
Improving Sparse Matrix-vector Product Kernel
Performance and Accessibility

James M. Willenbring and Andrew A. Anda
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

wija0304@stcloudstate.edu
aanda@stcloudstate.edu

Michael A. Heroux
Computational Mathematics and Algorithms

Sandia National Laboratories
Albuquerque, NM 87185

maherou@sandia.gov

Abstract

Tuning dense Linear Algebra topics has been a topic of intense research. Less research has
been dedicated to sparse kernel tuning. Many of the issues associated with tuning sparse
kernels are different than dense kernel tuning issues.
The Optimized Sparse Kernel Interface (OSKI) from the Berkeley Benchmarking and Opti-
mization Group (BeBOP) is a recently released software package providing automatically
tuned sparse computational kernels. The Trilinos Project, developed primarily at Sandia
National Laboratories, targets the development of robust numerical algorithms. Trilinos
utilizes existing libraries for improving performance including the various implementa-
tions of the BLAS, but does not currently have access to any automatically tuned sparse
numerical kernels.
Our current efforts focus on making OSKI functionality available to Trilinos via a tem-
plated Trilinos package called Kokkos. We describe an interface to an optimized sparse
matrix-vector product kernel which makes the kernel accessible to the many scientific ap-
plications that rely on Trilinos for solver capabilities.
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1 Background

For a wide array of scientific problems, the cost of computing a solution is dominated by
a very small number of lines of code, termed kernels. These computationally expensive
kernels often perform a matrix-vector or matrix-matrix operation, such as a matrix-vector
multiply. It is valuable to distinguish between operations involving dense matrices and
operations involving sparse matrices. A dense matrix has enough nonzero values that it
makes sense to store and operate on every entry in the matrix. Conversely, a sparse matrix
contains mostly zero values, enough that it is worthwhile to operate on and store only the
nonzero values. In general, it is not possible to determine if a matrix should be handled
as sparse or dense. The answer may depend on many factors including the operation to be
performed, and the machine on which the operation will take place.
Tuning dense linear algebra kernels has been a topic of intense research. Tuning a kernel
refers to modifying the kernel in some way to improve performance. The modifications
could be based on the properties of the matrix, platform, or both. The Basic Linear Algebra
Subprograms (BLAS) [8] [2] are a set of Fortran routines that perform many basic vector
and dense matrix operations. Several vendors supply machine specific BLAS implemen-
tations. These hand tuned libraries exploit specific architectural characteristics to improve
performance. There are also many projects that provide BLAS implementations that are or
can be automatically tuned for specific architectures, e.g. ATLAS [10] and PHiPAC [1].
When installing a self-tuning BLAS implementation such as ATLAS, a suite of benchmarks
are run to determine the highest performance way to run certain kernels. Instruction cache
size, level one data cache size, and the number of registers, for example, can dictate how
many times to unroll a loop within a particular routine. Performance will be reduced if
the loop is unrolled too few times because there will not be enough instructions available
to keep the pipeline full. Unrolling the loop too many times will cause unnecessary cache
misses, which lead to significant performance degradation.
Less research has been dedicated to sparse kernel tuning than has been dedicated to dense
kernel tuning. In addition, the properties of a sparse matrix make it generally more dif-
ficult to write high performance kernels for sparse matrix operations than dense matrix
operations. We will examine this issue further in Section 1.3. First we will discuss an
automatically tuned sparse kernel library called OSKI [9] as well as a software project that
targets the development of a wide array of robust numerical algorithms called Trilinos [4].

1.1 OSKI

The Optimized Sparse Kernel Interface (OSKI) from the Berkeley Benchmarking and Opti-
mization Group (BeBOP) is a recently released software package providing automatically
tuned sparse computational kernels. OSKI has a BLAS-style interface, meaning that in-
dividual routines are called based on a number of arguments that are passed including
pointers to the matrix and vector data, and dimensions of the matrices. OSKI also provides
a parameter list input (a way to specify a variable number of inputs) that can be used to
indicate the properties of a given problem that OSKI can exploit during the tuning process.
The more information a user can provide, the less work it is for OSKI to automatically tune
because it narrows down the number of tuning techniques that have to be tried.
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1.2 Trilinos

As mentioned above, the Trilinos Project targets the development of robust numerical al-
gorithms. Roughly thirty packages comprise Trilinos. Each package is developed by a
small, largely autonomous development team and contains implementations of a number
of related algorithms, a basic set of container classes, such as those for matrices or vectors,
or generally useful utility classes.
Trilinos utilizes existing libraries for improving performance including the various imple-
mentations of the BLAS, but does not currently have access to any automatically tuned
sparse numerical kernels. This project has focused on making OSKI functionality available
to Trilinos via a templated1 Trilinos package called Kokkos [7]. Kokkos defines interfaces
for software developers to implement for the purpose of providing tuned routines. Kokkos
also provides default implementations of these interfaces and customized container classes
for sparse linear algebra libraries and applications.

1.3 Sparse Matrix-Vector Multiplication

It is much more difficult to obtain high performance when performing sparse matrix-vector
multiplication than when performing dense matrix-vector multiplication. Dense matrix-
vector multiplication can achieve good temporal locality and excellent spacial locality,
which makes it relatively easy to write high performance dense matrix-vector multipli-
cation kernels.
Temporal locality is a measure of the degree to which values are repeatedly referenced
in a short period. Referencing a value twice within a short period of time increases the
probability that the value is still near the ALU (in a register or cache). After a value is
retrieved from memory and while it is still close to the processor, subsequent references to
that value are very inexpensive. A problem has good spacial locality if referencing a value
in memory implies that nearby values are likely to be referenced in the near future.
The matrix in a row-wise dense matrix-vector multiplication operation exhibits good spa-
cial locality because the values are accessed across the rows. The vector exhibits good
spacial and temporal locality because the vector is used repeatedly and is accessed in order.
For relatively large problems, blocking can be employed to achieve temporal locality on the
vector. Blocking refers to the idea of breaking the matrix into rectangular blocks and the
vector into segments corresponding to the number of columns in each block of the matrix
and then treating each block as its own independent matrix-vector multiplication problem.
This is necessary when the problem is big enough that the beginning of the vector is no
longer in cache when multiplication by the next row of the matrix begins. Blocking is also
very effective for matrix-multivector multiplication and matrix-matrix multiplication, but
those topics are beyond the scope of this paper.
Achieving high performance for sparse matrix-vector multiplication is challenging. When
most of the values in the matrix are zero, the temporal and spacial locality on the vector
are easily lost because of the irregular data access patterns. In addition, more data per
nonzero in the matrix, specifically the value and the index of the value, needs to be stored

1Templates can be used in C++ to specify generic data types.
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which effectively reduces the size of the cache and increases the number of compulsory
load operations per floating-point operation.
We will consider two types of sparse matrices for this project, those generated from the
discretization of partial differential equations (PDEs), which are the most commonly en-
countered type of sparse matrix, and those generated from circuit problems. We will simply
refer to these matrices as PDE matrices and circuit matrices.
The structure of PDE matrices tends to contain small dense blocks (or the matrices can be
permuted to extract such blocks). Dense operations can then be performed on these dense
blocks to improve performance. Circuit matrices are more sparse than PDE matrices and
do not typically exhibit this block structure. An example of a PDE matrix can be seen in
Figure 1. The black portions of the matrix denote the locations of nonzero values. This
matrix is a finite element model of a heart, and is 3,557 by 3,557 with approximately 390
nonzero values per row. An example of a circuit matrix can be seen in Figure 2. This
circuit matrix is 430 x 430 with only about 3.6 nonzero values per row. Both matrices
were obtained from the University of Florida Sparse Matrix Collection [3], which has been
compiled by Tim Davis. Numerous people have submitted matrices to the collection. The
names of the contributors of the matrices in the collection are available on the website.

Figure 1: An Example of a PDE Matrix

Looking at the two figures it is easy to see the block structure of the PDE matrix and the
lack of block structure in the circuit matrix.
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Figure 2: An Example of a Circuit Matrix

2 Objective and Motivation

Developing an interface from Kokkos to OSKI to provide Trilinos with access to OSKI’s
automatically tuned sparse matrix-vector multiplication kernel is the primary objective of
this phase of the project.
Kokkos has always been able to take advantage of optimized dense BLAS kernels, but the
available sparse kernels were not highly optimized. Significant performance improvements
provided by this interface may lead to additional interfaces to OSKI functionality in the
future. Improving the performance of the sparse kernels available to Kokkos would signifi-
cantly contribute to the overall performance of Trilinos and therefore the many applications
that use Trilinos libraries because of the high percentage of time that is spent in important
sparse kernels.

3 Implementation

To integrate OSKI functionality into the Trilinos set of tools, we must make use of OSKI
C-style objects2. Conversion from the default implementation of the Kokkos CisMatrix
class, HbMatrix, to an OSKI compatible matrix was one option, but one that had potential

2The C language does not really have objects but, when coding in C with an object-oriented style, structs
can be used in ways that make them look somewhat like classes.
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limitations including some unnecessary overhead. It would have also been awkward to
collect any additional information that OSKI might be able to use of after an HbMatrix
had already been constructed.
The approach that we took was to design a new OskiMatrix class in Kokkos that pro-
vides an interface to the native OSKI matrix and still implements the CisMatrix class
to insure compatibility with packages that assume the CisMatrix abstract data type.
The methods of the OskiMatrix class are virtually identical to the methods of the
HbMatrix class except that when initializing the structure of the OskiMatrix, it is
possible to include some optional parameters that provide more information about the ma-
trix, although it is not yet possible to pass all of the hints that OSKI can recognize. The
OskiMatrix class also has the restriction that it cannot accept a matrix that is stored in
generalized Harwell-Boeing (HB) matrix format, only classic HB matrix format.
We also created an OskiMultiVector class that implements the Kokkos
MultiVector class. The methods of the OskiMultiVector class are virtually identi-
cal to the methods of the Kokkos DenseMultiVector class. One additional restraint on
the OskiMultiVector class is that currently an OskiMultiVector must be strided
in memory. The DenseMultiVector class allows for more general storage. In practice,
this is not a severe restriction and it could be lifted if necessary.
In addition, we added a simple OskiVector class that inherits from the
OskiMultiVector class. An OskiVector is simply an OskiMultiVector with
exactly one vector. This is the same approach that Epetra [5] uses, but is different than
the approach that Kokkos uses. Kokkos has a DenseVector class that implements
the Vector class. We decided to break away from what Kokkos does in this case be-
cause there is not a clear advantage to the approach that Kokkos adopted, and having
OskiVector inherit from OskiMultiVector prevents a lot of code duplication be-
cause instead of having two versions of a method that takes an OskiMultiVector or an
OskiVector as a parameter, only one is necessary.
The final class we added is the OskiSparseMultiply class that is used to perform the
matrix-vector multiplication. OskiSparseMultiply implements the Kokkos
SparseOperation base class and is analogous to BaseSparseMultiply, which is
the Kokkos class that can be used to multiply an HbMatrix by a DenseMultiVector
or DenseVector. A performance comparison between the OskiSparseMultiply
and BaseSparseMultiply classes is the focus of our results in Section 4.4.
Basic tests for each new class described above were added to the suite of Kokkos tests.
The classes and associated tests are not yet in a releasable state, and are not included in the
current Trilinos release.

4 Performance Tests

4.1 Test Problems

We tested the performance of the OskiSparseMultiply and the
BaseSparseMultiply kernels on nine different sparse matrices of varying size, includ-
ing six PDE matrices and three circuit matrices. All nine matrices are stored in classic HB
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format and were downloaded from the University of Florida Sparse Matrix Collection [3].
The size (number of rows) and type of the matrices, along with a brief description of each
matrix (provided in the matrix file) can be found in Table 1. All of the matrices are square.

Matrix Name Size Type Description
crystk03.rsa 24696 PDE FEM crystal free vibration stiffness matrix

msc10848.rsa 10848 PDE Symmetric test matrix
pwtk.rsa 217918 PDE Pressurized wind tunnel stiffness matrix

psmigr 3.rua 3140 PDE Intercountry migration (sorted columns)
gemat12.rua 4929 PDE Unsymmetric matrix
bcsstk28.rsa 4410 PDE Solid element model
scircuit.rua 170998 Circuit Many parasitics
hcircuit.rua 105676 Circuit No parasitics

memplus.rua 17758 Circuit Memory circuit

Table 1: Summary of Test Matrices

4.2 Test Platforms

The nine matrices were tested on three machines with a total of five different sets of con-
figuration options. All of the machines were either SMP or dual core machines, but the
kernels we ran are not able to take advantage of this potential parallelism. One of the ma-
chines was rebooted with a non-SMP Linux kernel to verify that there were no performance
differences stemming from the kernel. Although the tests were unable to take advantage of
the parallelism, it may have been useful when there was an extra load on the third machine
(which we used for three of the five configurations) as we were unable to secure dedicated
time on that machine.
The first machine, which is named HerouxSMP, has four Intel Pentium III processors run-
ning at 500 MHz, a 512 KB L2 cache and 1 GB total RAM. The machine was used for
one test configuration using GCC 3.2.2 compilers and the following set of compiler flags:
CXXFLAGS=-O3 CFLAGS=-O3 FFLAGS=‘‘-O3 -funroll-all-loops’’.
These flags are suggested for high performance in the Epetra Performance Optimization
Guide [6]. Epetra is a Trilinos package that has a superset of the capabilities of Kokkos,
but can use only real, double precision values.
The second machine, which we shall call Dimension, has a dual core 64-bit Intel Pentium
D 820 processor running at 2.8 GHZ, a 1 MB L2 cache and 1 GB DDR2 SDRAM running
at 533 MHz. The machine was used for one test configuration using GCC 4.0.2 compilers
and the same compiler flags that were used on HerouxSMP.
The third machine, which we shall call Intel, has dual 32-bit 3.06 GHz Xeon processors,
a 512 KB L2 cache and 4 GB total RAM. The machine was used for three test configura-
tions. “Intel GCC” used GCC 3.2.3 compilers and the same compiler flags that were used
on HerouxSMP. The other two configurations used Intel 8.1 compilers. “Intel” used the
following set of compiler flags: CFLAGS=-O3 CXXFLAGS=-O3 FFLAGS=-O3, “Intel
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Opt” used this set:
CFLAGS=‘‘-O3 -tpp7 -mcpu=pentium4 -march=pentium4 -std=c99’’
CXXFLAGS=‘‘-O3 -tpp7 -mcpu=pentium4 -march=pentium4 -std=c99’’
FFLAGS=‘‘-O3 -tpp7 -mcpu=pentium4 -march=pentium4 -std=c99’’,
which is the set of flags that OSKI selected during its configuration. We chose to use the
exact flags that OSKI used for at least one test run to guarantee that compiler flags could
not be credited with any speedup that was realized.
The configuration flags noted above were used to configure Trilinos only. For every ma-
chine, OSKI was configured using its automatic configuration capability. We did not ex-
plicitly specify any optimization flags.

4.3 Test Setup

Each result that is reported is an average of three test runs. Each matrix-vector multiplica-
tion was performed sixty times per test run to ensure that the smaller tests would run for
enough time to obtain an accurate performance measurement.

4.4 Results

The most obvious and important result that we found was that the new OSKI-based Kokkos
kernel showed an average speedup of between 1.73 and 1.98 on the five platforms. We
calculated speedup by dividing the performance (in MFLOPS) of the OSKI-based kernel
by the performance of the existing Kokkos kernel. The average speedup on all problems
for each test platform is shown in Figure 3.

Figure 3: Average Speedup

We predicted that the matrix-vector multiplication kernel performance would be lower for
circuit matrices than for PDE matrices, and that did turn out to be the case. Since OSKI
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uses a wide array of optimization techniques, we were curious to see if the speedup would
be higher for PDE matrices or circuit matrices. Recall that our implementation does not
currently allow users to take advantage of all of the hints about the problem that can be
passed to OSKI improve performance. These results are only meant to be a baseline for de-
fault behavior. It turns out that the average speedups for PDE matrices and circuit matrices
were very close, ranging from 1.67 to 2.01 for PDE matrices and 1.85 to 1.98 for circuit
matrices. The average speedup for each problem type is shown in Figure 4.

Figure 4: Average Speedup by Matrix Type

Another interesting result is the performance in MFLOPS considering both problem type
and whether or not an OSKI-based kernel was used to perform the matrix-vector multipli-
cation. This information is provided in Figure 5. In this figure, we see that the performance
of the OSKI enhanced kernels for circuit problems turned out to be higher than the per-
formance of the existing Kokkos kernels for PDE problems! However, we cannot make
a general conclusion based on this data because we are using small sampling of PDE and
circuit matrices and there are too many variables involved including matrix size, number
of nonzero values, etc. The matrix size and the number of nonzero values are significant
because in all of the tests that we ran, including some very small problems not reported
here, there was a definite correlation between problem size and performance, which is not
surprising.
Despite our inability to determine if the performance of the OSKI-based kernels for circuit
problems is in fact generally higher than the performance of the existing Kokkos kernels for
PDE problems, by looking at the specific performance results for every problem on every
platform, and considering the fact that we are using a variety of both PDE and circuit ma-
trix problem sizes, we can see that the performance of the OSKI-based kernels for circuit
problems is at least comparable to the performance of the existing Kokkos kernels for PDE
problems. On HerouxSMP and Dimension, the performance of every circuit problem using
OSKI-based kernels is higher than the performance of every PDE problem when not using
the OSKI-based kernels. On Intel, there are a handful of exceptions to this observation
across the three configurations. This is an exciting observation because using the OSKI en-
hanced kernels, it is now possible for Kokkos users to get performance on circuit problems

8



Figure 5: How OSKI Affects Performance

that is comparable to what was previously possible only on PDE problems. These detailed
results can be found in Figure 6, Figure 7, and Figure 8. Note that along the x-axis of the
graphs in these figures that the name of the matrix followed by an “O” indicates that the
performance listed is for the OSKI-based kernel.

Figure 6: Performance Details by Problem

It is interesting to note that other sets of compiler flags were tested, including not unrolling
loops and lower levels of optimizations, and for our particular kernels, the results were very
similar. More importantly, the performance and speedups were very consistent across test
runs, which makes it easier to draw conclusions from the test results.
For example, it was simple to conclude that the OSKI interface improved performance
because every individual test run for every problem that we ran (including some problems
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Figure 7: Performance Details by Problem

not reported here that were as small as 4 by 4) on every platform, showed a performance
improvement using the OSKI-based kernel. The performance of both kernels decreased as
the problem size decreased, but the minimum speedup that was seen for any problem of
any size was 1.06 for the 4 by 4 problem. We did not include this in our primary results
because of the size of the problem, but we did want to run the test to verify that there is not
significant overhead associated with calling our interface.

5 Future Work

Given the performance improvements that OSKI has provided, we plan to write additional,
and more flexible Kokkos interfaces to OSKI. For example, interfaces to OSKI’s triangular
solve and matrix power times a vector (Anx) capabilities could be added. We will also
consider adding the ability to pass additional information about the problem to OSKI.
Also, we will research tuning techniques for improving the performance of circuit matrix
problems, which despite the fact that circuit matrix problems are less common than PDE
matrix problems, is an important research area.

6 Conclusion

We have introduced four new Kokkos classes that provide an interface to OSKI’s sparse
matrix-vector multiplication kernel. We then presented performance results comparing the
performance of this new interface to the existing Kokkos sparse matrix-vector multiplica-
tion kernel. Using the new interface, we achieved a speedup of more than 1.9, on average,
for both PDE matrix and circuit matrix problems.
In addition, despite the fact that the performance for circuit problems is naturally lower
than the performance for PDE problems, without any hand-tuning, the interface provides
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Figure 8: Performance Details by Problem

Kokkos users with a level of performance for circuit problems that is comparable to what
was formerly only available for PDE problems.
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