
RAYGL: An OpenGL to POVRAY API

Kris Zarns
Department of Computer Science

University of North Dakota
Box 9015 Streibel Hall

 Grand Forks, ND 58202-9015
kzarns@cs.und.edu

Ronald Marsh, Ph.D.
Department of Computer Science

University of North Dakota
Box 9015 Streibel Hall

Grand Forks, ND 58202-9015
rmarsh@cs.und.edu

Abstract
The OpenGL raster graphics API is well known amongst computer graphics
programmers. However, while raster graphics dominates the interactive computer
graphics industry, these systems are not able to produce scenes with the realism required
by ventures such as the movie industry. For markets that require high levels of realism but
not online generation of the scene, raytracing has become popular. Raytracing
applications use application specific scene description languages (SDL) to describe the
objects in a scene. However, there is no accepted standard SDL and an open source
library to convert OpenGL code to SDL code would allow programmers who are already
familiar with OpenGL to smoothly transition between raster graphics and raytracing
without the need to learn an application specific SDL. We present an OpenGL like API
that will interface with OpenGL (and the OpenGL Utility Toolkit - GLUT) and that will
write Persistence of Vision Raytracer (POVRay) scene files.

1. Introduction

OpenGL is one of the most popular interactive computer graphics API's in use today. As
such, many computer scientists are familiar with it and many computer games are written
using it. However, it uses a raster graphics engine to render the scenes and while this
engine does have a lighting model which can be used to create lighting effects in real
time, the lighting model is somewhat simplistic and incapable of reproducing the effects
that a scene in the physical world would exhibit. This is due in part to OpenGLs use of
the Gouraud shading model and not the more realistic Phong shading model. In addition,
each polygon in an OpenGL scene is considered independently of each other when
rendering the scene. In order to approximate reflections additional passes of the renderer
must be made. However, the Phong shading model and multiple passes of the renderer are
both inefficient and can become prohibitively computationally expensive.

An alternative to raster graphics rendering is raytracing. Raytracing is a method by which
the proper illumination of a 3 dimensional scene is calculated by tracing a light ray from
the viewing plane into the scene until it contacts an object in the scene. Depending on the
properties of the object, the light ray is absorbed by the object, refracted through the
object, reflected off the object, or a combination thereof. The process is repeated until the
light ray contacts a light source or until an imposed limitation on the path length or
number of reflections is met. Unlike the direct lighting effects of raster graphics,
raytracing is able to account for most of the lighting effects that are exhibited in the real
world. The result is that images that are rendered with raytracing algorithms are able to
approach photorealism while images generated from raster graphics are only able to
provide a rough approximation.

However, there are some advantages to using raster graphics over raytracing. One issue is
ease of use. The OpenGL API is widely used and provides a defacto standard for raster
graphics. There is no established standard SDL for raytracing. Each SDL is specific to the
raytracing application it is used for. The result of this confusion has been the development
of utilities to translate between one raytracer and another. Another issue is the cost of
prototyping. Depending on the amount of detail represented in a scene, rendering a
raytraced image can be very time consuming. It may be very useful to have a visual
representation of the scene prior to committing to the rendering in full detail. For
example, it may be very convenient to render the scene from multiple camera angles
before deciding on which one to use. While some raytracers do provide this functionality,
it is usually done by converting the scene into OpenGL.

Since there appears to be a need to allow the developer to rapidly prototype a scene and
since the OpenGL API is a defacto standard for raster graphics, a standard that many
graphics developers would already know, we decided to create RayGL, an API that will
allow an OpenGL programmer the ability to generate POVRAY SDL files from the
OpenGL code itself. When using RayGL, all the developer has to do is replace all
OpenGL command prefixes “gl” with the text “raygl”. For example, a call to glVertex3f
(…) would be replaced by rayglVertex3f(…). This is possible because the syntax of

11

functions in RayGL are identical to the syntax used in OpenGL. Currently, RayGL
extends OpenGL by creating Persistence of Vision Raytracer (POVRAY) SDL files.
However, because there are no plans to provide explicit support for POVRAY specific
functions in RayGL, RayGL could be extended to work with other raytracers as well.

2. Previous Work

There has not been a lot of development in this area. We only know of two other projects
that have worked in the area of adapting OpenGL code to raytracing. These are the
OpenRT API and SvenGL. While both of these systems feature an OpenGL like syntax,
neither of them support a direct conversion between existing OpenGL code and
raytracing.

2.1 OpenRT

OpenRT is an expansion upon the Real-Time Ray-Tracing (RTRT) project developed at
the University of Saarbruecken in 2001. The OpenRT application was first introduced by
Wald et al. [2002], followed by a more detailed description of the API by Dietrich et al.
[2003]. The API was developed to provide the interactive features of OpenGL along with
the rendering capabilities of raytracing. OpenRT was written with high commodity
equipment in mind, the system is meant to be run a network of high performance
processors interconnected with Gigabit Ethernet. For example, when [Schmittler et al.
2004] implemented a raytraced version of the game Quake 3, they used a virtual CPU that
mimicked a 30 GHz machine.

The OpenRT API provides a real time raytracing solution with a syntax that is similar to
OpenGL. However, there are some key differences between OpenGL and OpenRT.
OpenRT does not offer support for immediate mode rendering and the way in which
OpenRT handles material properties is different. These differences are the result of a
fundamental change in semantics between OpenGL and OpenRT. OpenGL functions as a
state machine, changes in how the scene should be rendered are stored as changes in the
state of the rendering pipeline. Because the changes are bound to the state machine and
not objects within the scene, the changes are global. OpenRT binds changes to the
specific objects being rendered, not the state of the renderer. As such, changes can be
considered to be local to a specific object.

In the interest of efficiency, OpenRT does not support immediate mode rendering. In
OpenGL, immediate mode rendering refers to the rasterization of triangles as they are
specified. Because of the need to calculate reflections based on all of the objects in the
scene, immediate mode is not a possibility for real time raytracing. Instead, OpenRT uses
a concept similar to that of display lists. Display lists have the advantage that they are
reusable within the program, and only need to be declared once. Rather than each part of
an object being drawn individually, display lists allow for an entire object to be specified

22

and then drawn as a whole. While this can be more efficient than immediate mode
rendering, OpenRT takes things a step further and implements the display lists using an
object oriented approach. Unlike OpenRT, RayGL is meant to be used for offline
raytracing. Issues of renderer efficiency will be left up to POVRay. RayGL code may be
written using either immediate mode or retained mode. Objects drawn in immediate
mode will act as expected in the OpenGL render, however the distinction between
immediate mode and retained mode will be transparent to the SDL file. This is approach
is taken so that the fine raytraced scene can consider every object in the scene for
determining illumination.

The object oriented approach used in OpenRT allows changes in the rendering mode to
be applied to specific objects. Conversely, in OpenGL, changes to the state of the
OpenGL renderer will affect the output of all display lists rendered while the state is in
effect. As a result, the programmer must be wary about the global state of the OpenGL
renderer when porting code from OpenGL to OpenRT. Because changes in the OpenGL
state are global, care needs to be taken to preserve the state of the OpenGL machine when
translating OpenGL code to a system that keeps track of this information locally. If a
state persists over a large portion of OpenGL code, that state needs to be preserved for
each of the objects when they are translated to OpenRT in order to faithfully reproduce
the original application. This may become an issue when declaring complex scenes as
there is no guarantee that a state change will occur near the object that it affects.
However, in RayGL this issue is not a concern as the current state of OpenGL is written
to the SDL file by RayGL for each object as it is declared.

OpenRT also handles materials differently than OpenGL. Instead of implementing
material properties as a means of modifying lighting effects, OpenRT uses an
independent shading language called OpenSRT. This shading language is similar in
concept to the Stanford shader API and the shading language that was implemented for
OpenGL 2.0. The independent shading language allows each program to customize the
lighting effects available in a scene. Using this approach the application specifies the
material features in the form of shader objects, these objects can then be bound to
geometric objects. As a result of this binding, changes made to the shader appear local to
all objects it is bound to. Because OpenSRT is independent of OpenRT, it is also
possible to use other shading languages with OpenRT.

Finally, despite the word Open in its name, OpenRT is not actually open source. OpenRT
has been developed as a commercial product. While there is a freely available academic
version of OpenRT, it is a limited version of the software and does not support clusters
and has a limitation imposed on the complexity of scenes drawn. Conversely, RayGL and
POVRay are both open source and can be implemented on a cluster architecture.

2.2 SvenGL

SvenGL refers to the coupling of OpenGL with the TOpenGLApp class developed by
33

Maerivoet [2002]. TOpenGLApp is a combination of programs for window
management, camera management, projection management, provides primitives for
common shapes, texture management, and a raytracing engine. The system acts as an
intermediary between the programmer and GLUT. To simplify the API, SvenGL does
not support all of the functions used in GLUT.

SvenGL provides support for OpenGL rendering of code written in standard OpenGL as
well as code developed with the features of SvenGL. It also contains a separate SDL.
Code written for this SDL is rendered with both OpenGL and the included raytracing
engine. Rendering a scene with the SDL creates two output files, one rendered in
OpenGL and the other with the raytracing engine. However the OpenGL rendering does
not support SDL textures. Because of its object oriented design, it is possible to make
alterations directly to the SDL to provide support for additional features.

Similar to the way in which SvenGL produces both OpenGL rendered and raytraced im-
ages when using its SDL, RayGL provides outputs for OpenGL and POVRay simultane-
ously. The important difference here is that SvenGL takes code that is written for high
quality display with the raytracing engine and then displays a low quality OpenGL render
of it along with the high quality render. Regardless of the results of the OpenGL render,
CPU time is still spent generating the raytraced render. Whereas RayGL first provides a
low quality render based on OpenGL code and then allows the user to determine if a high
quality render should be committed with the raytracer.

3. RayGL

RayGL is a utility for converting code written in OpenGL to code the can also generate
raytracing SDL files. While the current version of RayGL only generates POVRay SDL
files, it is possible to extend RayGL to generate other raytracing SDL files as well. This is
possible because RayGL focuses on providing a direct translation from OpenGL to the
raytracing SDL, not on offering raytracing specific features. POVRay was chosen as the
raytracing backend to RayGL for three reasons. First, POVRay is open source. Because
of this, it lends itself well to both modification of the source and the creation of third
party utilities to interact with it. Second, the POVRay SDL is well documented.
Extensive documentation on how to write for the SDL is provided on the POVRay
website. Considerable support for POVRay is also offered in the form of mailing lists
and forums. Finally, POVRay is available for Windows, Mac OS, Mac OS X, and i86
Linux.

Similar to the way in which SvenGL produces both OpenGL rendered and raytraced im-
ages when using its SDL, RayGL provides outputs for OpenGL and POVRay simultane-
ously. The OpenGL output displays to the screen in the same way a normal OpenGL ap-
plication would. However, with each frame that is displayed in OpenGL, a POVRay SDL
file is also written. The SDL file can then be rendered using POVRay at any time. If
there is some issue with the scene displayed by the OpenGL rendering, then corrections

44

can be made to the code without dedicating the time to render the POVRay output. In
terms of RayGL, a frame is defined as any time the front and back buffers are swapped
using glutSwapBuffers(). Support for single buffered systems is still under consideration.
RayGL can use either GLUT or FreeGLUT for handling window management when
working with the OpenGL renderer. Because both these API's and POVRay provide geo-
metric objects such as spheres and cones, there are plans to implement code generation
for these objects as well as the basic OpenGL primitives. Modifying the RayGL code to
support other window management API's should not be a problem as RayGL primarily re-
lies upon them for determining when a new frame needs to be rendered by listening for a
call to swapbuffers.

Because OpenGL acts as a state machine, RayGL must also keep careful track of the state
of the OpenGL renderer when deciding how to write a scene using the SDL. As OpenGL
primitives are created for rendering, they are translated to the appropriate primitives in the
SDL. With each primitive declared in SDL, the current state of OpenGL is also written to
the file. This is required because of the way in which the SDL is structured. Instead of a
state machine approach like OpenGL which focuses on the state of the renderer, POVRay
encapsulates all of the information needed to draw its objects within the object itself. The
advantage to this approach is that the link between the properties that affect the way the
object is drawn and the declaration of the shape of the object is much more obvious. An
example of this is the way in which the two systems handle the coordinate matrix used to
represent the objects in three dimensions. OpenGL keeps track of the current matrix by
using a stack. There are two types of operations that can be performed on the current
matrix, either stack management or transformations. By careful stack management the
programmer can define different matrices for each of the objects to be drawn by placing
them at different levels within the stack. Since the current matrix represents the state of
OpenGL, when determining where to render objects, the current matrix is used to
determine how to place the objects within the scene and any affine transformation (ie:
translation, rotation, scale...) performed alters the current matrix. Therefore,
transformations applied to the current matrix will affect the way in which all following
objects are drawn unless the current matrix is modified or replaced. Because POVRay
takes a more object oriented programming approach to defining geometric objects, the
transformation matrix to be used for drawing is specified independently for each
geometric object. As a result, when translating OpenGL primative objects to the
POVRay SDL, RayGL retrieves the current transformation matrix from OpenGL for each
object that is specified in the SDL file.

Another issue regarding the differences between OpenGL and POVRay is that they use
different coordinate systems. OpenGL uses a righthanded coordinate system complete
with a righthanded rotation scheme. That is to say, the positive X axis points to the right
of the screen, the positive Y axis points to the top of the screen, and the positive Z axis
points out of the screen, however POVRay uses a left handed coordinate system. With a
left handed system the X and Y axis are defined in the same way as above, however the
positive Z axis now points into the screen. As far as rotation is considered, right handed
rotation causes the direction of positive rotation to be defined as counter clockwise about
the positive direction in which the axis of rotation is defined. Lefthanded systems rotate

55

clockwise about the positive direction in which the axis is defined. The first attempt to
correct for these issues involved performing operations on the transformation matrix
retrieved from OpenGL for each object. The angle values specified opposite each other
about the diagonal were swapped, however while this solved the rotation issues for x and
y it did not account for the fact that POVray was using both a lefthanded rotation and a
lefthanded coordinate system. Upon further review of the POVRay documentation
another, simpler, method involving a change in the camera system was implemented.
POVRay allows for the vectors specifying the coordinate system of its camera to be
redefined and by modifying the up and right vectors used to describe the aspect ratio of
the screen we are able to change POVRay to a righthanded coordinate system.

Parts of RayGL are still in the design phase. While the creation of geometric primitives is
currently implemented, the method by which lighting and material properties will be
handled is still being determined. Similarities between the way in which OpenGL and
POVRay declare surfaces and light sources suggest that implementing these features
should be fairly straightforward. However, there may be issues with the design that will
only be apparent once these features have been implemented.

As of the current design, OpenGL material properties will be translated to the SDL file in
terms of the Media, Interior, and Finish texture attributes given in POVRay. The
glMaterial function will determine part of the lighting equation for the surface it is
applied to. This matches well with the POVRay notion of texture attributes. POVRay
uses textures to determine the material properties of a surface. These textures are able to
adjust the normal vectors of a surface, its color, and reflective properties. Media, Interior,
and Finish are subsections of texture that control the reflective properties. Because
glMaterial can take FRONT, BACK, or FRONT_AND_BACK as an argument, Front
will be assumed to be the outside of an object and will correspond to changes in Media
and Finish. Material properties assigned to BACK will adjust the Interior properties of
the surface.

Light sources in OpenGL have the following parameters; ambient, diffuse, specular,
position, spot_direction, spot_exponent, spot_cutoff, constant_attenuation,
linear_attenuation, or quadratic_attenuation. Light sources specified by glLight are
modeled by creating corresponding light sources in POVRay. Ambient light is adjusted
by modifying the ambient light parameter in POVRay's global settings. For diffuse light,
point lights are used. Specular lights are handled by creating a spotlight with the
appropriate position and direction properties. Spot _exponent and spot_cutoff are
modeled with the tightness and radius settings for spotlights.

5. Example Code

The following is a snippet of OpenGL code rewritten to use the RayGL library and the
resulting SDL code it generates. The code generates 3 sides of a box using polygons,

66

then rotates the polygons 45 degrees about X and Y, and translates it 45 units into the X,
Y, and Z directions. Both systems use orthographic project in this example. Due to the
simplicity of the scene, the output from both renderers is nearly identical.

int angle =45 ;
void subWindowDisplay(void){
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
//naming an output file, and setup for the camera location
//code written between rayglFrameBegin and rayglFrameEnd
//will be translated to one SDL file.
rayglFrameBegin
("testout.pov",320,240,1000,320,240,0,0,0,50);

glLoadIdentity();
glTranslatef(45,45,45);
glRotatef(angle,1.0,-1.0,0.0);
//front face
rayglColor3f(1.0,1.0,1.0);
rayglBegin(GL_POLYGON);
 rayglVertex3i(-20,-20,20);
 rayglVertex3i(20,-20,20);
 rayglVertex3i(20,20,20);
 rayglVertex3i(-20,20,20);
rayglEnd();
//right face
rayglColor3f(1.0,0.0,0.0);
rayglBegin(GL_POLYGON);
 rayglVertex3i(20,-20,20);
 rayglVertex3i(20,-20,-20);
 rayglVertex3i(20,20,-20);
 rayglVertex3i(20,20,20);
rayglEnd();
//top face
rayglColor3f(0.0,1.0,0.0);
rayglBegin(GL_POLYGON);
 rayglVertex3i(-20,20,20);
 rayglVertex3i(20,20,20);
 rayglVertex3i(20,20,-20);
 rayglVertex3i(-20,20,-20);
rayglEnd();
glutSwapBuffers();
rayglFrameEnd();
}

POVRay SDL code

global_settings {ambient_light rgb <1,1,1>}#declare cam_locx = 320;

77

#declare cam_locy = 240;
#declare cam_locz = 1000;
#declare cam_lookx = 320;
#declare cam_looky = 240;
#declare cam_lookz = 0;
#declare cam_rx = 0;
#declare cam_ry = 0;
#declare cam_rz = 0;
camera {
 location <cam_locx, cam_locy, cam_locz>
 up <0,1,0>
 right <-1.33,0,0>
 rotate <cam_rx, cam_ry, cam_rz>
 look_at <cam_lookx, cam_looky, cam_lookz>
}
light_source {
 <0, 0, 50>
 color rgb <1, 1, 1>
 parallel
 point_at <0,0,0>
}

polygon{
5,

<-20,-20,20>
<20,-20,20>
<20,20,20>
<-20,20,20>
<-20,-20,20>
 texture {
 pigment{color rgb <1.000000,1.000000,1.000000>}
 }

matrix <0.853553,-0.146447,0.500000,
-0.146447,0.853553,0.500000,
-0.500000,-0.500000,0.707107,
45.000000,45.000000,45.000000>

}
polygon{

5,
<20,-20,20>
<20,-20,-20>
<20,20,-20>
<20,20,20>
<20,-20,20>
 texture {
 pigment{color rgb <1.000000,0.000000,0.000000>}

88

 }
matrix <0.853553,-0.146447,0.500000,

-0.146447,0.853553,0.500000,
-0.500000,-0.500000,0.707107,
45.000000,45.000000,45.000000>

}
polygon{

5,
<-20,20,20>
<20,20,20>
<20,20,-20>
<-20,20,-20>
<-20,20,20>
 texture {
 pigment{color rgb <0.000000,1.000000,0.000000>}
 }

matrix <0.853553,-0.146447,0.500000,
-0.146447,0.853553,0.500000,
-0.500000,-0.500000,0.707107,
45.000000,45.000000,45.000000>

}

5. Conclusion

Compared to the limited lighting models of raster graphics approaches, raytracing
provides complex lighting models and a means to render high quality photorealistic
scenes. However, OpenGL is a standard graphics API that is commonly known among
computer graphics programmers. To provide both ease of use and advanced lighting
effects RayGL combines the familiar API used by OpenGL with the rendering features of
the POVRAY raytracer. RayGL allows existing programs written for the OpenGL
renderer to be ported to a raytracing engine with minimal alteration to the original code.
Because RayGL translates OpenGL commands into a SDL, programmers who are
familiar with the OpenGL API can create raytraced images without the need to learn an
application specific SDL. Furthermore, since RayGL creates each frame as an
independent SDL code file, it can be easily adapted for use with a computer cluster where
each file is distributed to a different node of the cluster and rendered independently in
parallel.

6. Future work

RayGL is implemented using a combination of POVRay, OpenGL, and
GLUT/FreeGLUT, the next step is to expand support for RayGL to other raytracing and
window management systems. Because the RayGL API is limited to functionality present

99

in OpenGL and GLUT/FreeGLUT, development of a raytracing engine exclusively for
RayGL will also be investigated.

References

Dietrich, A., Wald, I. And Slusallek, P. 2003. The OpenRT Application Programming
Interface - Towards A Common API for Interactive Ray Tracing. In Proceedings of the
2003 OpenSG Symposium, Eurographics Association, Darmstadt, Germany, April 1-2,
2003, pages 23-31

Maerivoet, S. 2001-2002 Advanced Computer Graphics Using OpenGL.
http://svengl.dyns.cx

Marion, J., Thornton S. 1995. Classical Dynamics of Particles and Systems. Fourth ed.
Harcourt College Publishers

Schmittler, J., Dahmen, T., Pohl, D., Vogelgesan, C., and Slusallek, P. Ray Tracing For
Current And Future Games, Published at 34. Jahrestagung det Geselleschaft für
Informatik 2004

Shreiner, D. 2004. OpenGL Reference Manual, The Official Reference Document to
OpenGL, Version 1.4. Fourth ed. Addison-Wesley

Shreiner, D., Woo, M., Neider, J., and Davis, T. 2006. OpenGL Programming Guide,
The Official Guide to Learning OpenGL, Version 2. Fifth ed. Addison-Wesley

Wald, I., Benthin, C., and Slusallek, P. OpenRT - A Scalable and Flexible Rendering
Engine for Interactive 3D Graphics, Technical report, TR-2002-01, Saarland University

1010

