
On Teaching Big Data Query Languages

Thanaa Ghanem
Information and Computer Science Department

Metropolitan State University
St. Paul, MN, 55106

thanaa.ghanem@metrostate.edu

Abstract
Big data computing systems (e.g., Hadoop) have recently seen tremendous intake as com-
puting platforms for data-intensive applications. The emergence of such big data comput-
ing systems has triggered a plenty of new techniques for data management. For example,
several new query paradigms have been introduced including map-reduce, HiveQL, Impala,
Pig Latin, and Spark. In order to cope with this big-data surge and hence meet the current
job market requirements, computer science students need to have a good understanding
of the big-data technologies. In this paper, we give a module to teach the basics of three
big-data query languages. First, we give a categorization of big-data languages into three
categories: procedural, declarative, and scripting. Then we pick one language from each
category and show how a given query can be expressed by the three syntactically-different
languages. We mainly focus on queries that are composed of one or more of the various
relational algebra operators (e.g., select, project, join, and group by). We believe that the
process of contrasting the languages helps students to gain deeper understanding of the
expressive power similarities between the various languages, and hence it will be easier
to learn new languages as they are being introduced. Throughout this paper we will give
various teaching resources that can be used by instructors to teach the proposed module.



1 Introduction
Large volumes of data are being generated and collected everyday from sources like sen-
sor networks and social media networks. Businesses consider these data sets as invaluable
resources that can be used to extract information and insights to promote their businesses.
As a result, and to accommodate to this data surge, big data computing systems such as
Hadoop [16] have seen tremendous intake in recent time as platforms for the management
of big-data sets with high volume, velocity, and variety. The emergence of such big data
computing systems has triggered a plenty of new techniques for data storage, management,
analysis, and visualization.

In order to cope with the big-data surge and hence meet the current job market require-
ments, the undergraduate Computer Science curriculum needs to be enriched with modules
to equip students with the needed knowledge and skills. The following are three different
approaches that can be taken by Universities to address the big-data teaching requirements:
(1) introduce new big-data degrees (e.g., majors, minors, or certificates), (2) introduce big-
data courses as electives, or (3) incorporate big-data teaching modules in existing courses.
The third approach can be immediately applied by any computer science department as it
requires minimum additional resources. Big-data teaching modules can be incorporated
in several fundamental Computer Science courses including Operating Systems, Computer
Organization and Architecture, and Database Management Systems.

In this paper, we introduce a module to introduce the basics of three big-data languages
as a part of a database course. A classical database course covers the following topics:
the relational data model, relational algebra, and the Structured Query Language (SQL).
Our module then focuses on teaching how a given SQL query can be expressed using three
big-data query paradigms, namely map-reduce [17], Pig Latin [8], and Impala [6]. The
proposed module can also be extended and taught as an introductory course on big-data.

Previous works introduced modules to teach each of the query paradigms independently.
For example, [10] introduces a module to teach map reduce in an introductory computer
science course, [9] introduces teaching map reduce in a distributed systems course. On
the other hand, [13] introduces a module to teach several SQL implementations in vari-
ous big data systems including MongoDB and HBase. Moreover, [14] introduces mod-
ules to incorporate big data in the computing curriculum through separate map-reduce and
SQL modules. Although in a production environment, a certain language may be chosen
based on the complexity of the underlying data sets and operations, however, from the
pedagogical perspective, it is essential for computer science students to understand how
syntactically-different languages are used to express semantically-similar queries for the
following reasons: (1) this knowledge will enable students to learn new languages as they
are introduced, and (2) by understanding the relationship between languages, students may
contribute in the introduction of new languages or adding features to existing languages.

The rest of the paper is organized as follows. Sections 2 and 3 discuss the learning units
included in our proposed module. Section 4 discusses how to set up a programming envi-

1



ronment that can be used for hands-on practice of the proposed topics. Finally, Section 5
concludes the paper.

2 Big-Data Query Languages Learning Units
As the number of big-data technologies increases, one of the first challenges for computer
science educators is to categorize these different technologies into well-defined categories.
Students then are taught the fundamental concepts of each category along with the sim-
ilarities and differences among the various categories. This approach allow students to
teach themselves new technologies as they are introduced in the future. In this paper, we
introduce a categorization for big-data languages into three categories: procedural, declar-
ative, and scripting. We first discuss the characteristics of each language category, then we
pick an example language from each category to discuss in more details through examples.
Mainly, we introduce the following three learning units to teach big-data query languages:

• Fundamentals of relational algebra.
• Categories of big-data query languages.
• Relational algebra operators in big-data languages.

The proposed learning units are discussed in Sections 2.1, 2.2, and 2.3 respectively. We il-
lustrate our ideas using examples on a synthetic data set of meteorological station data [13].
The data set has two tables: Stations(stationID, zipcode,latitude,longitude) and Reports
(stationID, temperature, humidity, year,month). The data generator and a sample data set
are available in [2].

2.1 Fundamentals of Relational Algebra
Although not all big-data query paradigms assume that data is stored in tables, however, al-
most all big-data query paradigms provide support for relational algebra operations because
relational algebra is proved to be complete and very efficient in expressing data manage-
ment operations. Hence, relational algebra operators provide good means to illustrate how
syntactically-different query languages can be semantically similar. In this section, we
summarize the fundamental relational algebra concepts that are used in the rest of the pa-
per. More detailed explanations of relational algebra concepts can be found in any database
text book, for example [12].

The Relational Data Model and Relational Algebra are the main power behind Relational
Database Management (RDBSM) systems [3] . In the relational model, the term relation is
used to refer to a table, the term tuple is used to refer to a row, and he term attribute refers
to a column of a table. Basically, a relational database consists of a collection of tables,
each of which is assigned a unique name. Relational algebra defines a set of operations that
are used to express queries over database tables. In this paper, we will focus only on the
following relational operators: select (σ), project (π) , join(./), and group by(γ). Each op-
erator is defined to take one or more relations as input and produce a relation as output. The

2



middle column in Table 2 gives the semantics of the various relational operators.Typically,
a query in relational algebra is composed of sequence of relational operators where the
output of one operator is the input for the following operator in the sequence.

Structured Query Language (SQL) is the most widely used implementation of relational
algebra. The typical SQL query consists of three clauses: select, from, and where. Optional
SQL constructs (e.g. group by and aggregates) are used to express a wider range of queries
over relational tables. It is important to emphasize the close connection between SQL and
relational algebra. Basically, each SQL query can be expressed as a relational algebra ex-
pression and vise versa. For example, consider the following query, Q1 over our example
database: Q1: Find the list of temperatures reported by stations in zipcode 55112. Q1 is
represented in SQL as follows:

select S.stationID, temperature
from Stations S, Reports R
where S.stationID = R.stationID and zipcode = 55112

Q1’s corresponding relational algebra expression is as follows:

πStations.stationID,temperature(σzipcod=55112(Stations ./Stations.stationID=Reports.stationID Reports))

Query execution refers to the range of activities involved in extracting data from a database. The ac-
tivities include translation of SQL queries into an internal form that can be used at the physical level
for the actual evaluation of the query.This translation process is similar to the work performed by
the parser of a compiler.The translation step mainly constructs relational-algebra expression which
is then translated into a parse-tree of relational algebra operators. Each relational algebra operation
is then executed by one of several different algorithms where the output of one operator is used as
input to the next operator in the parse-tree. The sequence of primitive operations that can be used
to evaluate a query is called query-execution plan. It is important to note that query optimization
techniques can be used to transform a given query-execution plan to another equivalent plan that is
more efficient, however, query optimization is beyond the scope of this paper.

The transformation of a given SQL query into the corresponding query-execution-plan is achieved
as follows. First, a different leaf is created for each table listed in the from clause. Second, the root
node is created as a project operation (π) involving the required output attributes listed in the select
clause. Third, the qualifications listed in the where clause is translated into the appropriate sequence
of join (./) or select (σ) operations going from the leaves to the root. Finally, if needed, a group
by (γ) operator is added. For example, the query-execution-plan that corresponds to query Q1 is
shown in Figure 1.

2.2 Categories of Big-Data Query Languages
Teaching computer science students the similarities and differences among programming languages
is more valuable than teaching them one or two specific programming languages for the following
potential benefits: (1) increasing students’ capacity to express ideas, (2) increasing students’ ability

3



Figure 1: Query Execution plan for Q1.

to learn new languages, and (3) overall advancement of computing [11]. The study of programming
languages, like the study of natural languages, can be divided into examinations of syntax and se-
mantics. The syntax is the language’s expressions, statements, and program units. The language
semantics is the meaning of those expressions, statements, and program units.

In the big-data era, a plethora of language are introduced to meet the growing need for ad-hoc
analysis of extremely large data sets. We categorize big-data query languages into three categories:
procedural, declarative, and scripting. In this section we discuss the characteristics of the language
categories. Table 1 gives example languages in each category. It is important to note that all big-data
programming languages are implemented to work on top of Hadoop and the underlying Hadoop
Distributed File System (HDFS) and the map-reduce programming paradigm [16].

Category Language
Procedural Map-reduce in Java
Declarative HiveQL and Impala
Scripting Pig Latin and Spark

Table 1: Categories of Big-Data Query Languages.

2.2.1 Procedural Languages

A procedural languages is a language that describes a step-by-step algorithm to complete a com-
putational task or program. In the big-data era, no new procedural languages have been introduced,
however, the map-reduce framework [4] is introduced as a programming model and an associ-
ated implementation for processing large data sets with a parallel, distributed algorithm on a clus-
ter.Existing programming languages (e.g., Java and C++) can be used to implement programs using
the map-reduce framework concepts. The map-reduce framework mainly works by dividing the
processing task into two main phases: map and reduce. The framework developer is required to
provide the implementation of the map and reduce functions in a high-level programming language
of choice (e.g., Java). Key-value pairs (K,v) form the basic data structure in map-reduce algorithms.
Basically, the design of map-reduce algorithms involves imposing the key-value structure on the

4



input and output data sets. The map and reduce functions have the following signatures:

map : (k1, v1)→ list(k2, v2)
reduce : (k2, list(v2))→ list(k3, v3)

The input to a map-reduce job starts as data stored on the underlying distributed file system. The
mapper is applied to every input key-value pair to generate an arbitrary number of intermediate
key-value pairs. The reducer is applied to all values associated with the same intermediate key to
generate output key-value pairs. Implicit between the map and reduce phases is a distributed group
by operation on intermediate keys. More detailed explanation of the map-reduce frameworks can
be found in [7].

2.2.2 Declarative Languages

A declarative language is a high-level language in which the programmer specifies what needs to be
done rather than how to do it. Structured Query Languages (SQL) is one of the most commonly used
declarative languages that is used in relational DBMS. HiveQL [15] and Impala [6] are two declar-
ative big-data languages that use a syntax that is very similar to SQL. The compilers of HiveQL
and Impala transforms the input SQL queries into the corresponding map-reduce jobs that are ex-
ecuted on the Hadoop cluster, hence, saving the developers the cost of writing custom map-reduce
programs.

2.2.3 Scripting Languages

A scripting language is language that employs a high-level construct to interpret and execute one
command at a time. Pig Latin [8] is a big-data scripting language that is designed to fit in a sweet
spot between the declarative style of SQL, and the low-level, procedural style of map-reduce. A
Pig Latin script is a sequence of steps each of which carries out a single data transformation. At the
same time, the transformations carried out in each step are fairly high-level, e.g., filtering, grouping,
and aggregation, much like in SQL. For example, Q1 is expressed in Pig Latin in three steps as
follows:
selectedStations = filter Stations by zipcod = 55112
joinOutput = join selectedStations by stationID, Reports by stationID
queryOutput = foreach joinOutput

generate selectedStations.stationID, Reports.temperature

In effect, writing a Pig Latin program is similar to specifying a query execution plan. For example,
the previous three statements corresponds to performing select(σ), join(./), then project(π) in order.

2.3 Relational Algebra in Big-Data Languages
Relational algebra operators provide good means for teaching the basic syntax and semantics of the
various big-data query languages. In this section, we contrast how relational algebra is supported by
the three big-data language categories. For demonstration purposes, we will use the general map-
reduce algorithm as an example procedural language, Pig Latin as an example scripting language,
and SQL as an example declarative language. After studying each operator independently, we will
show how to express a query that is composed of multiple relational operators in Section 3. The
fourth and fifth columns of Table 2 give how each relational operator is supported in map-reduce

5



Operator Algebric symbol Semantics Map-reduce Pig Latin
select σC(R) Given a relation R, ∀tR ∈ R, if tR

qualifies the condition C, produce
tR in the output

map: ∀tR ∈ R, if
tR qualifies C, produce
(tR, tR) in the output.
reduce: the reduce func-
tion is the identity reducer
that simply passes each
key-value pair to the out-
put.

filter R by C

project πaR (R) Given a relation R and a subset aR
of the attributes of R, ∀tR ∈ R
produce only aR attributes in out-
put

map: ∀tR ∈ R, gener-
ate a tuple t′R with only
aR attributes and produce
(t′R, 1) in output.
reduce: the reduce func-
tion is the identity reducer
that simply passes each
key-value pair to the out-
put.

foreach R
generate aR

join R ./R.aR1
=S.aS1

S Given two input relations, R and
S, compare each pair of tuples, one
from each relation. If R.aR1

=
S.aS1 , then produce in the output
a tuple that has all attributes from
both R and S

map: ∀(aR1
, aR2

) ∈ R,
produce (aR1 , (1, aR2 ))
in output and
∀(aS1 , aS2 ) ∈ S,
produce (aS1

, (2, aS2
))

in output.
reduce: ∀ Key value
aR1

: for every pair
of (1, aR2

) tuple and
(2, aS2

), produce in the
output a tuple of the form
(aR1

, (aR2
, aS2

)).

join R by aR1
,

S by as1

group by and
Aggregation

γaR1
,θ(aR2

)(R) Given a relation R, partition its tu-
ples into groups where all tuples
with the same values of aR1

are
placed in the same group. Then, for
each group, aggregate the values us-
ing the aggregate function θ(aR2

).

map: ∀tR ∈ R, pro-
duce in the output a tuple
(aR1

, aR2
).

reduce: Let x = the re-
sult of applying θ to the
list of aR2

values associ-
ated with key aR1

. pro-
duce (aR1

, x) in the out-
put.

temp = group R
by aR1

output = foreach
temp generate
group, θ(aR2

)

Table 2: Relational Algebra Operators in Big-Data Languages

and Pig Latin languages respectively. Impala is not shown in the table because it uses the same syn-
tax as SQL. More detailed explanation about supporting relational algebra operators in map-reduce
can be found in [5]

The meanings of the symbols in Table 2 are as follows: R and S are table names, tR and tS re-
fer to tuples from tables R and S respectively, aR and aS refers to subsets of attributes from tables
R and S respectively.

3 Syntactically-different Representation of the Same Query
In this section, we give examples on how to represent a given relational algebra query using four
different formats, namely, query semantics, SQL, map-reduce, and Pig Latin. The goal of these
examples is to provide students with a deep understanding of the correspondence of the four query
representations. An instructor can prepare several other exercises using different datasets as hands-
on in-class exercises to further practice these concepts. Exercises can be in different formats, for

6



example, one exercise can be given a Pig Latin script, ask students to write the corresponding SQL
query. Another exercise is to give students a query expressed in SQL and ask students express the
query semantics in one or two English sentences. As shown in Figure 2, students should practice
how to perform different mappings between the four query representations (e.g., from SQL to se-
mantics, semantics to SQL, SQL to Pig Latin, Pig Latin to SQL, and so on).

We categorize the examples in this section into four categories based on whether the query includes
join and/or group by operations. All examples in this section are based on the weather database that
consists of the following two tables:
Stations(stationID, zipcode,latitude,longitude) and Reports (stationID, temperature, humidity, year,month).

Figure 2: Different Representations of the Same Query.

3.1 Type 1: no join, no group by
A query in this group includes only select (σ) and project(π) operators. Based on Table 2, in map-
reduce, this query is implemented by a map-reduce job where the map function performs both the
selection and projection operations and the reduce function is the identity reducer that just passes
the input tuples to the output. In Pig Latin, this query is implemented by a filter statement followed
by a foreach statement. An example of type 1 query is as follows.

• Semantics: List station identifiers for all stations located in zipcode 55112.
• SQL:

– select stationID

– from Stations

– where zipcode = 55112

• Map reduce:

– map: for every tuple in Stations, if zipcode equals to 55112, output (stationID, 1).
– reduce: identity reducer.

• Pig Latin:

– temp = filter Stations by zipcode = 55112;

– output = foreach temp generate stationID;

7



3.2 Type 2: join, no group by
A query in this group includes select (σ), project (π), and join (./) operations. In map-reduce, the
map function performs the selection and projection operations and set the join attribute as the output
key. The output value includes the attributes required by the projection operation. The actual join
operation is performed in the reduce function. In Pig Latin, a query in this group needs three steps,
filter, foreach, and then join. Note the similarities between Pig’s sequence of statements and the
query execution pipeline as explained in Section 2. An example of type 2 query is as follows.

• Semantics: List all stationID and temperature values that were reported in 2000 by all sta-
tions that are located in zipcode 55126.

• SQL:

– select stationID, temperature

– from Stations S, Reports R

– where S.stationID = R.stationID and Y ear = 2000 and zipcode = 55126

• Map reduce:

– map: for each tuple in Stations, if zipcode equals 55126, output (stationID, (1, zipcode))
and for each tuple in Reports, if year equals to 2000, output (stationID, (2, temperature))

– reduce: For every input stationID key, search the values list for a tuple with the
format, (stationID, (1, zipcode)). If not found, do not produce any output, else if
found, for each value with the format (2, temperature), produce in the output a tuple
with the format (stationID, temperature).

• Pig Latin:

– temp1 = filter Reports by Y ear = 2000;

– temp2 = filter Stations by zipcode = 55126;

– temp3 = join temp1 by stationID, temp2 by stationID;

– output = foreach temp3 generate temp1.stationID, temp1.temperature

3.3 Type 3: no join, group by
A query in this group includes select (σ), project (π), and group by (γ) operations. In map-reduce,
the map function performs the selection and projection operations and set the grouping attribute
as the output key. The output value includes other attributes that are needed by the aggregate op-
erations. The map-reduce framework automatically performs the grouping and then the reduce
function performs the aggregation. In Pig Latin, a query in this group is performed by three steps,
filter, group and foreach. Again, the order of Pig Latin’s statements is the same as the order of
operations in the SQL’s query execution plan. An example of type 3 query is as follows.

• Semantics: Find the total number of stations in each zipcode that is located on latitude 90 or
above.

• SQL:

– select zipcode, count(∗)
– from Stations

– where latitude ≥ 90

– group by zipcode

8



• Map reduce:

– map: for each tuple in Stations, if latitude is greater than or equal to 90, output
(zipcode, 1)

– reduce: for every input key (which is a zipcode), let x equals to the number of ones
in the input values list and output (zipcode, x)

• Pig Latin:

– temp1 = filter Stations by latitude ≥ 90;

– temp2 = group temp1 by zipcode;

– output = foreach temp2 generate group, COUNT (temp1);

3.4 Type 4: join, group by
A query in this group includes select (σ), project (π), join (./), and group by (γ) operations. In
map-reduce, a query in this group has to be implemented using a sequence of two map-reduce jobs
as follows: (1) the first job performs selection, projection and join same as type 2 query, (2) the
output of the first job is used as input for the second job, and (3) the second job performs the group
by and aggregation operations same as type 3 query.

• Semantics: Find the maximum temperature that was reported for each zip code that is located
at latitude 90.

• SQL:

– select zipcode, max(temperature)

– from Stations S, Reports R

– where S.stationID = R.statationID and latitude = 90

– group by by zipcode

• Map reduce:

– map 1:for each tuple in Stations, if latitude equals 90, output (stationID, (1, zipcode))
and for every tuple in Reports output (stationID, (2, temperature))

– reduce 1: for every input stationID key, search the values list for a tuple with the
format, (stationID, (1, zipcode)). If not found, do not produce any output, else if
found, for each value with the format (2, temperature), produce in the output a tuple
with the format (stationID, temperature).

– map 2: identity mapper that just passes every input (stationID, temperature) to the
output.

– reduce 2 : for each input stationID, let x be the maximum temperature value
among the input list of values, then output (stationID, x)

• Pig Latin:

– temp1 = filter Stations by latitude = 90;

– temp2 = join temp1 by stationID, Reportsby stationID;

– temp3 = group temp2 by zipcode;

– output = foreach temp3 generate group,MAX(temp2.Reports :: temperature);

9



4 Programming Environment
Hands-on programming exercises represent a key factor in understanding programming languages.
Unfortunately, due to the nature of the map-reduce framework, a computer cluster would be needed
to directly enable such exercises. Many institutions, however, do not have such clusters available
for teaching. One solution to this problem is to use a virtual machine (VM) that simulates a Hadoop
cluster and includes all the required software components. One option for such virtual machine is
the Cloudera QuickStart Virtual Machine that can be be download from [1]. Once downloaded,
the VM can be run using a virtual machine player (e.g., VirtualBox or VMWare). Once the virtual
machine is downloaded, running SQL queries and Pig Latin scripts is straightforward. For example,
Figure 3 shows how Impala and Pig Latin editors can be opened from a browser window from inside
the Cloudera Virtual machine.

Figure 3: SQL and Pig Latin Editors.

Running map-reduce code is more challenging as students need to write and compile Java code.
However, to facilitate the process of writing map-reduce programs, instructors can give students a
map-reduce program template that imports all the required libraries, provides empty definitions of
the map and reduce methods and includes a generic version of the driver that creates, configures,
and runs a generic map-reduce job.

5 Conclusions
Several new programming languages have been introduced to implement applications that handles
large data sets. In order to cope with he job market requirements, computer science students need
to have a good understanding of the newly introduced technologies. A main challenge for computer
science educators is to develop a well-thought-of categorization the new technologies and teach
student the differences and similarities among technologies instead of teaching one or two specific
technologies. In this paper, we proposed a categorization of big-data query languages into three
categories: procedural, scripting, and declarative. We then provided teaching materials to teach
the basic concepts of three big-data query languages concurrently by contrasting how the same
relational-algebra query is represented by three syntactically-different languages. The materials
introduced in this paper can be either taught as a part of an existing database course or can be
expanded and taught as an introductory course on big data.

10



References
[1] Cloudera quickstat virtual machine. http://www.cloudera.com/downloads/quickstart.

[2] Sql: From traditional databases to big data - course resources - http://www.public.asu.edu/ yn-
silva/ibigdata.

[3] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–
387, 1970.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In 6th
Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, pages 137–150, 2004.

[5] J. D. U. Jure Leskovec, Anand Rajaraman. Mining of massive data sets.
http://infolab.stanford.edu/ ullman/mmds/book.pdf.

[6] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund,
D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,
D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala:
A modern, open-source SQL engine for hadoop. In CIDR 2015, Seventh Biennial Confer-
ence on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings, 2015.

[7] J. Lin and C. Dyer. Data-intensive text processing using map reduce
https://lintool.github.io/mapreducealgorithms/mapreduce-book-final.pdf.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
1099–1110, 2008.

[9] B. Ramamurthy. A practical and sustainable model for learning and teaching data science. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education, Mem-
phis, TN, USA, March 02 - 05, 2016, pages 169–174, 2016.

[10] E. S. Richard Brown, Patrick Garrity. Teaching map-reduce parallel computing in cs1. Mid-
west Instruction and Computing Symposium, 2011.

[11] R. W. Sebesta. Concepts of programming languages (4. ed.). Addison-Wesley-Longman,
1999.

[12] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, 5th Edition.
McGraw-Hill Book Company, 2005.

[13] Y. N. Silva, I. Almeida, and M. Queiroz. SQL: from traditional databases to big data. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education, Memphis,
TN, USA, March 02 - 05, 2016, pages 413–418, 2016.

[14] Y. N. Silva, S. W. Dietrich, J. M. Reed, and L. M. Tsosie. Integrating big data into the com-
puting curricula. In The 45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, Atlanta, GA, USA - March 05 - 08, 2014, pages 139–144, 2014.

11



[15] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and
R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In Proceedings of the 26th
International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach,
California, USA, pages 996–1005, 2010.

[16] T. White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (4. ed.,
revised & updated). O’Reilly, 2015.

[17] H. Yang, A. Dasdan, R. Hsiao, and D. S. P. Jr. Map-reduce-merge: simplified relational data
processing on large clusters. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007, pages 1029–1040, 2007.

12


