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Abstract
The elements of a (0,1)-matrix are either 0 or 1. This class of matrices arise from computa-
tional problems in fields including graph theory and information retrieval. We compare our
two algorithms for computing the (0,1)-matrix-vector product. After the minimum span-
ning tree or grammar based preprocessing phases have generated code, we show substantial
reductions in both execution timings and in arithmetic operations counts.



1 Introduction
A matrix,A ∈ Rm×n, is a (0,1)-matrix if each of its elements, αij , is in the set {0, 1}. These
types of matrices appear in problems from a variety of application areas including graph
theory,15 information retrieval,8 and matrix calculus.18 Matrix-vector products (MVPs) are
common computational kernels in many matrix computation algorithms. Matrix eigenval-
ues, essential to areas including principal component analysis and spectral graph theory,7, 17

can be computed via MVPs.5, 16

A =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

... . . . ...
αm1 αm2 . . . αmn

 with αij ∈ {0, 1}

We focus on computing the (0,1)-MVP more efficiently. Our previous publications on
the (0,1)-MVP introduce three redundancy exploiting algorithms.1, 2, 21, 26, 27 Our algorithms
rely on the observation that many operations in the product are repetitive due to common-
alities in the matrix rows. Our algorithms all require expensive precomputations such as:
computing all possible result vector elements,2, 27 building a grammar from the matrix,21 or
generating a minimum spanning tree (MST) on a complete weighted graph.26, 27 The (0,1)-
MVP is performed while traversing the generated data structures for a specific matrix. After
the precomputation is completed, the total number of additive operations required to com-
pute the (0,1)-MVP is often fewer than if using the conventional algorithm. Because of our
algorithms respective initialization expense, our algorithms will be practical only where the
matrices are reused for many additional products.

We now compare two of our redundancy exploiting algorithms. One algorithm builds a
MST to minimize arithmetic operation counts.26, 27 Our other algorithm builds a hierar-
chical grammar to exploit commonalities within the matrix rows.21 We compare our al-
gorithms in terms of their complexity, number of additive operations required, and their
execution time compared with the conventional MVP algorithm. We demonstrate that our
algorithms reduce operation counts in most cases. We also show that our implementations
are competitive in terms of execution time with use of metaprogramming.
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2 Our Differencing MST-Based Algorithm

2.1 Our Differencing Method
The conventional MVP Ax = y, with A ∈ Rm×n, x ∈ Rn, and y ∈ Rm can be computed
in general with two nested loops:

yi =
n∑

j=1

αijxj for i = 1, 2, . . . ,m (1)

Equation 1 is simplified in the case of a (0,1)-matrix. Each right hand side element is
multiplied by 1 or 0, so we either add xj to the sum or ignore it (Algorithm 1).

Algorithm 1 The Conventional (0,1)-Matrix-Vector Product Algorithm

Require:
A ∈ {0, 1}m×n

x ∈ Rn

Ensure:
returns the matrix-vector product, y ∈ Rm

function CMVP(A, x)
1: y ← ~0m
2: for i = 1 . . .m do:
3: for j = 1 . . . n do:
4: if A(i, j) == 1
5: y(i)← y(i) + x(j)
6: end if
7: end for
8: end for
9: return y

end function

Now, consider the difference between two elements in the product y.

yi − yk =
n∑

j=1

αijxj −
n∑

j=1

αkjxj =
n∑

j=1

xj(αij − αkj) (2)

And if we already have a value for yk:

yi = yk + (yi − yk) = yk +
n∑

j=1

xj(αij − αkj) = yk +
n∑

j=1

xjdj (3)

where d(i, k) is the difference vector between rows i and k of A
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Once we compute a single element yk, each subsequent yi can be computed as a sum of
some previous value yk with the inner product between x and d(i, k). This essentially trans-
forms yk into yi by adding or subtracting the corresponding elements of x from yk where
differences in rows i and k of the (0,1)-matrix exist. The number of operations required
to compute yi from yk is the number of non-zero entries in d(i, k)—this is the Hamming
distance between rows i and k of A.

The count of 1’s in a matrix row or a bit string is termed its population. If the Hamming
distance between rows i and k is less than the population of row i, then given yk the required
operation count to compute yi is reduced by using Equation 3 rather than Equation 1. When
elements in the result vector are computed by modifying previously computed elements, we
term this differencing.

2.2 Our Differencing MST-Based Algorithm
The count of additive operations required by Equation 3 depends on the Hamming distance
between the rows. We want the minimum number of operations in the (0,1)-MVP using
differencing. To obtain this minimum, we find a subset of Hamming distances, which
minimizes the sum of Hamming distances required to compute the (0,1)-MVP using differ-
encing. We solve this problem by using graph theory.

A (0,1)-matrix can be represented as a complete weighted graph, where each row of the
matrix is a vertex, and edges between its vertices have a weight equal to the Hamming
distance between the each pair of corresponding rows. If a minimum spanning tree (MST)
is computed for this complete graph, a breadth-first traversal on this MST has a minimum
total Hamming distance.26, 27 (Algorithm 2)

Algorithm 2 Our Differencing MST-Based Algorithm for the (0,1)-Matrix-Vector Product

Require:
A ∈ {0, 1}m×n

x ∈ Rn

Ensure:
returns the matrix-vector product, y ∈ Rm

function DMST(A, x)
1: G← buildGraph(A) . Build the graph representation for A
2: T ← calcMST (G) . Calculate the MST on G
3: R← chooseRoot(T ) . We choose the row with smallest population
4: Compute the element in y corresponding to R.
5: Perform a breadth-first traversal of T fromR where visiting each vertex, v, consists

of computing the element in y corresponding to the v.
6: return y

end function
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Calculation of the MST can be performed disjointly from the function and saved for a spe-
cific matrix. The MST can then be applied to any set of right-hand-side vectors. So our
algorithm is most suited for situations where the precomputation cost is amortized over
reuse of the same matrix. Examples of such cases are the Krylov subspace methods.11

This graph is restricted to integer weights so a MST algorithm performing linear complex-
ity sorting can be used. In this case the time complexity of the MST calculation is linear
withO(V + E), where V is the number of vertices and E is the number of edges.10 In terms
of the matrix, the number of vertices is the number of rows in the matrix, m, and the num-
ber of edges in the complete graph is m2, which is reduced to m(m− 1)/2 by eliminating
symmetries and self-loops. So the MST time complexity in terms of the number of rows in
the matrix can be as low as O(m2).

Algorithm 2 can be applied to vertical partitions of a matrix as well.26, 27 Partitioning allows
for redundancies to be exploited more aggressively as each partition yields a separate MST.

There are several choices for the root of the MST for the calculation. We choose the vertex
whose row has a minimum population. Another choice is to choose the graph center22 as
the root of the tree which allows for the shortest operational latency for parallel execution.

3 Our SEQUITUR-Based Product Algorithm
Our MST-based algorithm works by directly exploiting differencing and Equation 3. Our
next algorithm identifies and exploits these redundancies in another way.

SEQUITUR is an online string compression algorithm that incrementally builds a hierar-
chical grammar from a stream of characters. Every pair of adjacent characters is recorded,
then repeated pairs are turned into rules. A pair can consist of any combination of rules or
characters. As the grammar is built, many rules are recursively and incrementally created
which are two tokens long. After the input is read, any rule that is not used more than
once is incorporated into another rule and eliminated. More detail on SEQUITUR can be
found from Craig Nevill-Manning’s work.13 For example SEQUITUR encodes the string
”abcabdabcabd” as the following grammar:

S → AA
A → BcBd
C → ab

SEQUITUR can be used to find and eliminate redundancies in the (0,1)-MVP by com-
pressing the (0,1)-matrix rows so that rules represent commonalities between rows. We
encode a (0,1)-matrix as a stream of tokens with unique separators between rows. The use
of unique separator tokens is our method for ensuring that no rule in the grammar will span
row boundaries. After the matrix is processed by SEQUITUR, the remaining rules will rep-
resent segments of rows that are repeated. The (0,1)-MVP then is computed by traversing
the hierarchical grammar, computing each rule once, storing the result for reuse.21
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In Algorithm 3, the matrix A must be encoded. We do so using a sparse form, compressed-
sparse-row (CSR),4 where each nonzero element is represented as the column number to
which it belongs. The unique boundary tokens are the negative row numbers. For space
efficiency, sufficiently dense matrices should not be encoded in a sparse form.

Algorithm 3 Our SEQUITUR-Based Algorithm for the (0,1)-Matrix-Vector Product

Require:
A ∈ {0, 1}m×n

x ∈ Rn

Ensure:
returns the matrix-vector product, y ∈ Rm

function SEQP(A, x)
1: G← generateGrammar(A) . Encode and use SEQUITUR on A
2: S ← startSymbol(G)
3: α← {1, . . . , n}
4: β ← {−1, . . . ,−m} . Separators
5: i← 1
6: y ← ~0
7: for each s ∈ S do:
8: if s ∈ G . s is a rule
9: . If s has been evaluated, use its value, else recursively evaluate s as with S

10: y(i)← y(i) + evaluate(s)
11: else if s ∈ α . s represents a 1 in A
12: y(i)← y(i) + x(s)
13: else if s ∈ β . s is a row boundary
14: i← i+ 1
15: end for
16: return y

end function

As with our MST-based method, calculation of the grammar can be performed disjointly
from the function and saved for a specific matrix. This grammar can then be applied to any
set of right-hand-side vectors. So this algorithm as well is most suited for situations where
the precomputation cost is amortized over reuse of the same matrix.

The time complexity of SEQUITUR is linear in the size of the stream, O(S), where S is
the number of elements in the stream. Using CSR, the encoded stream’s size is the count
of 1’s in the matrix plus one for each separator token. The matrix stream encoding then
has size complexity O(mn). So the time complexity of computing a matrix’s SEQUITUR
grammar is O(mn).
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4 Modifying the Matrix
Recall that, Algorithms 2 and 3 can be practical only if the (0,1)-matrix is reused multiple
times. This is because the precomputation time is large so the total amortized time savings
must be greater than computation time of the MST or grammar. We can also consider us-
ing these algorithms in cases where a matrix is modified: adding a row, column, or altering
elements. These modifications require a representation of the MST, or SEQUITUR data
structures to be maintained so they can be modified when reflecting changes.

With respect to Algorithm 2, adding a row, column or modifying an element changes the
complete graph and possibly requires updating the MST. Updating a MST can be performed
with fewer operations than total recomputation.6, 9, 14, 19 We have not investigated how to
efficiently update the grammar if the matrix is modified.

5 Implementation
Our MST-based and SEQUITUR-based algorithms are implemented primarily with C++
and the Standard Library (STL). For our MST-based algorithm, the BOOST Graph Li-
brary3 classes and functions are used to compute the minimum spanning tree. Recall that
the time complexity of the MST computation can be improved.10 For our SEQUITUR-
based algorithm, we used a templated open source implementation found on James Wil-
son’s Github.23, 24 Our implementations make extensive use of the STL containers. Our
code and data sets are archived on Github.25

We implemented versions of each algorithm which performed vertical partitioning. The
matrix is split into w partitions. Then we compute w sub-products which when summed
form the complete product y. A disjoint MST or grammar is computed for each partition.

Our implementations proved to be substantially slower than the conventional product im-
plementation because our algorithms require traversing and manipulating large complicated
data structures such as linked lists and queues, but they suffice for counting arithmetic oper-
ations. We were able to eliminate this repeated overhead for matrix reuse by employing an
additional metaprogramming technique which adds one more step to the precomputation
by generating new source code that is a set of optimal sums. This step performs the MST
or grammar traversal once, and records each operation required to compute the (0,1)-MVP
into a new C++ source file to perform the product. Since we are using a compiled language,
metaprogramming requires separate compilation. Whereas, if we were using an interpreted
language such as MATLAB12 we would be able to write to a string which we could then
execute dynamically. This generated file is then compiled and run to perform the product
with multiple right-hand sides.

Operations from Algorithm 2 are a series of assignments, additions, and subtractions that
represent a breadth-first traversal of the now implicit MST. Operations from Algorithm 3
compute and reuse values corresponding to rules of the now implicit grammar.
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6 Benchmarking
To analyze our algorithms we count the additive operations required for each. We vary the
size, density (ratio of 1 to 0 counts in the matrix), and the number of equal vertical par-
titions in the matrix. During execution, the additive operation counts and precomputation
time are logged. We compare our implementations of Algorithms 1, 2, and 3.

We performed each measurement 25 times with random matrices and operand vectors. The
average is used as the final value and a standard deviation is computed. We measured the
operation count, precomputation time, and execution timings for our metaprogramming
generated code.

Our first test uses a 128 × 128 (0,1)-matrix and increases density from 1% to 96%. In
our second test we vary the size of random n × n square matrices and let n go from 32
to 512; this is done for density levels of 10%, 25%, 50%, 75% and 90%. Our third test
again uses a 128 × 128 (0,1)-matrix and varies the number of equal vertical partitions in
the matrix. Our algorithms are used separately on each partition and the result vectors are
combined. This is done for density levels of 10%, 25%, 50%, 75% and 90%.

For execution time benchmarks, we compute 1000 iterations of the power iteration method,5

and perform this for varying densities between 1% and 96%. Again each value is the av-
erage of 25 tests. To get comparable benchmarks for each algorithm, our code-generation
method is used to write out and compile the raw operations.

7 Results
Figure 1 shows our results of our first test, varying the density of the (0,1)-matrix for
each of our three algorithms. We plot the operation count vs the density of the matrix.
The conventional product algorithm operation counts grow linearly as expected with the
number of 1’s in the matrix. More interestingly, the operation counts of both Algorithm 2
and 3 do not grow significantly after attaining 20% density and are close to constant. So
the operation savings of both algorithms then is dominant for denser matrices. Our MST-
based algorithm yields more operation savings than our SEQUITUR-based algorithm in
these cases.

For our second test, we varied the size of the matrix at different density levels. Our results
are displayed in Figure 2. Here for each density level, a plot of operation count vs the
number of rows is displayed on a logarithmic scale. We observe that the operation counts
grow similarly for each algorithm, however, as the density increases, the operation savings
is greater. For very dense matrices, operation counts differ by multiple orders of magni-
tude. For example, the large 90% dense matrices in Figure 2 require around 218 operations
for the conventional algorithm while our algorithms require about 214 or 215 operations re-
spectively.
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Figure 2: Additive operation count for each algorithm vs the size of the matrices.

Results from varying the number of partitions are shown in Figure 3. The conventional
algorithm is not partitioned, and it is used as a near constant baseline. The total operations
required by our SEQUITUR-based algorithm remains relatively constant. However our
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MST-based algorithm benefits greatly from the partitioning in each case. After a certain
number of partitions, in this case about 8 for a 128× 128 matrix, our MST-based algorithm
no longer benefits from additional partitions as the cost of combining the partitions becomes
dominant. This happens for both algorithms at 26 partitions where each partition is only
2-bits in width. As the density of the matrices increases, the effect on partitioning is similar
in each case. Our results show that the break even points where the matrices stop benefiting
from further partitioning vary.
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Figure 3: Additive operation count for each algorithm vs the number of partitions of a
128× 128 matrix

As our algorithms are not optimized, the precomputation times for our algorithms are sub-
stantial. However, it is useful to look at how the precomputation time increases as we
increase the size of the matrix. Figure 4 shows precomputation timing data for the same
runs as in Figure 2. The time complexity for the build times for both algorithms appear to
be near quadratic in the number of rows. The build time for our SEQUITUR-based algo-
rithm is significantly lower than our MST-based algorithm in all cases. Our results show
that as matrix densities increase the differences between the build times decrease.
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Figure 4: Execution times for the precomputation stage of each algorithm vs the size of the
matrices.
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Our execution time benchmarks for the metaprogramming generated code are shown in
Figure 5. This measures the average CPU time required to compute 1000 power iterations
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with the metaprogramming generated code as the density is varied (cf. Figure 1). For
sparse matrices, there is no speed benefits, however for dense matrices, (greater than 40%),
the execution time is competitive.

8 Conclusions
We described, analyzed, and tested our two families of redundancy-exploiting algorithms
to compute the (0,1)-matrix-vector products. Our algorithms include a relatively expensive
precomputation stage for each (0,1)-matrix. Our experimental results show that, after the
precomputation stage, our algorithms reduce significantly the total additive operation count
required for computing a (0,1)-matrix-vector product.

Our results show that our algorithm are most viable for dense matrices, and the opera-
tion savings increase as matrix sizes increase. For our MST-based algorithm, our results
show that vertical partitioning of the matrices yields further reductions in additive oper-
ation counts at the expense of additional precomputation work. Our SEQUITUR-based
algorithm results are seemingly indifferent to the partitionings. However, partitioning is
useful for both algorithms to facilitate coarse-grained parallel execution. The precomputa-
tion times increases near quadratically with an increase the number of rows in the matrix
for both algorithms using square matrices. We have demonstrated an implementation that
outperforms the conventional method in terms of execution time after the precomputations
are performed for dense matrices. This shows that our two algorithms are potentially com-
petitive.

8.1 Future Work
• Optimizing the build time for our MST-based algorithm. Including implementing a

linear-time complexity MST algorithm10 and finding more efficient code for comput-
ing the population counts and Hamming distances.20

• Optimizing the build time for our SEQUITUR-based algorithm.

• Implementations which compute each partition in parallel.

• Determine and implement optimal partitioning break-even points with respect to for
both parallel and additive operation count efficiency.

• Investigate which components of our algorithms can be performed at compile time
via C++ templates.

• Generalize our algorithms to non-(0,1)-matrices as arbitrary matrices can be repre-
sented as a linear combination of (0,1)-matrices plus a remainder

• Investigate techniques for updating our MST and SEQUITUR data structures and
metaprogramming generated C++ code for adding rows, columns, and modifying
individual elements.1
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