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Abstract 
 
This paper examines the applicability of leveraging contextual heuristics embedded in the            
English language to properly reorder English plaintext files whose content has been fragmented             
into smaller segments, whose order have been shuffled.  
 
Using only the textual content of each fragment, the presented algorithms determine how to              
reorder the segments, reconstituting the original file. This is achieved by analysing large             
quantities of published data to recognize patterns and heuristics that exist in English. These              
heuristics are then applied to each fragment to infer their order. 
 
This approach to data reassembly shows considerable promise. Experiments show that plaintext            
split into five or fewer segments can likely be reconstituted perfectly. Even with more than forty                
distinct fragments, roughly 40% of the segments can be reordered correctly. 
 
 
Introduction 
 
The keynote speech at the Midwest Computing Symposium in 2016, given by Dr. Sarah              
Diesburg, addressed various security implications that accompany data storage. In this           
presentation, the speaker gave a general overview of what happens to data on a hard disk or                 
NAND flash drive once data is deleted. When a file is “deleted” the operating system typically                
would mark the space occupied by the file as “free space” without actually zeroing out the data                 
comprising the file. 
 
This process is akin to a lazy landlord trying to evict a tenant. The landlord would send the                  
eviction notice, and mark in his ledger that the space is free, but without actually enforcing the                 
vacation of the property. He would operate as if the property were available, until he needs to                 
move another tenant in. Although the landlord says the place is free, a simple knock on the door                  



at that address will reveal the original tenant. The same applies to data on a disk, once a file is                    
deleted the bits comprising the file content are left intact, only being changed once another file                
overwrites that section of data. 
 
It is important to point out that files are not required to be stored sequentially on a disk. The files                    
may be broken up into smaller segments and each segment can be stored anywhere on the disk.                 
This is known as file fragmentation. A file information table on the disk specifies which pieces                
of data on the drive belong to the requested file ​and in which order those segments need to be                   
arranged​ to reconstitute the file. 
 
I walked away from the presentation wondering how plausible it is to recover a deleted file                
using only the raw, un-zeroed data. Obviously data recovery software exists to recover deleted              
files, but these pieces of software would typically employ methods attempting to reconstitute the              
original file metadata. My research, however, attempts to recover data in a theoretical worst case               
scenario, having no file metadata, working with arbitrary file types, and with the fragments of the                
file(s) being shuffled and disordered. 
 
The problem my research attempts to solve is not dissimilar from a “word scramble,” except               
using fragments of a file rather than letters. The fragments need to be reordered so that the file                  
can be read correctly. 
 
 
Theory 
 

 
Figure 1: A scrambled sentence. 

 
Take a moment to study the words in Figure 1. Generally, an English speaking person could                
fairly easily deduce that the original, sentence was “The cat ran really fast.” We, as humans, are                 
able to determine the original ordering of these words because we understand what a proper               
sentence looks like. Our knowledge of English grammar (syntax) provides us with heuristics             
like: 
 

1. Periods should follow the last word of a sentence. 
2. Words with capital letters are typically used at the beginning of sentences. 
3. Verbs typically follow nouns. 
4. Nouns typically come after the word ‘the’ 

... 
 
Suppose that the text in Figure 1 were in a file, and each word is a fragment of the file. Using                     
just the text provided, and no additional information regarding the unshuffled state, a human              
using these heuristics can defragment this file with a high degree of accuracy. 
 



Thus, I theorize that: 
 

 If a file whose content has a definable syntax is fragmented into smaller segments, and these                
segments are not in their proper order, then with a suitable understanding of the              
aforementioned syntax the segments may be reordered. 

 
While the example given in Figure 1 is English plaintext, the idea is not limited to English, or 
even human language at all. For example, a source file in Python has a very well defined syntax, 
with its own heuristics that can be used to deduce a sequential order: 
 

1. Variables must be declared before they are accessed. 
2. Line indentations occur after control structures (‘if’, ‘for’, etc). 

... 
 
While combinations of several heuristics can produce complex behavior, the intuitive simplicity            
of individual heuristic rules is notable. These heuristic rules are not explicitly taught, or              
hand-coded by a developer. The heuristics are simple relational patterns, learned automatically            
during training. 
 

 If, during training, ​A ​is often found directly after ​B, t​hen, during operation, if ​A ​and ​B are                   
found, ​A ​will be placed directly after​ B. 

 
This is a simplified explanation for how heuristic rules are used when determining the relative               
order of the data fragments. In practice, using heuristic rules is more complicated than this, since                
several rules may conflict. This process of heuristic application is fleshed out more fully in the                
Methodology section. 
 
 
Methodology 
 
The software developed during this research was designed to unshuffle fragments of an English              
text file. This is easier to debug and demonstrate than using multiple files or binary data. For the                  
remainder of the paper, only English text is examined, however, software can be developed for               
other data types using the same methodologies. 
 
 
Learning syntax 
 
The first step in correctly unshuffling a fragmented file is understanding its syntax; learning what               
rules are present for that type of data. The algorithm used to learn a file’s syntax is derived from                   
observing how humans learn syntax. 
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? 

 
Verb 

 
Adjective 

Figure 3: Demonstrates that people can identify what part of  
speech ‘zibbet’ is; despite it being a made-up word 

 
After a quick glance at the text in Figure 3, most people would be able to readily identify the                   
word ‘zibbet’ as a noun. This is interesting because zibbet is not a real word. Some process in the                   
brain was able to determine ‘zibbet’ is a noun without ever having been exposed to the word                 
before. This is quite impressive. 
 
I believe this is because of what are known as “context clues.” The process of “looking at                 
context” involves finding terms that are known, then making assumptions about unknown terms             
based on how the known terms have been used before. This is how people are able to understand                  
the meaning of an obscure word in a book without having ever been given a formal definition.                 
As Figure 3 shows, it also allows people to tag what parts of speech a word exhibits without                  
having ever seen the word before.  
 

 The emulation of the brain’s ability to learn from context clues is the backbone of the                
training process. The ability to use pieces of existing knowledge together to generate new              
information greatly reduces the need for human oversight in training. 

 
 
Contextual Learning Theory 
 
The algorithm developed to emulate this learning style requires entering a relatively small             
amount of data by hand. This is because the algorithm iteratively builds upon existing              
information, so it needs a starting point. 
 
To emulate Figure 3, the initial information fed into the learning algorithm is a long list of                 
words with their parts of speech, an example of which can seen in Figure 4.1. This initial                 
information is the training data from which the algorithm will learn what characteristics             
distinguish these parts of speech. In my research the training data consisted of 15 books               
including all three Hunger Games books, Charles Darwin’s ​The Origin of Species​, The King              
James Version Bible, and even some children's stories.  
 



 
Figure 4.1: Initial data; algorithm 

would learn to classify a word’s part 
of speech. 

 
Figure 4.2: Initial data; algorithm 
would learn to classify a word’s. 

grammatical gender. 
 
There are two primary genres of machine learning algorithms: regression and classification. A             
regression algorithm is applied in situations requiring an output of numeric continuous values,             
such as predicting tomorrow's temperature or evaluating how well a particular stock will do.              
These algorithms output numbers. Classification learning algorithms on the other hand are used             
to determine what classification an input would likely fall into. Some examples could be              
determining what tomorrow's forecast will be (rainy, sunny, cloudy, etc,), or whether a stock              
should be bought or not (buy it, don’t buy it). 
 
The learning algorithm applied to learn language syntax is a classification algorithm, it             
categorizes terms so that patterns can be found. It is given a set of categories and terms that                  
belong to those categories. During training it sees how these terms are used in context with their                 
neighbors; then it applies those findings to other terms that are used in similar ways. 
 
Figure 4.2 is used to illustrate this. Given the categories “masculine,” “feminine,” and “neutral,”              
along with words which belong to these categories, the algorithm would see how these words are                
used and infer that other words used in similar ways likely fall into the same categories.  
 

 The algorithm using the data from Figure 4.2 knows that “dress” is feminine. If the               
training input contained the sentence “​That dress is pretty​, yet ​that belt is pretty ​also” the                
algorithm would infer that “belt” is also feminine because it is used in a similar way to                 
“dress” in this context. 

 
Once information is able to be inferred about a previously unknown term the term is added to the                  
algorithm’s internal dictionary for future inferences to be gleamed. 
 

 This has a compounding effect. Continuing the previous example, if later, the sentence             
“​That belt does not go with ​that hat​!” were found then “hat” could be classified as                
“feminine” because its usage is similar to that of “belt.” 

 



The data initially fed into the learning algorithm includes a list of the 500 most common verbs in 
the English language, the 500 most common nouns, the 100 most common adjectives, etc. The 
file has at least ten examples for each part of speech, however the file altogether is comprised of 
less than 2000 words. This information needs to be provided earlier in the paper. This might 
seem like a lot, but after the learning algorithm is done processing its training data of 15 books it 
has encountered over 200,000 words. This disparity between the number of known words and of 
unknown words causes the algorithm to infer large portions of its dictionary, which has negative 
consequences. 
 
As versatile as this process can be, it has drawbacks. With each iterative inference, accuracy is                
reduced. The further down the chain the algorithm needs to look to make an inference the less                 
likely that inference will be true. This is why it is important to have a large set of initial data,                    
having more terms that can be learned directly from the input data will result in more accurate                 
inferences. 
 
Contextual Learning Implementation 
 
The algorithm must remember how each term in the training data is used, and then apply this to                  
future terms that are used in a similar way. During the training process a very large amount of                  
data is computed detailing how often each part of speech occurs in the three words before and                 
after every word. This is essentially a frequency tally for each word in the dictionary with respect                 
to how often each part of speech is found nearby the word. Initially it can only recognize the                  
parts of speech of words given in the initial data, but as the algorithm progresses through the                 
training data it is able to use this inference in tallying frequencies. 
 

 
Figure 5: Represents the kind of data collected 

for each word encountered during training. For simplicity, statistics are shown for the words 
immediately before and after. The algorithm actually computes statistics for three words on 

either side. 
 



This provides the necessary information required to build and recognize patterns. For example,             
using Figure 5, this information could allow the algorithm to take the word “cat” and see that it is                   
typically preceded by an article and followed by a verb, such as in “The cat ran.” 
 

 Knowing that the term ​T typically comes after category ​C​x and before category ​C​y allows               
the algorithm to tentatively infer the category,  ​C​x ​or ​C​y​, of any term adjacent to ​T. 

 
For example, if we know that nouns typically come directly after the word “the” then if we find a                   
word that we do not recognize, but comes directly after “the,” it can be inferred that the word is a                    
noun as in Figure 3. 
 
The heuristics for English are created using this information. Every word has its own heuristic,               
or pattern, for which kinds of words should surround it. 
 
Part of Speech Tagging Theory 
 
At this point the algorithm would have a very substantive set of heuristics, but these cannot yet                 
be applied to a fragmented file. This is because the words in the fragments have not been tagged                  
with their parts of speech yet. The algorithm needs to know the part of speech of all the words in                    
the fragments so that the patterns can be applied. 
 
Note that the part of speech of a word is determined using the frequency statistics of surrounding                 
words obtained from the training data. Counterintuitively, however, the actual word that is being              
tagged is not usually not considered in determining that word’s part of speech. 
 
This is because a word can have multiple parts of speech depending on how it is used, as shown                   
in Figure 5. 
 

 
Figure 6: Example how the same word can  

have different parts of speech, depending on context. 
 
As in Figure 6, knowing that the word to be tagged is “hug” is not sufficient to determine its part                    
of speech. It is necessary to know the context of the word, which comes from the training data.                  
The training data could easily show that nouns come after the word ‘a, ’ and that verbs frequently                  
come before the exclamation “me!” 
 



 The same heuristics that are used to unshuffle a file’s fragments are also used to classify                
the terms contained in those fragments. 

 
This might sound strange, applying heuristics to the fragments so that heuristics can be applied to                
the fragments, but this process is similar to what was discussed before. When the algorithm is                
making inferences on how fragments should be ordered, it is basing those decisions on prior               
inferences made in tagging the text. This is exactly how humans do it. Looking back to Figure 1,                  
we would first infer that “cat” is a noun, and from that we would infer that “cat” should be                   
placed after “The”. 
 
 
Part of Speech Tagging Implementation 
 
For simplicity, I have been giving examples of heuristics that apply to terms that are directly                
adjacent to each other, such as “nouns typically come directly after ‘the’.” The algorithm actually               
records the frequencies of words up to three terms away. This allows for heuristics that span a                 
larger distance. For example, and this is a real heuristic found during training, the third word                
prior to “aberrant” is typically a verb.  
 
Usually, the further apart two words are from each other the less impact they will have on each                  
other, and thus the less often any heuristic spanning that distance will hold true. However, using                
a scope slightly larger than direct adjacency increases the number of data points being used for                
inference, from two to six; allowing the algorithm to make inferences over a longer distance. 
 
Referring back to Figure 5, note how the information recorded during training is given in the                
form of twenty percentages. A heuristic that would be derived from this, as stated earlier, is                
“Articles typically come before the word ‘cat’.” This is derived because, during training, articles              
have been found before the word ‘cat’ 55% of the time, more frequently than any other part of                  
speech. Therefore the heuristic would be accurate, but using only that heuristic would result in               
false-positives 45% of the time. This is why multiple heuristics need to be used in tandem. 
 

 When tagging text there will always be more than one heuristic considered for every term               
that needs to be tagged. There will be the heuristic from the previous term which applies to                 
the word following it, and there will be the heuristic that the next term applies to the word                  
before it 

 
Words on both sides of the current term will influence how it is tagged. The task is to take the                    
available heuristics, aggregate them, then use this aggregated data to infer what part of speech               
the current word should be. This aggregation is implemented by averaging the percentages given              
by the adjacent terms, weighed in conjunction with sample sizes, with respect to the ten parts of                 
speech. The term would be tagged with whichever part of speech has the highest value after this. 
 



 
Figure 7: Illustrates the process of aggregating frequency data to  

tag parts of speech. 
 
In Figure 7, even though both the red and blue words suggest that the current term could be a                   
preposition, the blue term’s “the previous word is probably a verb” heuristic is accurate enough               
to supercede the red term’s “the next word is probably a preposition” heuristic. 
 
The same process is used when leveraging additional terms beyond those directly adjacent to the               
current word, but with a few more steps. The more distant terms are used to help make a decision                   
when closer pairs of words produce conflicting result; they act as tiebreakers. Their data is               
aggregated in in the same way the adjacent pairs are, but with increasingly smaller weights               
relative to their distance. 
 
 
Unshuffling fragmented text 
 
The only thing left to do is take all of the learned heuristics and apply them to the file fragments’                    
tagged text to produce a sequential order for the fragments. This is fairly straightforward. 
 
Think about a blank white puzzle, with all the pieces mixed up on the floor. The puzzle can still                   
be solved, even with no picture for guidance. Any piece will give some idea of what the                 
surrounding pieces should look like because of the indentations those adjacent pieces have made              
in the current piece. Slowly, as pieces are successfully placed together fewer pieces need to be                
tested, quickening the pace at which the puzzle is solved. The same thing is done to reassemble a                  
fragmented file, except instead of physical indentations the algorithm uses the learned heuristics             
to find matches.  
 



The fragments can be ordered by applying heuristics to the edges of each fragment and testing                
which other fragments fit best. For example,, suppose one fragment ends with the word “The”               
and another fragment starts with the word “cat.” The fragment starting with “cat” would be               
placed after the fragment starting with “The” because nouns typically follow the word “the.”  
 
As mentioned above, the algorithm can learn and use heuristics which look further than just               
adjacent terms, up to three words on either side. This increases the perceivable indentations at               
the edges of each fragment, improving chances of accurately finding matches. Figure 8 illustrates              
the indentation left by predicting up to three terms ahead. 
  

 
Figure 8: Illustrates how applying heuristics to fragments can act  

like the indentations in puzzle pieces.  
 
 

Results 
 
A demonstration of the part of speech tagging algorithm can be seen in Table 1. 
 

Input Output Accuracy 

Here are a few examples of 
what this baby can do. 

here - Adverb 
are - Verb 
a - Article 
few - Determinant 
examples - Noun 
of - Preposition 

92% 



what - Determinant 
this - Pronoun 
baby - Noun 
can - Pronoun 
do - Verb 
. - Punctuation 

Table 1: Sample output displaying high accuracy.  
 
Noting the example in Table 1, of the nearly two-dozen hand checked tests, the tagging               
algorithm has never had an accuracy below 80%, and is frequently in the mid-to-low nineties.               
While these results are impressive, these numbers should not be misunderstood as ground             
breaking. At the time of writing, a good part of speech tagger would obtain accuracies upwards                
of 97%[1].  
 
The goal of this process is to reconstitute a fragmented file. If this method suggested a new                 
arrangement of fragments are no closer to being properly ordered than the original input then the                
method would have failed. However, if the suggested arrangement of the fragments exactly             
reconstitutes the original file then the method would have succeeded perfectly. Thus, this method              
is evaluated by what proportion of the file’s fragments are correctly ordered after processing.  
 
This is measured not by how many fragments are in their correct absolute position, but instead                
by how many fragments are in the correct relative position to their neighbors. Of course, getting                
each fragment into the correct absolute position is necessary to reconstitute the file, but if each                
fragment is in the correct relative position then each fragment will also be in the correct absolute                 
position. 
 
For example, suppose the correct order for the fragments should be {5, 2, 3, 4, 1} yet the 
defragmentation algorithm produced a recommended sequence of {2, 3, 4, 1, 5}. None of these 
items are in the correct absolute location, but the first 4/5 of the sequence is still unshuffled. This 
is taken into account when a sequence is being evaluated. 
 

 
Figure 9: Demonstrates how a reassembling sequence is scored. 

The red squares indicates the fragment pair which is not in the correct order,  
the green squares indicate fragment pairs which are in the correct order. 



This sequence would get a score of 75% correct. 
 

Figure 10 shows the results of applying these algorithms to ​The Communist Manifesto​, split into 
41 evenly sized, shuffled, fragments. 

  
Shuffled Fragments         Processed Fragments  

     
Figure 10: The results of attempting to defragment ​The Communist Manifesto​. 

Red squares indicate fragment pairs which are not in relative order, green squares 
indicate fragment pairs which are in relative order. The black squares represent the 

beginning and ends of the files, where no link between fragments exists. 
 

When running the experiment depicted in Figure 10, after the fragments were shuffled amongst 
themselves two pairs of fragments were already in the correct order, as can be seen from the two 
green squares in the “Shuffled Fragments” image. However, after applying the method to this 
data, the resulting file has fifteen pairs of fragments ordered correctly, as can be seen in the 
second image. Fifteen pairs out of forty yields a 37.5% correct reconstruction. 
 
This process works better with fewer fragments, as can be seen from the graph in Figure 11. 
 



 
Figure 11: Depicts the performance of the algorithm as the number of 

fragments increases. Notice how the performance of this algorithm decreases  
as the number of fragments a file is split into increases. 

 
These results are very promising, and they provide strong evidence to support the theory that 
contextual heuristic analysis can be used to reconstitute fragmented files.  
 
 
Limitations 
 
The most glaring limitation posed by this theory is that perfect reconstruction ​cannot be              
guaranteed, regardless of how well the underlying syntax is understood. The reason for             
this can be seen in Figure 11. 
 

 
Figure 12: Two possible, and equally legal reconstructions of the  

shuffled words in Figure 1. 
 

Since this theory is attempting to emulate human cognition it has the same limitations.              
Both of the sentences in Figure 12 are perfectly valid sentences according to English              



syntax. Even if it could be deduced that the first sentence is far more likely, there is                 
always a non-zero chance that the second sentence is correct instead. Human            
defragmentation is limited in the same way. 
 
As was discussed earlier, another pressing limitation comes from the initial training data             
needed to properly train the algorithm. The more information is given to the training              
algorithm initially the the more effective training will be, and insufficient data will             
produce inaccurate results.  
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