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Abstract

Finding the global minimum of an arbitrary differentiablenttion over am-dimensional
rectangle is an important problem in computational sciemaéh applications in many
disciplines. We have developed a depth-first search methoeliably obtain the global
minimum of an arbitrary continuously differentiable fuioet in the one-dimensional case.
Our algorithm reliably computes the global minimum for stard test functions in the
literature, and requires much less computational effahtpreviously used breadth-first
search methods. A parallel implementation of the algorittemonstrates the expected
speed-up as the number of processors is increased. Our anetihobe extended to the
multidimensional case, which will be reported in a futurdlmeation.



1 Introduction

A problem that has been important in computational scieaca humber of years is that
of finding the minimum (and maximum) values of a function ofesal variables in an
n-dimensional rectangle [1]. For the one-dimensional cémeproblem can be defined as
finding

f* = min f(z)

zeX

where the objective functiofi : R — R is continuously differentiable and C R. The
global minimum value is denoted b¥. The valuer for which the function will evaluate
to the global minimuny™ is called theminimizer.

Also, finding good upper and lower bounds on the values oftfans is important in fields
such as sensitivity analysis, perturbation analysisy@malysis, and many other optimiza-
tion problems [1]. The problem of finding the range of valuéa éunction is solved by
finding both the global minimum and global maximum for thedtion f over the initial
domainX.

Since the global maximum value can be obtained by finding threnmum value f* of
—f(z) and returning the value f*, we may reduce our primary problem of global opti-
mization into one of obtaining a good lower bound of a funttwer a specified interval.

In 1966, R.E. Moore published a bobhkterval Analysis [3] in which he described a new

method for numerical calculations, called interval arigtim, which has now become a
field in its own right called interval analysis. Interval &was is widely used to address
many concerns related to real-valued numerical calculatiparticularly those related to
rounding error introduced in machine computations. Thesappf interval analysis is that,

rather than a machine-rounded approximation, our solstare intervals that guarantee
enclosure of the desired solution.

Existing methods for finding the range of values of a functiea an exhaustive search with
a pruning strategy. That is, the initial search domain igdsatded by a specific criteria, a
pruning algorithm is applied to eliminate regions that anewn to not contairf*, and the
search for the optimum values is carried out in those smailllbregions. For instance, in
the Asaithambi, Zuhe, and Moore algorithm (hereafter refeto as the AZM algorithm)
[1][4], the initial domain is bisected, and each subregiaer explored using an interval
extension based upon a monotonicity test and the mean Vvedoesim. A listis used to store
regions that may contain the correct minimum, and those@nsgihat have been examined
are removed from the list. The bounds of any monotonic regitan be easily found,
and the remaining non-monotonic regions can continue tadeeted and searched for the
minimizer. The AZM algorithm has been a benchmark for théuatson and development
of our new algorithm.



2 Initial Phase of Research

During the initial test phase of the AZM algorithm, it becaresy clear that the element
that required a large amount of computational time was gteHiat stores regions yet to
be examined for the global minimum value. During the executf the AZM algorithm,
regions are bisected and stored on the list if they must leetad further to examine for the
global minimum. These regions are inserted intoltkiein the order of increasing lower
bounds. As the list size increases, the amount of time it takes teriren element in the list
in the proper location becomes quite large.

A key motivation for our research was to find a method thatcedwur dependence on this
list, in order to speed up the process of locating the globaimum. In addition, we antic-
ipate that a parallelization of the AZM algorithm that usdistamay have an unreasonable
amount of time devoted to the sending and receiving of elésrterbe inserted into the list.
This would lead to a communication overhead for load batamthat would be inefficient.
Thus, we began investigating alternative methods for abtgithe global minimum that
did not rely on the management of list elements.

2.1 The Sequential Recursive Algorithm and ItsImplementation

The result of our exploration of list dependency in the av&jiAZM algorithm is the devel-
opment of a recursive algorithm as a depth-first exhausésaech for the global minimum
of a continuously differentiable function in one dimensidhis algorithm, the Asaithambi-
Baldwin algorithm (after A. Asaithambi and A. Baldwin), Widle hereafter referred to as
the AB algorithm. There are several differences betweed\#d and AB algorithm. For
instance, the AZM algorithm uses the monotonicity test fanterval extension, an exten-
sion that is not used in the AB algorithm. In addition, AB doeg use a list or insert
function, but rather relies upon the system’s stack, whihdtes recursive calls, to store
regions that have yet to be examined. This eliminates oudépendency, and leads to a
substantial improvement in performance when the AB algorits parallelized. Similari-
ties involve the use of the natural interval extension orfitlsé derivative of the function,
referred to ash F'(X) to determine monotonicity, and a bisection method for getirey
subregions to be examined.

The AB algorithm checks an interval for monotonicity (ineséng or decreasing) gfupon
receipt of an interval region to search. flfis not monotonic on the region tested, and the
width of the interval is greater than some desired toleraABebisects the interval into two
smaller subintervals of equal width. AB is then recursivedyled on the two subintervals
that were generated, provided that the termination caiteais not been reached. If the de-
sired tolerance is reached, the minimum value is obtainezl/bBluating the natural interval
extension of the function on the subregion of width less tthentermination criteria. At
each stage of the recursion, the global minimum is updatékibound obtained is lower
than obtained previously. The recursive call eliminatesribed to store items in a list,
as the system implementation of recursive calls will autiically take care of unchecked
subregions. In addition, when the valuefdfis updated, we can also update the region in
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which f* was located, thus providing us with the minimizer of the fiimrt on the initial
search domain.

The algorithm needs only to check for regions in which thecfiom is hon-monotonic.
The global minimum can only occur on the interior of a regibm iis located at a turning
point of the function. That is to say that the global minimuaslonly a finite number of
possible locations: at one of the endpoints of the region artarning point on the interior
of the region. The AB algorithm exploits this property by yelvaluating non-monotonic
regions, and then comparing the final minimum value obtaorethe interior of the initial

region to the value of the function at the endpoints of theahiegion. The AB algorithm

returns the smallest of these three values; the global noimim

Our experiments show that the AB algorithm works on all omaeshsional functions that
we tested [6][5][2]. We selected 31 functions with a varietgharacteristics for the testing
of the our algorithm. The sequential AB algorithm is presenin Figure 1, in which
DF(X) denotes the natural interval extensionf&fz).

Sequential AB Algorithm

1: input region X;

2: if DF(X)<0 && DF(X)>0
5: if wdth(X)>e¢

6: bisect X into X, Xy;
7: | 01 = AB(X1);

8: lo=101;

9: | 02 = AB(X2);

10 : if lo>102

11: lo=102;

12 : el se

13 : | 0 = f(mid(X));

14: return | o;

Figure 1: Sequential AB Algorithm

211 Sequential AB versus AZM

We tested both the AZM and AB algorithm on all of our one-disienal test functions.

The sequential AB algorithm obtained the minimum value gsligme than the AZM algo-
rithm that was used as our baseline for performance measuatert times, this speedup
achieved by using the sequential AB algorithm over the AZgoathm was quite sub-
stantial. A table comparing the run time of these two sedakatgorithms for several

functions, as well as the reduction in run time is includetble(a complete list of our

one-dimensional test functions can be found in Appendix A):



Function AZM (milliseconds) | AB (milliseconds)| % Reduction
f(x) = sin(z) — 2 cos(z? — 1) 7813.84 962.41 88
f(@) =z(1 — 2) 0.19 0.12 35
f(z) = 46”;0 — cos(z) + 1 10.26 4.94 52
f(z) = 242* — 14223 + 30322 — 2762 + 93 80.08 25.29 68
f(x) = sin(z) + sin <107x> + In(z) — 0.84z 1.20 0.69 42

Table 1: Speedup of Sequential AB over AZM

3 TheParallel Algorithm and Its Implementation

Due to the nature of the recursive AB algorithm, it is muchiera® parallelize than the
AZM algorithm. For this reason, we are able to see a speedtipeiAB algorithm for
many examples with a relatively straightforward paratialion of the algorithm. We note
that our parallel implementation of the AB algorithm works all one-dimensional test
functions that were used during the preliminary testingathlthe sequential AB and AZM
algorithms.

3.1 Paralled AB

In order to assign tasks for multiple processors to simelbaisly complete, we first gener-

ate a list of subregions of to be distributed to all processors. We may use either treside
from the original AZM algorithm or the AB algorithm to genéeahis list of subregions.
These methods are discussed in more detail in section 3Thd processors are sequen-
tially ranked from 1 througth whenk processors are used. Processor #1 acts as the master,
assigning subregions to each processor, and collectingldi@l minimum from each of

the local minimum values reported by each processor. Eatieobther processors calls
the AB algorithm using a bisection of the region that is assdy hence two recursive calls

for each iteration. The parallel AB algorithm is shown in tHig 2.

3.1.1 Generating List of Subregions

There are several ways in which the master processor canagerdist of subregions to be
distributed amongst the other processors. For instanceegan by using the original AZM
algorithm to generate a list of subregions equal to the numitjgocessors. Since the AZM
algorithm keeps a working list of regions that may contasglobal minimum, we simply
terminate the AZM algorithm when we have generated a de$isesize. The minimizer
is guaranteed to be contained in one of the elements geddmgtd&ZM [1][4]. Each
processor then has some number of regions on which to rurethesive AB algorithm.
Another approach to further reduce the run time is to geadtat list of subregions by
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Parall el AB Al gorithm

1: input region X;

2: if id == master

5: Cenerate list of subregions

6: Broadcast list to all processors

7: else

9: Run AB on assi gned subregi ons

10 : Update | ocal m nimum at each compl etion of AB

11: global-min = min(local_min)
12: return global_min

Figure 2: Parallel AB Algorithm

checking a region for monotonicity gf; if it is non-monotonic on a region, we bisect it
into two subregions, and push both subregions to the end rofvotking list. We then
test the new front element on our list for monotonicity anglea the process until our list
reaches a desired size. Our list elements are stored in tiee obtained, as the order in
which the subregions are distributed to the processorsb&ilinimportant. Since we are
only eliminating regions that are monotonic, we are ableuargntee that the minimizer is
not discarded by this process. Moreover, there is no neambtofbr a proper place in the
list to insert the newly obtained subregions.

4 Numerical Results

We experimented extensively on all example functions (idetl in Appendix A) and found
that there were some characteristics of functions thatdeal ubstantial decrease in run
time as the number of processors was increased. These fespas well as examples are
provided in this section.

4.1 Performancelncreasefor Highly Multimodal Functions

As we might expect, the method used to develop the parallealyBrithm does not pro-
vide speedup for functions that have a small number of logakma. This is of little
concern, however, since obtaining the minimum values osdlfionctions is trivial. There-
fore, our primary focus was devoted to achieving the higbpstdup possible for more
complicated, highly multimodal functions. The increasethplexity of finding the global
minimum value on these types of functions allowed us to hgaest our new algorithm
and devise a method that works very well. In addition, oueeigmce with the complicated
one-dimensional functions leads us to believe that we wél similar results in the multi-
dimensional case, where the number of subregions to bedmesi is often times larger
than the single variable case.

The decrease in run time for functions with a large numbeocdll extrema can be justified
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rather intuitively. Each of the bisected regions producgaixr generation of subregions
to be considered will be non-monotonic due to the high degfeaultimodality of the
function. Therefore, each subregion listed will requirgtier consideration in obtaining
the global minimum. Thus, each of the processors is assigrehingful work. Increas-
ing the number of processors reduces the amount of work tedsto be done by each
processor. The performance increase for two of our testifumeis discussed in the next
sections.

4.2 Example: f(x) = sin(z) — 2cos(z? — 1)

This function was tested on the search domain00, 100], in which the function is highly
multimodal. The global minimum value for this functionf$ = —3. Due to the presence
of a large number of local extrema, we were able to achievetanbal speedup over both
the original AZM algorithm and the sequential AB algorithithe run time for the sequen-
tial AZM algorithm was 7,813 milliseconds, compared to tegquential AB algorithm run
time of 962 milliseconds. When we increased the number ofge®ors to 32 (including
the master processor), we were able to further reduce themento 130 milliseconds. A
plot of the function demonstrating is high degree of multitality on the search domain
[—10, 10], as well as the reduction in run time as the number of procesgas increased is
shown in Figure 3:
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Figure 3: f(z) = sin(x) — 2 cos(z* — 1)

4.3 Example: f(x) = cos(z? — 23)

This function was also tested on the search domaitt0, 100]; a domain in which the
function is highly multimodal. The global minimum value ftnis function isf* = —1.
We were unable to determine the run time for the sequentidll aljorithm due to a list



overflow. This was the result of a list size that was not maablgeby our hardware, as
the list size was in excess of 200,000 elements. Howevemwigeran the sequential AB

algorithm for this function, we obtained a run time of 11858illiseconds. When we

increased the number of processors to 32 (including theenpsicessor), we were able to
further reduce the run time to 21,834 milliseconds. Thusygared to the baseline AZM

algorithm, for this example, we were able to demonstratesbme test domains that are
unmanageable due to the AZM algorithm’s list dependence @eickly solved by our use

of the system’s stack to handle recursive calls. A plot offtimetion on the search domain
[—5, 5], as well as the reduction in run time as the number of processgas increased is

shown in Figure 4:
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Figure 4: f(z) = cos(z? — )

4.4 Further Reduction in Run Time

For both of the examples discussed in the previous sectierw&e able to obtain a fur-
ther reduction in computational effort by applying a loadaibaing strategy (discussed in
section 5.1.1). For the example in section 4.2, generatitegger list of subregions to
distribute amongst the processors led to decrease themenftom 130 milliseconds to
only 20 milliseconds. Thus, compared to the baseline AZMu@dgm, for this example,
we were able to reduce the run time by 99.7 percent. For thaebeain section 4.3, gen-
erating a larger list of subregions first to distribute angirntbe processors (providing 190
subregions per processor), we were able to decrease thieneitotonly 893 milliseconds.
This marks a substantial improvement, as the search domasrteo large for the AZM
algorithm to successfully terminate with the global minimu



5 FutureWork

5.1 Load Balancing Techniques

In order to ensure that no processor remains idle for an wssacily long time, it is im-
portant for any parallel algorithm to balance the work lopdrapriately. In the case of the
parallel AB algorithm, each processor is sent subregiongtoah f is non-monotonic. We
were able to increase the efficiency of the algorithm by semndach processor more than
one subregion. Given the nature of this load balancing igcien we are able to generate
a list of subregions that is at most equal to the number okextrpoints of the function
on the initial search domain. Thus, we may need to terminatswbregion list generation
when it is no longer possible to increase the list size.

5.1.1 Better Load Balancing

In an attempt to balance the load more efficiently, we expembed by letting the master
processor generate lists of non-monotonic subregionsradussizes. We then distribute
these lists to the other processors and have them each di¢aminimum on a subset of
those regions listed. We tested this list size up to 128 titnesiumber of processors used
in order to see how the load balancing effected the perfoceanhthe algorithm. We did
see improvement in the performance as the number of sulmegioour distributed list
became larger for some functions, however, there appearkd & limit as to how many
subregions could be used. That is to say, at a certain paifér@ht for each function
tested), increasing the number of subregions per procgseuided no further increase
in efficiency. The optimum number of subregions per proacessoontingent upon the
function being tested; more specifically, on the number &feeme points of the function
in the initial search domain. In some cases, we were abledioceethe run time by as
much as 96 percent over the speedup already achieved byysimeptasing the number
of processors. Two examples of this are seen in sectionsWl.2.8 This load balancing
technique shows promise for increasing the efficiency optmallel AB algorithm, and is
being further investigated at this time.

5.2 TheMultidimensional Case

Motivated by our success with the single variable case, weersently investigating the
application of this method to multi-variable functions. r@xperimentation suggests that
functions that are highly multimodal and hence require gdarumber of bisections are the
functions for which our method will be best suited. We beadi¢vat the AB algorithm will
out-perform the AZM algorithm in obtaining the global miniam of all multi-dimensional
functions as well.

6 Conclusion

We have developed, implemented, and tested sequentialaaatieb versions of a depth-
first search algorithm for finding the global minimum of a ftinoo of one variable. We
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were able to achieve a substantial reduction in run timeensitill reliably obtaining the
global minimum for a variety of functions previously examehin the literature. For func-
tions with a large number of local extrema on the initial seatomain, we are able to see
even more reduction in run time as the number of processersinghe parallel AB algo-
rithm are increased. We have demonstrated that the AB #igoiis reliable in all tested
cases, and is more efficient than the AZM algorithm, whilgéasallelization also exhibits
the expected speedup characteristics as the number ofsgaysas increased. We have
also demonstrated that the use of load-balancing techsigseilts in further reduction in
computational effort for highly multimodal functions.
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Appendix A: Test Functiong[5][1][2][6]
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f(z) = sin(z) — 2cos(z” — 1)
f(x) = cos (7 (82% — 1)) + sin (7 (822 — 1))
f(z) = @ + cos (2?)
() = cos (sin (2 1) ~ 1)
f(x) = sin (cos (e7))
f(z) :sm(ac4+x +a?+ar+1)
f(z) = cos (2?2 — 2?)
f(@) = a(l —x)
flz)=—-2+at+a3+ 22+ +1
flx) = % —cos(z) +1
flar, - w5) = 30, 4?0 — T, cos <%> +1
f(x) = (& + sin(x)) - e
Fa)=—30_ k-sin((k+ Dz + k)
f(x) = sin(z)
f(@) = 73 —sin®(x)

f(x) = z* — 1023 4 3522 — 50z + 24
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f(z) = 242* — 14223 + 30322 — 2762 + 93
f(x) = sin(x) + sin (%) +In(z) — 0.84x
flz) = 202 _ %e—(zoo(m—o.omm)2
1
():_Z ( ( a))2+ci CLi,ki,CiER—i—
1
():_Z ( ( (1))2+Ci aiykiyci€R+
72
f(z) = 20 cos(x) + 2
1
I = e7s
f(z) = 2? — cos(18z)

f(@)=(z—1)%(1+10sin?*(z + 1)) +1

flx) = e
f(z) = 2t — 1223 + 472% — 60z — 20e~

2

f(z) = 2% — 152 + 2722 + 250

f(x) = sin? <1+$;1>+<x21>2

f(z) = (3: - :L'2)2 + (z — 1)2
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Appendix B: Speedup for Additional Selected Functions
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Appendix B: Continued
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Appendix B: Continued
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