They

further state that the methodology has gone beyond a brute force random design to a

“collision” technique that can be used to zero in on a particular memory segment without

having access to a system generated memory map. The fact that successful attacks against

the kernel and its associated memory segments are taking place strengthens the

arguments in this paper. Further, the general review offered herein is just the tip of the

iceberg. There are numerous sites such as: (Zero, 2015) that provide information about

the various types of attacks and explain their effectiveness. Among these buffer

overflows are often the most effective and sensitive, ALL should be monitored

accordingly (Avijit, Gupta, & Gupta, 2004). However the primary concerns of this paper

are related to denial of service and performance issues related to the heap within the java

runtime.

Attacks Against the Heap

Attacks against the heap are not new, in fact (Govindavajhala & Appel, 2003) reported

vulnerabilities in most C based languages and stated that a compromise of just a single

byte within the heap could lead to problems. The problem has continues to gain

importance over the years and alternate memory managers have been devised to

effectively combat the problem (Novark & Berger, 2010).

The most common attack against the heap is a buffer overflow which allows an attacker

to get their code into the memory associated with that program and execute it (CVE ,

2016). An application written in a programming language is vulnerable to such attacks if

the following criteria are met:

 The language used allows buffer overflows to take place and,

 data is copied from buffer to buffer within the on the stack while not verifying the

size of the block transferred and,

 proven prevention methods such as canary values are not implemented (Stack

Overflow, 2016).

The language used can have a big impact on potential vulnerability. An important factor

is whether or not the language used allows direct memory access. The language used in

this project java does not, but assembler and C/C++ do (Buffer Overflows , 2016).

However, one should note that because java does not allow direct memory access it is not

entirely safe. For example, if a hacker could find out the memory address of a java heap

then they could use assembler or C/C++ to overwrite and create denial of service attack

against the application that heap is supporting. In regard to the language used herein,

java, it is considered safe because it protects against buffer overflow vulnerabilities since

it is a managed memory model. However, in its associated modules such as JVM and

JDK there can be buffer overflow vulnerabilities (Secunia Research Community, 2016).

The importance of a canary value (came from canaries in coal mines that indicated the air

was not safe to breath) cannot be overstated when protecting against buffer overflow

attacks. It is a fixed or random value embedded in the buffer and if corrupted it means the

data stored within that buffer has been corrupted. It has proved an effective memory

protection mechanism. For an overview and research related to the current state of canary

values see: (Petsios, Kemerlis, Polychronakis, Keromytis, & DynaGuard, 2015).

To an extent the java heap is resilient to attacks involving small amounts of data, to be

successful often 64KB blocks need to be overwritten (Bouffard, Lackner, Lanet, &

Johannes, 2015).

Further as one would expect there are differences in vulnerabilities based on the

operating system (McDonald & Valasek, 2009). Out of the box as one would expect there

are advantages in using sophisticated UNIX systems such as BSD (Novark & Berger,

2010). Assuming the appropriate access level is obtained it is still fairly easy to launch a

successful denial of service attack against the java run time heap of a class that is

providing a service via network socket calls. The blueprint of a simple DOS attack

against the heap in the next section will illustrate this vulnerability.

METHODOLOGY

Blueprint of a Simple DOS Attack Against the Heap

In the example below the server side of a temperature conversion java socket call

program is run and stays resident in memory while waiting for client connections. The

running code is assigned process ID 24325. Then by changing to that processes’ directory

in /proc and displaying the maps file and searching for the string “heap” the hex relative

memory address range for the heap is obtained.

CRL\den.gus@os:~$ ps -aux | grep java

CRL\de+ 24325 0.3 0.6 2234956 25364 pts/6 Sl+ 15:05 0:00 java TempServer

CRL\den.gus@os:~$ cd /proc/24325

CRL\den.gus@os:/proc/24325$ cat maps | grep heap

017b0000-017d1000 rw-p 00000000 00:00 0 [heap]

Once the memory range is obtained a debugger (allows direct memory access) can be

attached to that process ID. It is then possible to use the set command to overwrite the

current contents of the heap. In the example below we are overwriting the first 20000hex

Bytes with a string of characters plus it will null value fill (hex 0s) whatever space is

allocated beyond that string.

CRL\den.gus@os:/proc/24325$ gdb --pid 24325

(gdb) set {char [20000]} 0x017b0000 = "When the heap is compromised you are in

trouble!"

To see if the overwrite attempt was successful we dump the contents of the first 4096

bytes of the memory location of the heap using the dump memory command within the

debugger. As expected the string of characters appears followed by null values.

(gdb) dump memory ~/gcpapH6 0x017b0000 0x017b1000

CRL\den.gus@os:~$ xxd gcpapH6 | more

0000000: 5768 656e 2074 6865 2068 6561 7020 6973 When the heap is

0000010: 2063 6f6d 7072 6f6d 6973 6564 2079 6f75 compromised you

0000020: 2061 7265 2069 6e20 7472 6f75 626c 6521 are in trouble!

0000030: 0000 0000 0000 0000 0000 0000 0000 0000

0000040: 0000 0000 0000 0000 0000 0000 0000 0000

0000050: 0000 0000 0000 0000 0000 0000 0000 0000

Before the heap was over written the client could attach to the service which was running

on port 18002. After the heap is overwritten, the debugger is detached and a connection

attempt fails because the service crashes.

tcp 0 0 0.0.0.0:18002 0.0.0.0:* LISTEN 1018168 450590

24325/java

tcp 0 0 127.0.0.1:52393 127.0.0.1:18002 ESTABLISHED 1018168

450280 24902/java

(gdb) detach

CRL\den.gus@os:~/javaclass$ java TempClient

Connecting to: localhost

Enter a Tempreture in F: 44

Exception in thread "main" java.net.SocketException: Connection reset

 at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:118)

 at java.net.SocketOutputStream.write(SocketOutputStream.java:138)

 at java.io.DataOutputStream.writeBytes(DataOutputStream.java:276)

 at TempClient.main(TempClient.java:86)

Blueprint of Assessing the Strength of Objects within the Heap

Setup

To obtain the needed information about the strength of objects in the heap and the role of

the garbage collector in this process a Java Profiler called Yourkit was deployed. Yourkit

is available on all common operating system platforms such as Windows/Mac/Linux.

Because the java code used herein was deployed on an Ubuntu Server which doesn’t

support GUI, the required GUI can be provided by the client side by connecting to a Mac

or Windows Machine. This can be achieved by installing the profiler on both the

machines.

The following steps describe this process:

1) Download the Yourkit profiler for LINUX and extract it.

2) Next, the profiler can be attached to java application using the command below.

java -agentpath:<path to directory>/yjp-2016.02/bin/linux-x86-64/libyjpagent.so

<Java class>

3) To connect to this application, start the Yourkit profile on the Mac/Windows

machine.

4) Then select the “Connect to remote application” and enter the IP address of the

machine that is running the java application as depicted in Figure 1.

5) Now, the client is connected and allows monitoring of a given application.

Figure 1: Yourkit Client Connection Screen

Observing the strength of the objects:

1
st
 Scenario – immediately after the execution

In this case most of the objects are reachable from the GC (garbage collector) through a

strong reference. There are also few unreachable objects which exist before the execution

of the java code. The figure below is the screenshot that depicts these relationships.

Figure 2: Initial Object Strengths

In this client/server Scenario, a java class entitles DateServer creates the service which

listens for connections. This class can be viewed as a socket call program in Java. When a

connection to the DateServer is made to the client another java class called DateClient is

used. Below in Figure 3 are the frequency observations while the Client makes calls to

Server. One can see at startup the calls peak and there is a series of lessor spikes above

the base line (approximately 175/s) when the client makes the calls.

Figure 3: Frequency of client calls to the server

For the sake of consistency the state of other memory segments was observed in Figure 4.

This Figure shows that both the size of non-heap memory and the number of loaded

classes increased as well.

Figure 4: Non-heap memory usage and number of loaded classes

2
nd

 Scenario – 1 day after the execution

In order to assess the decay of object strength over time from the 1
st
 scenario the service

was left running for a day. The results are depicted in Figure 5. Interestingly, most of the

objects i.e. 84% are unreachable and further, they have not yet been collected by Garbage

collector. However, there are still 16% of the objects which are reachable from strong

references. There are a negligible number of objects which are available through weak

reference. Because the service typically will still work after just one day one would

expect that the reachable objects are the important ones. However, any application

instantiated memory if given enough time without refreshing may be vulnerable to not

working due to loss object references.

Figure 5: Strength of Objects after 1 day

As one would expect the heap memory is relatively constant because the Date service is

pretty much idle. As one would expect to some extent the heap memory is freed up by the

garbage collector during this period of time (such as survivor space). Figure 6 below

shows the memory allocation observed in the heap.

Figure 6: Heap memory allocation during idle time

Correspondingly, as one would expect the number of classes loaded are fairly constant,

because the system is pretty much idle Figure 7 depicts this relationship.

Figure 7: Number of loaded classes during idle time

3
rd

 Scenario – after editing the heap

In this case, a portion of the heap from the 2
nd

 scenario has been editing with random

values. There is drastic increase in the number of objects which are not reachable from

the Garbage Collector. Figure 8 below provides a description of the relationships

observed.

Figure 8: Strength of objects after tampering with the heap

Putting random values in the heap increased object allocation. Of course one would have

to expect that the objects would be bogus and perhaps meaningless. Figure 9 below

depicts the activity over about a 35 second time frame.

Figure 9: Object allocation after the heap had been tampered with

Correspondingly, as one would expect the heap memory is increased a little bit by about

1 MB. Below is the graphic entitled Figure 10.

Figure 10: Heap memory size after the heap had been tampered with

Interestingly, a fairly significant amount of CPU usage is required to manage the objects

and to edit the Heap Memory. At one point it peaks at almost 25% of the assigned CPU

and this relationship is shown in Figure 11 below.

Figure 11: CPU usage to manage bogus objects

DISCUSSION/CONCLUSIONS

It is most disturbing to see the extent a denial of service attack can be launched if access

is gained to the memory space of any given application. In this case the vulnerability of

the heap is illustrated and in fact its memory address range is available with a simple map

call by the owner of the application. Object oriented programming is the foundation of

much of the software development over the past decade. The benefits of object oriented

programming are well documented and being able to reuse code has a very positive

economic impact. However, mapping the objects is a necessary function and as the

experiments showed if it’s compromised the entire application may well fail.

The complexity of the mapping is amazing in terms of the number of classes used as well

as the volume of space used for indexing. It is also clear that managing that space is

challenging as well which means tuning the garbage collector can have positive effects.

This is a dynamic process in that objects that are no longer used need to be removed and

the space reallocated. Based on the number of references observed within the data herein

it is a challenge to keep the size to a minimum thereby helping the lookup performance

metrics. It is also important to realize that the strength of the object references deteriorate

over time. A search of the literature provides limited information about the degree that

this is a problem. However anyone that has worked as a system administrator knows that

over time services get flakey or stop working altogether. Often the solution is just to

reboot that service and performance is then restored at least for the short term. This

behavior would be indicative of corrupted memory and would be consistent with the

object map or heap losing some of its pointers. This is certainly an area that could benefit

from further research. Research is needed with a variety of applications involving

numerous objects to get a true understanding of the effect of the object references

deterioration problem.

In terms of educating students in regard to the vulnerabilities within memory, the goal

was to devise some simple examples. This paper presented some examples that illustrated

the problem. Further, these examples built on the capabilities of the LINUX operating

system. Therefore, it gave students operationalized examples and a framework from

which to pursue other memory related investigations.

In terms, of protecting against such attacks it is clear that denying rights and preventing

software with direct memory access from running on a given host is critical. Cloud

computing associated with virtualization certainly offer some degree of protection. First

the attacker must pierce the cloud and then perhaps a zone in the cloud (defined by sub-

netting). Next the attacker must compromise the host in question and obtain the rights

and gain access to the appropriate software. The fact that the host may be virtual often

alters the memory locations from that of a dedicated host. Hopefully, this layered

approach offer a sound first line of defense. However, the literature indicates that there

are numerous successes by hackers in attacking memory. Hopefully the information

offered herein will be useful to students in gaining a foundation of how the process

actually works.

References

Aldrich, J. (2013). Why Objects Are Inevitable. 2013 ACM International Symposium on New

Ideas, New Paradigms, and Reflections on Programming & Software, (pp. 101-116).

Avijit, K., Gupta, P., & Gupta, D. (2004). TIED, LibsafePlus: Tools for Runtime Buffer Overflow

Protection. 13th conference on USENIX Security Symposium. San Diego.

Barbu-, G., Hoogvorst, P., & Duc, G. (2012). Application-Replay Attack on Java Cards:

When the Garbage Collector Gets Confused. In G. Barthe, B. Livshits, & R. S. (eds.),

ESSoS 2012. LNCS, vol. 7159 (pp. 1-13). Springer, Heidelberg.

Barbu, G., Thiebeauld, H., & Guerin, V. (2010). Attacks on java card 3.0 Combining Fault and

Logical Attacks. In D. Gollmann, J. Lanet, & J. I.-C. (eds), CARDIS LNCS, vol 6035 (pp.

148-163). Springer, Heidelberg .

Bouffard, G., Lackner, M., Lanet, J.-L., & Johannes, L. (2015). Heap . . . Hop! Heap Is Also

Vulnerable . In M. J. (Eds.), CARDIS LNCS 8968 (pp. 18-31).

Buffer Overflows . (2016). Retrieved from https://www.owasp.org/index.php/Buffer_Overflows

Callum, C., Singer, J., & Vengerov, D. (2015). The Judgement of Forseti: Economic Utility for

Dynamic Heap Sizing of Multiple Runtimes. International Symposium on Memory

Management, (pp. 143-156).

Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., & Kaashoek, M. F. (2011). , Linux

Kernel Vulnerabilities: State-of-the-art Defenses and Open Problems. Asia-Pacific

Workshop on Systems. Shanghai, China.

Criswell, J., Geoffray, N., & Adve, V. (2009). Memory Safety for Low-Level Software/Hardware

Interactions. 18th conference on USENIX security symposium, (pp. 83-100). Montreal,

Canada .

CVE . (2016). Retrieved from https://www.cvedetails.com/vulnerability-list/vendor_id-

33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

Drake, J. (2011). Exploiting Memory Corruption Vulnerabilities in the Java Runtime. Retrieved

from https://media.blackhat.com/bh-ad-11/Drake/bh-ad-11-Drake-

Exploiting_Java_Memory_Corruption-WP.pdf

Ferreira, K. B., Pedretti, K., Bridges, P. G., Brightwell, R., Fiala, D., & Mueller, F. (2012).

Evaluating Operating System Vulnerability to Memory. International Workshop on

Runtime and Operating Systems for Supercomputers .

Govindavajhala, S., & Appel, A. (2003). Using Memeory Errorrs to Attack Virtual Machines.

IEEE Symposium on Security and Privacy, (pp. 11-14).

Guimaraes, J. (1995). The Object Oriented Model and its Advantages. ACM SIGPLAN OOPS

Messenger, 40-49.

Levy, S., Ferreira, K. B., Bridges, P. G., Thompson, A. P., & Trott, C. (2015). A Study of the

Viability of Exploiting Memory Content Similarity to Improve Resilience to Memory

Errors International . Journal of High Performance Computing Applications .

Linux Memory Management . (2016). Retrieved from http://tldp.org/HOWTO/KernelAnalysis-

HOWTO-7.html

McDonald, J., & Valasek, C. (2009). Practical Windows XP/2003 Heap Exploitation. Black Hat

USA.

Novark, G., & Berger, E. (2010). DieHarder: Securing the Heap. ACM Conference on Computer

and Communications Security.

Petsios, T., Kemerlis, V. P., Polychronakis, M., Keromytis, A. D., & DynaGuard. (2015).

Armoring Canary-Based Protections Against Brute-Force Attacks. Annual Computer

Security Applications Conference. Los Angeles, CA.

Secunia Research Community. (2016). Retrieved from http://secunia.com/advisories/25295

Stack Overflow. (2016). Retrieved from http://stackoverflow.com/questions/21761185/is-there-a-

difference-between-sudo-mode-and-kernel-mode

Utility, T. J. (2016). Retrieved from

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr014.html

Xu, W., & al, e. (2015). From Collision to Exploitation: Unleashing Use-After-Free

Vulnerabilities in Linux Kernel. ACM SIGSAC Conference on Computer and

Communications Security, (pp. 414-425).

Zero, P. (2015). Retrieved from https://googleprojectzero.blogspot.com/2015/06/what-is-good-

memory-corruption.html

