
Using React Native in an Android App

Yifan Gu, Chaohui Xu, Mao Zheng
Department of Computer Science

University of Wisconsin-La Crosse
La Crosse WI, 54601
mzheng@uwlax.edu

Abstract

	

Nowadays there is a mobile app for many different needs: ride sharing, finance, gaming,
insurance claims, email, music, etc. If you can imagine it, it is probably available for
download. More importantly, as users interact with companies, they expect to do business
with them via their mobile devices. In our project, we chose to develop a native app
instead of a hybrid app for the reason of a better user experience. A native app is a
smartphone application developed specifically for a mobile operating system. The apps
that came with the phone for sending text messages, taking pictures, or setting reminders
are native apps. Hybrid apps are, at core, websites packaged into a native wrapper.
Basecamp, Instagram, Yelp, or your mobile banking apps are usually hybrid apps.

In this paper, we are developing a lite version of a ride sharing mobile app to mainly
introduce Reactive Native in the client side mobile app development. React, sometimes
called React.js or ReactJS, is an open source JavaScript library for developing web user
interfaces. React Native allows developers to build mobile apps using only JavaScript. It
uses the same design as React, letting developers compose a rich mobile user interface
from declarative components, by putting fundamental user interface building blocks
together using JavaScript and React.

In our project, a mobile app has two main types of users: riders and drivers. A rider can
request a car by providing his/her preferred start location and the destination of the trip.
The rider can also view the cost of the trip, pay and rate the driver after the trip. A driver
can view all the requests from different riders, select a request, and pick up the rider. It
requires real-time communications between the rider and the driver. The information
about the trip and all the requests will be recorded into a database. The project is hosted
in Microsoft Azure cloud platform. React Native is used in developing the client mobile
app. Messages between the server and the client app are sent via Google Cloud
Messaging. MongoDB is a backbone database, and Redis is used to as the cache to allow
a fast system response.

	

1 Introduction

Nowadays there is a mobile app for many different needs: ride sharing, finance, gaming,
insurance claims, email, music, etc. If you can imagine it, it is probably available for
download. More importantly, as users interact with companies, they expect to do business
with them via their mobile devices. When we enter the world of mobile app, there are
currently two choices, a native app vs. a hybrid app. Native apps are native to the user’s
OS and are hence built using those guidelines. The apps that came with the phone for
sending text messages, taking pictures, or setting reminders are native apps. Hybrid apps
are, at core, websites packaged into a native wrapper. Basecamp, Instagram, Yelp or your
mobile banking apps are usually hybrid apps.

In our project, we chose to develop a native app instead of a hybrid app for the reason of
a better user experience. It also has significant advantages since a native app is able to
easily access and utilize the built-in capabilities of the user’s devices, like GPS or
camera.

We are developing a lite version of a ride sharing application to mainly introduce
Reactive Native in the client side mobile app development. React, sometimes called
React.js or ReactJS, is an open source JavaScript library for developing web user
interfaces. React Native is a React-like framework for building native applications using
only JavaScript. It uses the same design as React, letting developers compose a rich
mobile user interface from declarative components by putting fundamental user interface
building blocks together using JavaScript and React.

In our project, a mobile app has two main types of users: riders and drivers. A rider can
request a car by providing his/her preferred start location and the destination of the trip.
The rider can also view the cost of the trip, pay and rate the driver after the trip. A driver
can view all the requests from different riders, select a request, and pick up the rider. It
requires real-time communications between the rider and the driver. The information
about the trip and all the requests will be recorded into a database. The project is hosted
in the Microsoft Azure cloud platform. React Native is used in developing the client
mobile app. Messages between the server and the client app are sent via Google Cloud
Messaging. MongoDB is a backbone database, and Redis is used to as the cache to allow
a fast system response.

2 Using React Native in Building Mobile App

React Native lets you build mobile apps using only JavaScript. It uses the same design as
React, letting you compose a rich mobile UI from declarative components. It also reduces
the development time. Instead of recompiling, the developer can reload the app instantly.
With hot reloading, the new code can be run while retaining the application state. We
mainly discuss the three technical perspectives used in our user interface design below.

2.1	JavaScript	Syntax	Extension	JSX	

JSX is a preprocessor step that adds XML syntax to JavaScript. It allows us to mix XML
with JavaScript, so that we can declare UI components easily and neatly.

The following code segment shows the example of JSX used in our development for
login screen.

render(){	
				return(

<View	style={styles.container}	primary={themeColor}>	
		…	

								<TextField	placeholder="Email"	onChangeText={(email)	=>	
this.setState({email})}/>	
								<TextField	placeholder="Password"	onChangeText={(password)	=>	
this.setState({password})}/>	
								<View	style={styles.loginBtn}>	
										<Button	text="SIGN	IN"	primary={themeColor}	onPress={this.login.bind(this)}	
raised/>	
								</View>	
								…	
						</View>	
)	
		}	
	

2.2 Componentization

React Native provides some basic user interface components, like “TouchableHighlight”
(similar to Button) and “TextInput”. Developers can build their own components on top
of them. Writing React Native code is like using building blocks. We first use the
components provided by React Native to build some higher level components and then
use those higher level components to build some other components on top of them. The
whole app is built up in this way. All the components in the development process can be
re-used.

In our project, we also used some well-developed, open-source components. For
example, two React Native components packages are included in the applications: react-
native-material-design and react-native-material-kit. These two packages provide a set of
React Native components which implement Material Design. Material Design is a UI
design language developed by Google. For example, there is a component --
“MKTextField”, which is built on the top of React Native’s component “TextInput”, but
instead of a plain text field, MKTExtField is a floating placeholder with ripple effect. So
we can just use “MKTextField”, otherwise we need to spend extra time on styling the
‘TextInput’. Below Figure 1 is the code segment we use MKTextField, and Figure 2
shows we need to import those component packages.

Figure 1 Code Segment of Using MKTextField

Figure 2 Import Material Design Components

2.3 Layout

The flexbox, is a new layout mode in CSS3. It provides an improvement over the block
model. Flexbox is designed to provide a consistent layout on different screen sizes. React
Native adopts this new layout mode. The code segment below will ensure that it always
stays in the center of the screen and the width is 0.9 of the screen width.

const	styles	=	StyleSheet.create({	
		container:{	
				flex:	1,		
				justifyContent:	'center',	
				alignItems:	'center'	
		},	
		input:	{	
				width:	window.width	*	.9,	
				marginTop:	10	
		},	
		loginBtn:	{	
				width:	window.width	*	.9,	
				marginTop:	10	
		}	
})	

3 A Ride Sharing Android Application

We are developing a lite version of a ride sharing application to mainly introduce and
practice Reactive Native in client side mobile app development. There are two client side
applications, one is for the rider, and the other is for the driver. The rider can request a
car by providing his/her preferred start location and the destination of the trip. The rider
can also select vehicle type, view the cost of the trip, pay and rate the driver after the trip.
The driver can view all the riding requests from different riders within predefined
distance, select a request, and pick up the rider. It requires real-time communications
between the rider and the driver.

Figure 3 is a screen shot of the rider’s app for making a trip request. Figure 4 is the screen
shot for the driver’s app. The driver received the rider’s request.

 Figure 3 Rider’s App Figure 4 Driver’s app

The information about the trip and all the requests will be recorded into a database. The
project is hosted in Microsoft Azure cloud platform. React Native is used in developing
the client mobile app. Messages between server and client app are sent via Google Cloud
Messaging. MongoDB is a backbone database, and Redis is used as the cache to allow a
fast system response.

4 Testing

The developers have conducted white-box testing during the development of the app.
Black-box testing has been used to integration testing and system testing. The scenario
below has been repeatly used to focus on the real-time communications between riders
and drivers.

Scenario Testing:
• Rider1 makes trip1 request
• Rider2 makes trip2 request
• Driver1 and Driver 2 are within 10 miles from two trips’ start locations
• Driver3 is more than 10 miles far away from the two trips’ start locations
• Driver1 and Driver2 both receive the trip1 and trip2 requests, but Driver3 does

not
• Driver1 picks up the trip1’s order
• Then Driver2 can only picks up the trip2’s order

The application has been demonstrated the correct results and all the trip information was
recorded in the database correctly.

5 Conclusions

This ride sharing application has been used to practice a number of the latest
technologies. In this paper, we mainly introduced React Native for the client apps
development, especially in the user interface design perspectives. We have been
conducted a number of testing to ensure a small set of functionalities were implemented
correctly and efficiently. For our next version, we are interested in adding the reservation
functionality so that the rider can request a trip for the next day. In the currently version,
all the trip requests are for the current time. A response from a driver must be within 15
minutes or the rider needs to make another trip request.

References

[1] Weiser, M. “The computer for the 21st century”, Scientific American, 1991
 pp. 94-104.
	
[2]		Android	Developer’s	Guide.	http://developer.android.com/guide/index.html	

[3] https://ymedialabs.com/hybrid-vs-native-mobile-apps-the-answer-is-clear/

[4] https://facebook.github.io/react-native/

