
JavaScript Callbacks: Introducing Concurrency
through Callbacks and Closures

Kenny Hunt
Department of Computer Science

The University of Wisconsin - La Crosse
La Crosse, WI, 54601

khunt@uwlax.edu

Abstract
Computer Science educators have long recognized that teaching students how to write cor-
rect programs is difficult, especially when those programs involve parallel constructs. Ed-
ucators have proposed numerous pedagogical innovations for teaching concurrency; typ-
ically involving specialized languages, language-level constructs or framework libraries.
This paper show how fundamental aspects of concurrency can be introduced using plain
JavaScript. JavaScript is the world’s most common programming language, has readily
available tool support, is executable within any modern web browser, provides no language-
level concurrency constructs, and has conventional design patterns that solve concurrent
design problems.

JavaScript supports functions as a data type and hence treats functions as first-class objects.
Functions can therefore be created dynamically and passed as arguments and returned as
results from other functions. JavaScript allows for the nesting of functions; specifically
allowing a function to be created anywhere an expression is allowed. A closure is a func-
tion that is defined within an enclosing block and refers to a variable declared within that
enclosing block but also outside of its internal scope. Closures are therefore functions that
retain their enclosing environment even if the lifetime of that external environment has ex-
pired.

Callback functions and AJAX service calls provide the basic architectural building blocks
for writing concurrent and parallel code in JavaScript. A callback function is a fragment
of code that must be executed only at the conclusion of other code of indeterminate du-
ration has completed. This paper argues that callback functions can be used to introduce
parallelism at an early level in a CS curriculum.

1 Introduction
Computer Science educators have long recognized that teaching students how to write cor-
rect programs is difficult, especially when those programs involve parallelism and concur-
rency. Educators have proposed numerous pedagogical innovations for teaching concur-
rency; typically involving specialized languages [3], language-level constructs [8] or large
scaffolding libraries [4] [6] [1].

This paper argues that fundamental aspects of parallelism and concurrency can be intro-
duced using plain JavaScript. JavaScript is the world’s most common programming lan-
guage, has readily available tool support, is executable within any modern web browser,
provides no language-level concurrency constructs, and most surprisingly is single-threaded.
This combination of qualities grant Javascript significant appeal within an educational set-
ting. The language is widely used in industry, all students already have have access to nu-
merous Javascript interpreters, and the simplicity of the language allows students to focus
on the computational essence of an algorithm rather than wading through the oft-criticized
syntactic jungle of languages like Java [5] [7].

The terms concurrent and parallel are largely synonymous in a non-technical context and
even computing professionals often use these terms interchangeably [2]. Nonetheless, tech-
nical professionals tend to distinguish between concurrency and parallelism. Concurrency
is defined as the property of a system in which a set of tasks can remain active and make
progress at the same time. Parallelism is the state of a program or algorithm in which con-
currency is exploited to support simultaneous execution on multiple processing elements.
In other words, concurrency is in the algorithm; parallelism in the implementation [2]. In
this paper, we adopt this distinction between concurrency and parallelism and argue that
JavaScript can effectively illustrate fundamental aspects not only of concurrency but also of
parallelism. Closures provide the essential language-level mechanism through which these
concepts can be exhibited.

2 JavaScript Closures
JavsScript supports functions as first-class elements. A closure is an inner function that has
access to all variables that are in the outer function, even if the lifetime of the inner function
extends beyond that of the outer function.

2.1 Access to variables
Figure 1 defines a function makeNameTag that encloses an inner function named tagText.
This inner function is a closure and hence all code inside of that function has access to
all variables declared in the enclosing function. Line 4, for example, refers to the vari-
able prefix that is declared outside of the tagText function but within the outer function
makeNameTag. Variable access extends even to variables that are declared as formal pa-
rameters of the outer function as illustrated by variables first and last on line 4. Line 9

shows an invokation of the makeNameTag function where the value of variable nameTag
is ’Hello. My name is John Adams’.

1 function makeNameTag(first, last) {
2 var prefix = 'Hello';
3 function tagText() {
4 return prefix + '. My name is ' + first + ' ' + last;
5 }
6 return tagText();
7 }
8
9 var nameTag = makeNameTag('John', 'Adams');

Figure 1: The function tagText is a closure.

2.2 Lifetime access
Figure 2 re-writes the makeNameTag function such that only the first name is given as
a formal parameter and the type of value returned is function rather than string. Line 9
applies the makeNameTag function to the first name ’John’ and assigns the result to a
variable named johnLastTag. Since makeNameTag returns a function, it follows that
johnLastTag is a function, not a string, and that this function accepts a single input denot-
ing the last name of the name tag. The johnLastTag is applied to the last name ’Adams’
as shown on line 10. The resulting value of variable johnAdams is the string ’Hello. My
name is John Adams’. Line 11 once again invokes the johnLastTag function; it to the last
name ’Calvin’ resulting in the string ’Hello. My name is John Calvin’.

Note that each time the johnLastTag is invoked, it is accessing variables declared in an
outer function that is no longer active. Specifically, the first and prefix variables of
the function makeNameTag are available to the johnLastTag function even though the
makeNameTag function has completed and is no longer active.

1 function makeNameTag(first) {
2 var prefix = 'Hello';
3 function tagText(last) {
4 return prefix + '. My name is ' + first + ' ' + last;
5 }
6 return tagText;
7 }
8
9 var johnLastTag = makeNameTag('John');

10 var johnAdamsTag = johnLastTag('Adams');
11 var johnCalvinTag = johnLastTag('Calvin');

Figure 2: The function tagText has permanent access to outer variables.

2.3 References not Values
Closures store references to the outer function’s variables; they do not store actual values.
This behavior is illustrated in Figure 3 where we re-write the outer function such that it
returns two inner functions wrapped in an object. More specifically, the makeNameTag
function returns an object having properties: tagText and setPrefix, both of which are
inner functions.

The makeNameTag function is once applied to the first name ’John’ as shown in line 13.
We then apply the tagText function of the johnLastTag object to the last name ’Adams’
as shown on line 14. The result is the value ’Hello. My name is John Adams’. We then
apply the tagText function to the last name ’Calvin’ as shown on line 16. Before this
application, however, line 15 changes the value of the prefix variable by invoking the
setPrefix function of the johnLastTag object. Once the prefix has been changed, the
resulting value of the johnCalvinTag is then ’Bonjour. My name is John Calvin’.

1 function makeNameTag(first) {
2 var prefix = 'Hello';
3 function tagText(last) {
4 return prefix + '. My name is ' + first + ' ' + last;
5 }
6
7 return {
8 tagText : tagText,
9 setPrefix : function(p) { prefix = p; }

10 }
11 }
12
13 var johnLastTag = makeNameTag('John');
14 var johnAdamsTag = johnLastTag.tagText('Adams');
15 johnLastTag.setPrefix('Bonjour');
16 var johnCalvinTag = johnLastTag.tagText('Calvin');

Figure 3: Closures store references, not values.

3 JavaScript Callbacks
Since functions are first-class citizens of JavaScript, functions can be passed as arguments
to other functions. A callback function Fcb is a function that is passed to another func-
tion Fasync such that when Fasync completes its computation, the callback function Fcb is
invoked on the result. We use the notation Fasync to denote a function Fasync that is under-
stood to be a non-blocking function. In other words, when Fasync is invoked, it initiates a
(possibly) long computational process but returns immediately. The process that it initiates
will terminate at some indeterminate future time. Since functions always return a value,
the asynchronous function may return the value undefined, since the result of the compu-
tation is not yet available, while producing the result at some later time via invocation of

the callback function.

3.1 The setT imeout Function
The setT imeout function is an asynchronous function that accepts two inputs: a callback
function Fcb and a delay denoting a time in millesconds [9]. When invoked, setT imeout
will execute Fcb after delay milliseconds. Figure 4 gives an example this setT imeout be-
havior. Line 10 invokes setT imeout by passing in an anonymous callback function that
applies printResult to the result object. The time delay runtime is set to 500 milliseconds
on line 1.

Note that the setT imeout function returns immediately but will execute printResult 500
milliseconds later. The value of x, the result of executing the setT imeout function, is
clearly not related to the value returned by printResult since that function won’t be called
until long after setT imeout has produced its value for x. While setT imeout does re-
turn a meaningful value, that value is not relevant to our discussion and we will therefore
disingenuously claim that the value of x is undefined.

1 var delay = 500;
2
3 function printResult(result) {
4 var runtime = Date.now() - result.start;
5 console.log('invocation', result.n, 'finished in',
6 runtime, 'ms after a delay of', result.delay);
7 return runtime;
8 }
9

10 var result = { n:0, start:Date.now(), delay:delay };
11 var x = setTimeout(() => printResult(result), delay);

Figure 4: Example of the setT imeout function

When the code of Figure 4 is invoked, the printResult function will output a message that
includes the actual time taken between the start of the code and its completion in addition to
the time delay imposed by the setT imeout function. These two timings will not typically
be identical as shown in the sample output of Figure 5. Also, the printResult function
returns the actual runtime (given in milliseconds) but this returned value is unused.

1 invocation 0 finished in 504 ms after a delay of 500

Figure 5: Sample execution of Figure 4

4 JavaScript Concurrency
We can now write customized concurrent functions by wrapping calls to setT imeout and
using callbacks. While these functions are truly concurrent, they are contrived since the
concurrent behavior relies on the injection of an unnecessary and arbitrary time delay.
Nonetheless, the pattern that we introduce here is easily extened to accomodate truly par-
allel techniques that form the heart of modern JavaScript applications.

4.1 A Concurrent Function
Figure 6 defines asyncFunction; an asynchronous function that accepts a single integer n.
When invoked, as it is on line 16, the function generates an arbitrary delay and prints a mes-
sage to the console after that delay transpires. The value n is merely a label that keeps track
of different invocations of the asyncFunction itself. Of course, asyncFunction returns
the value undefined immediately so that the value of result is indeed always undefined.

1 function asyncFunction(n) {
2 var delay = Math.floor(100 + Math.random() * 900);
3
4 function printResult(result) {
5 var runtime = Date.now() - result.start;
6 console.log('invocation', n, 'finished in', runtime,
7 'ms after a delay of', delay);
8 return runtime;
9 }

10
11 var result = { n:n, start:Date.now(), delay:delay }
12 setTimeout(() => printResult(result), delay);
13 }
14
15 for(var rank = 0; rank < 10; rank++) {
16 var result = asyncFunction(rank);
17 }

Figure 6: A contrived asynchronous function

The asynchronous behavior of this code is exhibited when the loop is executed. Although
the asyncFunction is sequentially invoked 10 times using ranks of 0 through 9, the output
generated by these 10 sequential calls does not follow the order in which they are invoked.
Additionally, the difference between time delay and actual time to complete varies across
invocations. Figure 7 shows the output of a single execution of the code in Figure 6.

While Figure 6 does illustrate concurrency, the code is poorly designed since the asyncFunction
1) fails to communicate the computed result back to the caller and 2) assumes that the com-
puted result should be printed to the console. Functions are expected to communicate
results back to the caller and allow the caller to decide what further actions to take on those

1 invocation 2 finished in 170 ms after a delay of 166
2 invocation 0 finished in 185 ms after a delay of 184
3 invocation 6 finished in 201 ms after a delay of 199
4 invocation 9 finished in 333 ms after a delay of 330
5 invocation 1 finished in 481 ms after a delay of 476
6 invocation 5 finished in 501 ms after a delay of 498
7 invocation 3 finished in 519 ms after a delay of 518
8 invocation 4 finished in 794 ms after a delay of 792
9 invocation 7 finished in 847 ms after a delay of 844

10 invocation 8 finished in 953 ms after a delay of 951

Figure 7: Sample execution of Figure 6

computed values. Callback functions provide a mechanism for correcting both of these
design flaws.

4.2 Concurrency with Callbacks
Figure 8 re-writes asyncFunction as a function that accepts two arguments: an integer
value n and a callback function cb. The callback function accepts a single input, the com-
puted result of the asyncFunction, and is executed after an arbitrary delay of between 100
and 999 milliseconds. Client code is then free to define its own callback function that 1)
is given access to the computed result via the passed argument and 2) process the result in
any what that the client requires. In this example, the callback function is defined in the
scope of the client (lines 8-13) such that the client has access to the computed result via the
callbacks formal parameter result.

1 function asyncFunction(n, cb) {
2 var delay = Math.floor(100 + Math.random() * 900);
3 var result = { n:n, start:Date.now(), delay:delay };
4 setTimeout(() => cb(result), delay);
5 }
6
7 for(var rank = 0; rank < 10; rank++) {
8 function printResult(result) {
9 var runtime = Date.now() - result.start;

10 console.log('invocation', result.n, 'finished in', runtime,
11 'ms after a delay of', result.delay);
12 return runtime;
13 }
14 var result = asyncFunction(rank, printResult);
15 }

Figure 8: Concurrent function with a callback

5 JavaScript Parallelism
We can now transform the asyncFunction into a truly parallel function by using AJAX
calls to offload computation to other servers. For this paper, we will eschew non-standard
libraries and adhere to the rather pedestrian but standard XMLHttpRequest library [10].
This library can easily be used in both a Node and browser environment.

A well known web api located at https://api.whitehouse.gov allows third-party clients to
create, view, and sign politically motivated petitions that may prompt action from the exec-
utive branch of the United States government. One endpoint, api/v1/petititions/:id produces
a single petition document that describes a desired political outcome along with a count of
the number of signatures the petition has garnered. The petition is identified by a unique
id that can obtained elsewhere from the api. Figure 9 shows how can write parallel code
that obtains numerous such petitions and prints them when they become available from the
whitehouse server.

The function getPetition accepts a petition id and callback function. An HTTP AJAX call
is generated and, at some indetermine later time later when the requested petition is made
available by the whitehouse server, the callback function is invoked on the resulting data.
This invocation occurs on line 5.

Lines 10-13 show how the getPetition function can be applied to several petition ids (these
id’s were active as of the date of this writing but may be inactive as of the date this document
is read). The order in which these three petitions are printed depends solely on the load and
performance of the whitehouse server and cannot be predicted.

1 function getPetition(pid, cb) {
2 var host = 'https://api.whitehouse.gov';
3 var path = `/v1/petitions/${pid}.json`;
4 var req = new XMLHttpRequest();
5 req.addEventListener('load', () => cb(req.responseText));
6 req.open("GET", host + path);
7 req.send();
8 }
9

10 ['2434701', '2436006', '2451411'].forEach(id => {
11 var result = getPetition(id, (result) => {
12 console.log(result);
13 });
14 });

Figure 9: Parallel function with a callback

The code of Figure 9 is truly parallel and is designed in a conventional manner for JavaScript
applications. The getPetition method is invoked three times and each invocation is, in
a sense, simultanenously active. While each of these invocations returns immediately,
nonetheless their computed results are not made available until after a relatively large and

indetermine delay during which time a great deal of computation is occuring to generate
the results. It is almost certain that the www.whitehouse.gov server executes each request
on different hardware; either different servers sitting behind a load balancer or different
cores on a single server. In either case, these three invocations are simulatenously active
and also executing simultaneously. Eventually, the server responds to the request for a pe-
tition document and replies to our code on line 5. Upon receipt of a response from any of
the three getPetition methods, the corresonding result is printed to the console window.

6 Conclusion
JavaScripts closures, in addition to the standard setT imeout and XMLHttpRequest func-
tions, allow the introduction of concurrency and parallelism at a relatively early stage
in a CS curriculum. JavaScript comes with very mild syntactic overhead and benefits
greatly from similarity to widespread languages such as Java and C. Since students learning
JavaScript must already learn closures since they are fundamental to JavaScript program-
ming, students already have the knowledge base necessary to understand issues of concur-
rency. If students are also introduced to functions such as setT imeout andlibraries such
as the standardized XMLHttpRequest library, students can be introduced to true paral-
lelism. It is the authors experience that even upper-level students who learn JavaScript can
benefit by requiring them to understand and author callback functions that are applied in an
AJAX setting.

References
[1] BRUCE, K. B., DANYLUK, A., AND MURTAGH, T. Introducing concurrency in

cs 1. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education (New York, NY, USA, 2010), SIGCSE ’10, ACM, pp. 224–228.

[2] CASSEL, L., LEBLANC, R., MCGETTRICK, A., AND WRINN, M. Concurrency and
parallelism in the computing ontology. SIGCSE Bull. 41, 3 (July 2009), 402–402.

[3] DANN, W., COSGROVE, D., AND SLATER, D. Tutorial: Concurrency with alice 3
and java. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (New York, NY, USA, 2015), SIGCSE ’15, ACM, pp. 78–79.

[4] HUNT, J. M., AND WILLISON, T. California speedway: A concurrent program-
ming project for beginners. In Proceedings of the 49th Annual Southeast Regional
Conference (New York, NY, USA, 2011), ACM-SE ’11, ACM, pp. 7–12.

[5] MOTH, A. L. A., VILLADSEN, J., AND BEN-ARI, M. Syntaxtrain: Relieving the
pain of learning syntax. In Proceedings of the 16th Annual Joint Conference on Inno-
vation and Technology in Computer Science Education (New York, NY, USA, 2011),
ITiCSE ’11, ACM, pp. 387–387.

[6] REGES, S. Conservatively radical java in cs1. SIGCSE Bull. 32, 1 (Mar. 2000),
85–89.

[7] STEFIK, A., AND SIEBERT, S. An empirical investigation into programming lan-
guage syntax. Trans. Comput. Educ. 13, 4 (Nov. 2013), 19:1–19:40.

[8] VON PRAUN, C. Parallel programming: Design of an overview class. In Proceedings
of the 2011 ACM SIGPLAN X10 Workshop (New York, NY, USA, 2011), X10 ’11,
ACM, pp. 2:1–2:6.

[9] HTML5, a vocabulary and associated APIs for HTML and XHTML. Recommenda-
tion, W3C, Nov. 2014. http://www.w3.org/TR/REC-html5-20141028.

[10] XMLHttpRequest level 1. Note, W3C, Nov. 2014. http://www.w3.org/TR/NOTE-
XMLHttpRequest-20161006.

