
 1

APPLICATION LOAD SIMULATION AND THE
POTENTIAL FOR

 DENIAL-OF-SERVICE
WHEN THE LINUX TOP PROGRAM IS MISUSED

Mark Nordby
St. Cloud State University, MN
noma0401@bcrl.stcloudstate.edu

Sara Krzenski
St. Cloud State University, MN
krsa0601@stcloudstate.edu

Fatma Al Saadi
St. Cloud State University, MN
alfa0401@stcloudstate.edu

Abstract

In computer security, a denial-of-service attack (DoS attack) is a computer crime that violates the
Internet proper use policy as indicated by the Internet Architecture Board (IAB) and makes a
computer resource unavailable to its intended users. DoS attacks have two general forms. One
form causes the victims’ computer(s) to reset or consume its resources such that it can no longer
provide its intended service. The second form obstructs the communication media between the
intended users and the victim in such way that they can no longer communicate adequately.
Attacks can be directed at any network device, including attacks on routing devices, Web
resources, electronic mail or Domain Name System servers. A DoS attack can be perpetrated in a
number of ways.

There are three basic categories of DoS attacks: Protocol attacks, Software Vulnerability Attacks,
and Bandwidth/Throughput attacks. In this paper, we will examine a Bandwidth/Throughput
attack. This type of attack is caused by consuming the victim’s available resources. The attack
may consume most of the available network bandwidth shutting out (or significantly delaying)
legitimate users, which can result in a loss of business or cause lengthy delays on the network.

With the wider availability and use of free operating systems, the need to establish possible
vulnerability thresholds becomes more critical. In our example, we simulate a college campus
network using Debian, a distribution of the Linux operating system. Providing students with
Linux shell accounts provides them with an open and extremely functional learning environment,
but also offers them a powerful platform from which to launch DoS attacks. One possible
scenario that can be easily implemented is setting the delay parameter on an interactive
command such as top (by default, the refresh rate is 3 seconds). However, it is possible to set it

 2

to sub-second values such as .0001. Therefore, our concern is that students with a very limited
knowledge of the LINUX operating systems, using a simple application like top could introduce
significant delay on the network and make it difficult for legitimate traffic to reach the campus
network.

This paper will look at the effectiveness of a DoS attack using a very simple LINUX program
generally available to all users on LINUX platform. Top is a program that will give continual
reports about the state of the LINUX system, including a list of the processes using the CPU. In
this setup, we have a single host with a progression of up to eight clients. Our first step will be
to determine a communication baseline between our host and client 1. We then will use a
combination of an increasing number of machines and two possible –d setting for top (-d
specifics the delay between screen refreshes). The –d 0.00001 and 0.000001 will be used as our
settings for several test runs. We seek to determine if the top command could be used as an
effective DoS attack. Our preliminary results have shown that the system handles three attacking
clients well, but the network delay increases linearly as each additional attacking client is added
with the delay about 4 times greater at the 8 attacking client level than with one attacking client.
However, even with 8 attacking clients, the system never completely lockup. Further, the
throughput decreased as well, in one case, from ~12,000 bytes per second with one attacking
client to ~4,000 bytes per second at the 8 attacking client level.

Keywords: Denial-of-service (DoS), Top command, Throughput attack, Bandwidth attack,
Local area network (LAN), TCPdump, TCPstat.

1 Our Concern

With the wider availability and use of free open source operating systems, the need to establish
possible thresholds becomes more critical. In our example, we simulate a college campus
network using Debian, a Linux distribution operating system. A possible scenario is the
students’ access to a campus network with many co-located buildings and data centers using
standard LINUX user accounts. Therefore, our concern is that students with a very limited
knowledge of the LINUX operating system, using a simple application like top could introduce
significant delay on the network and make it difficult for legitimate traffic to reach the campus
network.

1.1 Our Study

This paper looks at the effectiveness of a DoS attack using a very simple LINUX program
generally available to all users on LINUX platform. Top is a program that will give continual
reports about the state of the LINUX system, including a list of the CPU using processes (2). In
this setup we have a single host with a progression of up to eight clients. Our first step was to
determine a communication baseline between our host and client 1. We then used a combination
of an increasing number of machines and two possible –d setting on top (-d specifics the delay
between screen refreshes) (3). The –d 0.00001 and 0.000001were chosen as our settings after

 3

several test runs. We seek to prove that the top command could be used as an effective DoS
attack. Top has the potential to use up enough bandwidth to cause a DoS attack on the network
resulting in disruption between the host and the other client conversation.

2 Test Simulation: Network Configurations

The basic configuration of the network consists of nine dual core Intel based PCs running
Debian, a Linux distribution operating system, connected via a 10/100 network interface to a
Force 10, E300 switch (a high end Enterprise level switch with 6 banks of 12, 1Gbs ports). One
of these six banks was isolated to simulate a LAN (local area network) so as to eliminate outside
interference.

3 Explanation of Experiment

In order to better understand the effect of high intensity applications on a network, top (a
program that provides a look at processor activity in real time and can also be set to precise
levels of intensity), was used to simulate a program that required extensive processing power.
This ability was crucial to offer a controlled and continuous load that could be measured and
compared.

This experiment is run on a private network with Secure Shell as our communication protocol.
With the baseline established at each of the two top settings, a new client is added and the test is
repeated. This process is duplicated eight times. The goal of the experiment is to create more
and more intense traffic levels competing with client1’s (our data collection monitor) ability to
communicate with the host. We are only concerned with the traffic between the host and client1.
TCP Dump was used to trap 100,000 packets in each host client communication session that
were used to generate test results.

4 Test Results Analysis

The goal of this paper is to determine the ability to affect a Denial-of-service attack on a client
by using the LINUX top command with increasing number of clients and decreasing delay
settings. SAS (statistical analysis system) program is used on the data collected using
TCPDUMP to generate data work sheets and MS Excel was then used to generate graphs for the
purpose of data analysis.

Table 1 and figure 1 represent the total number of bytes against the number of clients. It is clear
from the results that at both the 0.00001 and 0.000001 top settings, there is a decline in the
number of total bytes transmitted with an increase in the number of clients. Overall, between
one and eight clients, there is a performance degradation of approximately 20.23 % (0.00001
setting) and 19.78 % (0.000001 setting). The results show a slight increase in performance with
the addition of client 2 (86,244,738 bytes and 87,067,716 bytes respectively) and most of the
decline performance initiates on the addition of client 3.

 4

Table 1
Total Bytes Results and Percent Change

Figure 1

Table 2 depicts the distribution for the mean Inter-Arrival time. The graph (figure2) illustrates an
increase in efficiency until the addition of client 3. At client 4, a continuous increase in Inter-
Arrival time is observed at both the 0.00001 and 0.000001 second delay settings. This increase
in mean Inter-Arrival times for client 1 is to be expected since the server is also in
communication with the other clients. The overall percentage deterioration in mean Inter-Arrival
times, for both the 0.00001 and 0.000001 second delay settings, is approximately 174.95%. The
results confirm the observation that the performance degradation takes place with the addition of
client 4.

top -d
Setting in
sec Variable Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client7 Client 8

0.00001 Total Bytes 85515812 86244738 70072500 69030604 69246778 64718810 65134136 68211836

% change
with
respect to
client1 NA .85239

-
18.05901

-
19.27738

-
19.02459

-
24.31948

-
23.83380

-
20.23483

0.000001 Total Bytes 84673960 87067716 71203500 69876392 69797910 68520068 68352432 67924138

% change
with
respect to
client1 NA 2.83703

-
15.90862

-
17.47594

-
17.56862

-
19.07776

-
19.27573

-
19.78155

Total Bytes Client Graph

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1 2 3 4 5 6 7 8
Number of Clients

To
ta

l B
yt

es
 p

er
 S

ec
on

d

0.00001
0.000001

 5

Table 2
Inter-Arrival Time Descriptive Statistics

Top -d
Setting in

Sec Variable Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8
0.00001 N 99501 99501 99501 99501 99501 99501 99501 99501

Mean IAtime 0.012361 0.011076 0.006428 0.007647 0.007639 0.009082 0.014033 0.017674
Std Dev 0.009591 0.009745 0.010292 0.012973 0.013021 0.016734 0.027176 0.033444
Minimum 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06
Maximum 0.021775 0.022036 0.049707 0.077517 0.091294 0.144621 0.226811 0.293244

Mean Percentage Change = 174.95%

0.000001 N 99501 99501 99501 99501 99501 99501 99501 99501
Mean IAti 0.006934 0.007295 0.006314 0.007806 0.00978 0.011934 0.014479 0.017394
Std Dev 0.005978 0.007116 0.010368 0.013696 0.017816 0.022072 0.027046 0.032834
Minimum 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06
Maximum 0.013602 0.01752 0.080629 0.111438 0.146085 0.178544 0.190163 0.252245

Figure 2

Table 3 shows overall two thirds performance degradation to client 1’s communication with the
host on running the top command from eight clients. The one millisecond delay setting results
demonstrate a smooth decline in performance in comparison to that of 10 milliseconds. The
results show no performance difference between both the delay settings on the addition of client
7 and client 8. Given more time, it would have been interesting to observe the performance at
smaller delay settings.

Mean Inter-Arrival time Client Graph

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 2 3 4 5 7 8
Number of clients

Delay Setting
.00001
.000001

Ti
m

e
in

 S
ec

on
ds

 6

Table 3
Mean Throughput Results and Percent Change

Figure3

As predicted the total time for trapping 100,000 packets increases for client 1 with the increase in
the number of clients communicating with the host. Furthermore, as observed earlier at client 3
maximum efficiency is achieved. After client 4 performance degradation occurs. Here again the
results show almost two thirds overall performance degradation as is depicted in Table 4 and
Figure 4.

top -d
Setting in
Sec Variable Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8

0.00001

Mean
Throughput in
B/Sec 68860.33 77652.04 108637 89827.02 90623.2 71240.95 46500.04 38589.25

% Change with
Respect to
Client 1 NA 11.32193 57.76427 30.44814 31.60436 3.45717

-
32.47194

-
43.96011

0.000001

Mean
Throughput in
B/Sec 122713.4 119181.9 112869.8 89503.14 71391.68 57607.07 47378.7 38964.03

% Change with
Respect to
Client 1 NA -2.87784 -8.02162

-
27.06327

-
41.82243

-
53.05560

-
61.39077

-
68.24794

Mean Throughput Client Graph

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

Number of clients

B
yt

es
 p

er
 s

ec
on

d

X00001
X000001

 7

Table 4
Total time and percent change

 p
Setting in

sec Variable Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8

0.00001
Total time in

min 20.60506 18.47166 10.71526 12.74468 12.73114 15.13713 23.38294 29.4553
% change with

respect to
client 1 NA -9.8898 -47.99694 -38.14781 -38.21353 -26.53683 13.48154 42.95178

0.000001
Total time in

min 11.55656 12.15783 10.52507 13.00605 16.30187 19.88411 24.12416 28.99239g
respect to

client 1 NA 5.20285 -8.92558 12.54257 41.06161 72.05907 108.74862 150.87388

Figure 4

5 Conclusions and Recommendations

The results show that there was a performance loss (approximately two thirds) when the
workload was increased, however it was shown that at this number of clients, the use of the TOP
program was not enough too generate enough throughput that would cause a denial of service
occurrence.

Total Time Client Graph

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Number of clients

Ti
m

e
in

 m
in

0.00001
0.000001

 8

A couple of factors may have contributed to the results of this test. First the test was ran with
multiple established connections using SSH (Secure Shell) from clients to host. This unlike a
typical application that uses TCP/IP maintains a continuous connection to the host thereby not
allowing more communication downtime, which would thus reduce bandwidth consumption.
Second, the workload that was generated although considered a heavy load on a production
machine may have not been as much of a factor due to the fact that the test unit was stripped
down and running only the minimal applications thus having less information to update each
time TOP refreshed the display.

Due to the results of this paper more research needs to be done on the possible effects other
applications may have on network traffic when proper monitoring of application usage could be
overlooked.

Works Cited
1. Moshe Benyamini, Ori Modai, Tzach Schechner, Yaniv Stern. (2001). “DdoS Project Final

Report”. http://www.comnet.technion.ac.il/~cn2wo3/final2.doc
2. Linux/ Unix Command: Top. http://linux.about.com/od/commands/l/blcmdl1_top.htm
3. Michael Palmer, Jack Dent, Tony Gaddis, (2005). Guide to UNIX Using Linux 3rd ed.

Canada: Thomson Course Technology.

References
Dennis Guster, Abdullah AlHamamah, Paul Safonov, (2002), Network Security Log
Information: A Preliminary Analysis. Business Computing Research Center College of Business
St. Cloud State University

Dennis Guster, Renat Sultanov, Mark Nordby, Richard Sundheim, (2004), Using Distributed
Processing to Enhance Performance Characteristics of Hosts Used to Support WWW
Applications. Business Computing Research Laboratory, St. Cloud State University

