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Abstract

Finding the global minimum of an arbitrary differentiable function over ann-dimensional
rectangle is an important problem in computational science, with applications in many
disciplines. We have developed a depth-first search method to reliably obtain the global
minimum of an arbitrary continuously differentiable function in the one-dimensional case.
Our algorithm reliably computes the global minimum for standard test functions in the
literature, and requires much less computational effort than previously used breadth-first
search methods. A parallel implementation of the algorithmdemonstrates the expected
speed-up as the number of processors is increased. Our method can be extended to the
multidimensional case, which will be reported in a future publication.



1 Introduction

A problem that has been important in computational science for a number of years is that
of finding the minimum (and maximum) values of a function of several variables in an
n-dimensional rectangle [1]. For the one-dimensional case,the problem can be defined as
finding

f ∗ = min
x∈X

f(x)

where the objective functionf : R → R is continuously differentiable andX ⊆ R. The
global minimum value is denoted byf ∗. The valuex for which the function will evaluate
to the global minimumf ∗ is called theminimizer.

Also, finding good upper and lower bounds on the values of functions is important in fields
such as sensitivity analysis, perturbation analysis, error analysis, and many other optimiza-
tion problems [1]. The problem of finding the range of values of a function is solved by
finding both the global minimum and global maximum for the function f over the initial
domainX.

Since the global maximum value can be obtained by finding the minimum valuef ∗ of
−f(x) and returning the value−f ∗, we may reduce our primary problem of global opti-
mization into one of obtaining a good lower bound of a function over a specified interval.

In 1966, R.E. Moore published a bookInterval Analysis [3] in which he described a new
method for numerical calculations, called interval arithmetic, which has now become a
field in its own right called interval analysis. Interval analysis is widely used to address
many concerns related to real-valued numerical calculations, particularly those related to
rounding error introduced in machine computations. The appeal of interval analysis is that,
rather than a machine-rounded approximation, our solutions are intervals that guarantee
enclosure of the desired solution.

Existing methods for finding the range of values of a functionuse an exhaustive search with
a pruning strategy. That is, the initial search domain is subdivided by a specific criteria, a
pruning algorithm is applied to eliminate regions that are known to not containf ∗, and the
search for the optimum values is carried out in those smallersubregions. For instance, in
the Asaithambi, Zuhe, and Moore algorithm (hereafter referred to as the AZM algorithm)
[1][4], the initial domain is bisected, and each subregion further explored using an interval
extension based upon a monotonicity test and the mean value theorem. A list is used to store
regions that may contain the correct minimum, and those regions that have been examined
are removed from the list. The bounds of any monotonic regions can be easily found,
and the remaining non-monotonic regions can continue to be bisected and searched for the
minimizer. The AZM algorithm has been a benchmark for the evaluation and development
of our new algorithm.
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2 Initial Phase of Research

During the initial test phase of the AZM algorithm, it becamevery clear that the element
that required a large amount of computational time was the list that stores regions yet to
be examined for the global minimum value. During the execution of the AZM algorithm,
regions are bisected and stored on the list if they must be bisected further to examine for the
global minimum. These regions are inserted into thelist in the order of increasing lower
bounds. As the list size increases, the amount of time it takes to insert an element in the list
in the proper location becomes quite large.

A key motivation for our research was to find a method that reduced our dependence on this
list, in order to speed up the process of locating the global minimum. In addition, we antic-
ipate that a parallelization of the AZM algorithm that uses alist may have an unreasonable
amount of time devoted to the sending and receiving of elements to be inserted into the list.
This would lead to a communication overhead for load balancing that would be inefficient.
Thus, we began investigating alternative methods for obtaining the global minimum that
did not rely on the management of list elements.

2.1 The Sequential Recursive Algorithm and Its Implementation

The result of our exploration of list dependency in the original AZM algorithm is the devel-
opment of a recursive algorithm as a depth-first exhaustive search for the global minimum
of a continuously differentiable function in one dimension. This algorithm, the Asaithambi-
Baldwin algorithm (after A. Asaithambi and A. Baldwin), will be hereafter referred to as
the AB algorithm. There are several differences between theAZM and AB algorithm. For
instance, the AZM algorithm uses the monotonicity test forminterval extension, an exten-
sion that is not used in the AB algorithm. In addition, AB doesnot use a list or insert
function, but rather relies upon the system’s stack, which handles recursive calls, to store
regions that have yet to be examined. This eliminates our list dependency, and leads to a
substantial improvement in performance when the AB algorithm is parallelized. Similari-
ties involve the use of the natural interval extension on thefirst derivative of the function,
referred to asDF (X) to determine monotonicity, and a bisection method for generating
subregions to be examined.

The AB algorithm checks an interval for monotonicity (increasing or decreasing) off upon
receipt of an interval region to search. Iff is not monotonic on the region tested, and the
width of the interval is greater than some desired tolerance, AB bisects the interval into two
smaller subintervals of equal width. AB is then recursivelycalled on the two subintervals
that were generated, provided that the termination criteria has not been reached. If the de-
sired tolerance is reached, the minimum value is obtained byevaluating the natural interval
extension of the function on the subregion of width less thanthe termination criteria. At
each stage of the recursion, the global minimum is updated ifthe bound obtained is lower
than obtained previously. The recursive call eliminates the need to store items in a list,
as the system implementation of recursive calls will automatically take care of unchecked
subregions. In addition, when the value off ∗ is updated, we can also update the region in
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which f ∗ was located, thus providing us with the minimizer of the function on the initial
search domain.

The algorithm needs only to check for regions in which the function is non-monotonic.
The global minimum can only occur on the interior of a region if it is located at a turning
point of the function. That is to say that the global minimum has only a finite number of
possible locations: at one of the endpoints of the region or at a turning point on the interior
of the region. The AB algorithm exploits this property by only evaluating non-monotonic
regions, and then comparing the final minimum value obtainedon the interior of the initial
region to the value of the function at the endpoints of the initial region. The AB algorithm
returns the smallest of these three values; the global minimum.

Our experiments show that the AB algorithm works on all one-dimensional functions that
we tested [6][5][2]. We selected 31 functions with a varietyof characteristics for the testing
of the our algorithm. The sequential AB algorithm is presented in Figure 1, in which
DF (X) denotes the natural interval extension off ′(x).

Sequential AB Algorithm

1 : input region X;

2 : if DF (X) ≤ 0 && DF (X) ≥ 0

5 : if width(X) ≥ ε

6 : bisect X into X1,X2;
7 : lo1 = AB(X1);
8 : lo = lo1;
9 : lo2 = AB(X2);

10 : if lo > lo2
11 : lo = lo2;
12 : else
13 : lo = f(mid(X));
14 : return lo;

Figure 1: Sequential AB Algorithm

2.1.1 Sequential AB versus AZM

We tested both the AZM and AB algorithm on all of our one-dimensional test functions.
The sequential AB algorithm obtained the minimum value in less time than the AZM algo-
rithm that was used as our baseline for performance measurement. At times, this speedup
achieved by using the sequential AB algorithm over the AZM algorithm was quite sub-
stantial. A table comparing the run time of these two sequential algorithms for several
functions, as well as the reduction in run time is included below (a complete list of our
one-dimensional test functions can be found in Appendix A):
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Function AZM (milliseconds) AB (milliseconds) % Reduction

f(x) = sin(x) − 2 cos(x2 − 1) 7813.84 962.41 88

f(x) = x(1 − x) 0.19 0.12 35

f(x) =
x2

4000
− cos(x) + 1 10.26 4.94 52

f(x) = 24x4 − 142x3 + 303x2 − 276x+ 93 80.08 25.29 68

f(x) = sin(x) + sin

(

10x

3

)

+ ln(x)− 0.84x 1.20 0.69 42

Table 1: Speedup of Sequential AB over AZM

3 The Parallel Algorithm and Its Implementation

Due to the nature of the recursive AB algorithm, it is much easier to parallelize than the
AZM algorithm. For this reason, we are able to see a speedup inthe AB algorithm for
many examples with a relatively straightforward parallelization of the algorithm. We note
that our parallel implementation of the AB algorithm works on all one-dimensional test
functions that were used during the preliminary testing of both the sequential AB and AZM
algorithms.

3.1 Parallel AB

In order to assign tasks for multiple processors to simultaneously complete, we first gener-
ate a list of subregions ofX to be distributed to all processors. We may use either the ideas
from the original AZM algorithm or the AB algorithm to generate this list of subregions.
These methods are discussed in more detail in section 3.1.1.The processors are sequen-
tially ranked from 1 throughk whenk processors are used. Processor #1 acts as the master,
assigning subregions to each processor, and collecting theglobal minimum from each of
the local minimum values reported by each processor. Each ofthe other processors calls
the AB algorithm using a bisection of the region that is assigned, hence two recursive calls
for each iteration. The parallel AB algorithm is shown in Figure 2.

3.1.1 Generating List of Subregions

There are several ways in which the master processor can generate a list of subregions to be
distributed amongst the other processors. For instance, webegan by using the original AZM
algorithm to generate a list of subregions equal to the number of processors. Since the AZM
algorithm keeps a working list of regions that may contain the global minimum, we simply
terminate the AZM algorithm when we have generated a desiredlist size. The minimizer
is guaranteed to be contained in one of the elements generated by AZM [1][4]. Each
processor then has some number of regions on which to run the recursive AB algorithm.
Another approach to further reduce the run time is to generate the list of subregions by
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Parallel AB Algorithm

1 : input region X;
2 : if id == master

5 : Generate list of subregions
6 : Broadcast list to all processors
7 : else
9 : Run AB on assigned subregions

10 : Update local minimum at each completion of AB
11 : global min = min(local min)
12 : return global min

Figure 2: Parallel AB Algorithm

checking a region for monotonicity off ; if it is non-monotonic on a region, we bisect it
into two subregions, and push both subregions to the end of our working list. We then
test the new front element on our list for monotonicity and repeat the process until our list
reaches a desired size. Our list elements are stored in the order obtained, as the order in
which the subregions are distributed to the processors willbe unimportant. Since we are
only eliminating regions that are monotonic, we are able to guarantee that the minimizer is
not discarded by this process. Moreover, there is no need to look for a proper place in the
list to insert the newly obtained subregions.

4 Numerical Results

We experimented extensively on all example functions (included in Appendix A) and found
that there were some characteristics of functions that led to a substantial decrease in run
time as the number of processors was increased. These properties, as well as examples are
provided in this section.

4.1 Performance Increase for Highly Multimodal Functions

As we might expect, the method used to develop the parallel ABalgorithm does not pro-
vide speedup for functions that have a small number of local extrema. This is of little
concern, however, since obtaining the minimum values on those functions is trivial. There-
fore, our primary focus was devoted to achieving the highestspeedup possible for more
complicated, highly multimodal functions. The increased complexity of finding the global
minimum value on these types of functions allowed us to heavily test our new algorithm
and devise a method that works very well. In addition, our experience with the complicated
one-dimensional functions leads us to believe that we will see similar results in the multi-
dimensional case, where the number of subregions to be considered is often times larger
than the single variable case.

The decrease in run time for functions with a large number of local extrema can be justified
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rather intuitively. Each of the bisected regions produced by our generation of subregions
to be considered will be non-monotonic due to the high degreeof multimodality of the
function. Therefore, each subregion listed will require further consideration in obtaining
the global minimum. Thus, each of the processors is assignedmeaningful work. Increas-
ing the number of processors reduces the amount of work that needs to be done by each
processor. The performance increase for two of our test functions is discussed in the next
sections.

4.2 Example: f(x) = sin(x)− 2 cos(x2 − 1)

This function was tested on the search domain[−100, 100], in which the function is highly
multimodal. The global minimum value for this function isf ∗ = −3. Due to the presence
of a large number of local extrema, we were able to achieve substantial speedup over both
the original AZM algorithm and the sequential AB algorithm.The run time for the sequen-
tial AZM algorithm was 7,813 milliseconds, compared to the sequential AB algorithm run
time of 962 milliseconds. When we increased the number of processors to 32 (including
the master processor), we were able to further reduce the runtime to 130 milliseconds. A
plot of the function demonstrating is high degree of multimodality on the search domain
[−10, 10], as well as the reduction in run time as the number of processors was increased is
shown in Figure 3:
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Figure 3:f(x) = sin(x)− 2 cos(x2 − 1)

4.3 Example: f(x) = cos(x2 − x3)

This function was also tested on the search domain[−100, 100]; a domain in which the
function is highly multimodal. The global minimum value forthis function isf ∗ = −1.
We were unable to determine the run time for the sequential AZM algorithm due to a list
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overflow. This was the result of a list size that was not manageable by our hardware, as
the list size was in excess of 200,000 elements. However, when we ran the sequential AB
algorithm for this function, we obtained a run time of 112,536 milliseconds. When we
increased the number of processors to 32 (including the master processor), we were able to
further reduce the run time to 21,834 milliseconds. Thus, compared to the baseline AZM
algorithm, for this example, we were able to demonstrate that some test domains that are
unmanageable due to the AZM algorithm’s list dependence were quickly solved by our use
of the system’s stack to handle recursive calls. A plot of thefunction on the search domain
[−5, 5], as well as the reduction in run time as the number of processors was increased is
shown in Figure 4:
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Figure 4:f(x) = cos(x2 − x3)

4.4 Further Reduction in Run Time

For both of the examples discussed in the previous section, we were able to obtain a fur-
ther reduction in computational effort by applying a load balancing strategy (discussed in
section 5.1.1). For the example in section 4.2, generating alarger list of subregions to
distribute amongst the processors led to decrease the run time from 130 milliseconds to
only 20 milliseconds. Thus, compared to the baseline AZM algorithm, for this example,
we were able to reduce the run time by 99.7 percent. For the example in section 4.3, gen-
erating a larger list of subregions first to distribute amongst the processors (providing 190
subregions per processor), we were able to decrease the run time to only 893 milliseconds.
This marks a substantial improvement, as the search domain was too large for the AZM
algorithm to successfully terminate with the global minimum.
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5 Future Work

5.1 Load Balancing Techniques

In order to ensure that no processor remains idle for an unnecessarily long time, it is im-
portant for any parallel algorithm to balance the work load appropriately. In the case of the
parallel AB algorithm, each processor is sent subregions onwhichf is non-monotonic. We
were able to increase the efficiency of the algorithm by sending each processor more than
one subregion. Given the nature of this load balancing technique, we are able to generate
a list of subregions that is at most equal to the number of extreme points of the function
on the initial search domain. Thus, we may need to terminate our subregion list generation
when it is no longer possible to increase the list size.

5.1.1 Better Load Balancing

In an attempt to balance the load more efficiently, we experimented by letting the master
processor generate lists of non-monotonic subregions of various sizes. We then distribute
these lists to the other processors and have them each obtainthe minimum on a subset of
those regions listed. We tested this list size up to 128 timesthe number of processors used
in order to see how the load balancing effected the performance of the algorithm. We did
see improvement in the performance as the number of subregions in our distributed list
became larger for some functions, however, there appeared to be a limit as to how many
subregions could be used. That is to say, at a certain point (different for each function
tested), increasing the number of subregions per processorprovided no further increase
in efficiency. The optimum number of subregions per processor is contingent upon the
function being tested; more specifically, on the number of extreme points of the function
in the initial search domain. In some cases, we were able to reduce the run time by as
much as 96 percent over the speedup already achieved by simply increasing the number
of processors. Two examples of this are seen in sections 4.2 and 4.3 This load balancing
technique shows promise for increasing the efficiency of theparallel AB algorithm, and is
being further investigated at this time.

5.2 The Multidimensional Case

Motivated by our success with the single variable case, we are presently investigating the
application of this method to multi-variable functions. Our experimentation suggests that
functions that are highly multimodal and hence require a large number of bisections are the
functions for which our method will be best suited. We believe that the AB algorithm will
out-perform the AZM algorithm in obtaining the global minimum of all multi-dimensional
functions as well.

6 Conclusion

We have developed, implemented, and tested sequential and parallel versions of a depth-
first search algorithm for finding the global minimum of a function of one variable. We
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were able to achieve a substantial reduction in run time while still reliably obtaining the
global minimum for a variety of functions previously examined in the literature. For func-
tions with a large number of local extrema on the initial search domain, we are able to see
even more reduction in run time as the number of processors used in the parallel AB algo-
rithm are increased. We have demonstrated that the AB algorithm is reliable in all tested
cases, and is more efficient than the AZM algorithm, while itsparallelization also exhibits
the expected speedup characteristics as the number of processors is increased. We have
also demonstrated that the use of load-balancing techniques results in further reduction in
computational effort for highly multimodal functions.

9



Appendix A: Test Functions[5][1][2][6]

1. f(x) = sin(x)− 2 cos(x2 − 1)

2. f(x) = cos
(

π
(

8x3 − 1
))

+ sin
(

π
(

8x2 − 1
))

3. f(x) = esin(x) + cos
(

x2
)

4. f(x) = cos
(

sin
(

x2 − 1
)

− 1
)

5. f(x) = sin (cos (ex))

6. f(x) = sin
(

x4 + x3 + x2 + x+ 1
)

7. f(x) = cos
(

x2 − x3
)

8. f(x) = x(1− x)

9. f(x) = −x5 + x4 + x3 + x2 + x+ 1

10. f(x) =
x2

4000
− cos(x) + 1

11. f(x1, · · · , x5) =
∑5

i=1

x2
i

400
−

∏5
i=1 cos

(

xi√
i

)

+ 1

12. f(x) = (x+ sin(x)) · e−x2

13. f(x) = −
∑5

k=1 k · sin((k + 1)x+ k)

14. f(x) = sin(x)

15. f(x) = e−3x − sin3(x)

16. f(x) = sin

(

1

x

)

17. f(x) = x4 − 10x3 + 35x2 − 50x+ 24

18. f(x) = 24x4 − 142x3 + 303x2 − 276x+ 93

19. f(x) = sin(x) + sin

(

10x

3

)

+ ln(x)− 0.84x

20. f(x) = 2x2 −
3

100
e−(200(x−0.0675))2

21. f(x) = −
∑10

i=1

1

(ki(x− ai))2 + ci
ai, ki, ci ∈ R

+

22. f(x) = −
∑10

i=1

1

(ki(x− ai))2 + ci
ai, ki, ci ∈ R

+

23. f(x) =
x2

20
− cos(x) + 2

24. f(x) = −
1

(x− 2)2 + 3

25. f(x) = x2 − cos(18x)

26. f(x) = (x− 1)2
(

1 + 10 sin2(x+ 1)
)

+ 1

27. f(x) = ex
2

28. f(x) = x4 − 12x3 + 47x2 − 60x− 20e−x

29. f(x) = x6 − 15x4 + 27x2 + 250

30. f(x) = sin2
(

1 +
x− 1

4

)

+

(

x− 1

4

)2

31. f(x) =
(

x− x2
)2

+ (x− 1)2

1
0



Appendix B: Speedup for Additional Selected Functions
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Appendix B: Continued
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Appendix B: Continued
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