
Alice in CS 1

Mark Vellinga
Computer Science Department

Northwestern College
Orange City, IA 51041
vellinga@nwciowa.edu

ABSTRACT

In learning to program, some students struggle with many unknowns including the syntax
of the language, workings of the Integrated Development Environment (IDE), problem
solving, and the use of common programming constructs. A student’s success in the class
hinges on their ability to manage this fight and to cope with the number of unknowns.
This paper presents an alternative in using Alice, a 3D interactive environment, as an
attempt to help alleviate some of these student concerns.

INTRODUCTION

Students in CS 1 have a wide array of computing backgrounds they bring with them upon
entry to the course. Some students have taken a rigorous programming course, have a
strong mathematics background or have a basic idea of what programming entails, while
other students lack programming experience or an adequate mathematics background.

There is also a large selection of concepts to learn in CS 1. A fundamental goal of most
CS 1 courses would be to improve the problem solving skills of the students. These skills
would be developed through the practice of designing and writing programs. The
programs would be written in a language using an integrated development environment
(IDE). So before the student can work on the improvement of problem solving, they must
learn the workings of the IDE and the basic syntax of a language. Along with the
individual constructs of the language, the student has a number of topics to learn and
understand all at the same time. The success of the student in the course quite often
depends on how well they are able to develop an understanding of each one of these
components. Of course, this says nothing about learning to put all of the constructs
together to write a satisfactory program. There seems to be too many things for the
average student to juggle at the same time to make the course effective.

A common problem then is how does a teacher help the student manage all of these
variables at one time? An instructor must balance between students with varying degrees
of background in mathematics and experiences with a programming language. It could
very well be the case that both extremes of the range of student could excel in the field of
computer science. An instructor must also balance the development of a CS 1 course
with regard to the range of concepts to expand in the learning process for the students.
Randy Pausch summarizes a problem in teaching computer science: Too many of these
classes require students to learn the basics of computer science by creating programs that
sort numbers or perform other rudimentary tasks divorced from real-world applications or
interests. Students also get overwhelmed by the object-oriented approach used in many
introductory classes. This approach requires them to begin mastering abstract concepts
such as objects and classes immediately, in addition to programming syntax and more
fundamental concepts such as types, variables and references. [8] Without the use of a CS
0 course, an instructor would need to find an effective way to communicate the world of
computer science to each student. This must be done in a way to not only inform the
student but also attract and retain interested students to the world of computer science.

2

COMMON GROUND

Beginning the course from a common ground applicable to all students would be an ideal
situation. From this beginning, the class could cohere in a unified fashion. The common
ground should include a number of features beginning with a mutual understanding of
what is included in the goals of the course. A student's background makes a difference in
the ability to do well in the first computer science course. One advantage is the ability for
some students to have an idea of what programming is about. This knowledge does not
guarantee excellent performance in a CS 1 course, but does seem to give a certain amount
of confidence to a beginning student. It was the author's experience in more than one CS
1 course that students would leave the course stating "I had no idea this course would be
like this." This would occur even though the class was informed (or maybe better to say
"warned") about the content of the course. For inexperienced students, there are just too
many concepts to grasp and digest as they try to understand the idea of programming.
Giving the students an opportunity to slowly and confidently explore this new subject is
something that would enhance their learning and understanding processes. Hearing from
the instructor is one thing, but experiencing it is better. Ensuring a successful
programming experience for students is critical to the success of all students.

The common ground should also include a tangible understanding of terminology. The
learning process for the student should include not only the proper introduction and
explanation of each individual term, but also how the term relates or interacts with other
terms that have been discussed. It seems that we are building a "learning world" for our
students and want to be sure that the student has all of the necessary tools and is able to
use the tools appropriately. Terms such as object, class, method, function, and attributes
are important enough that a beginning student should be given time to process their
meaning with regard to a programming language.

Finally, the common ground should also include an understanding of the primary
programming constructs including loops, conditions, and sequential processing. Having
an idea of basic programming constructs is also an advantage for the beginning student.
Separating the notions of programming constructs and programming is crucial in learning
to program. Giving the students the ability to understand individual constructs allows
them to build a program from the constructs, or as Soloway has stated "putting the pieces
together". With this confidence in basic constructs, the beginning student can figure out
which to use and how to coordinate them in a program. Without this background, many
students are not prepared to solve problems in the way needed for a computer program.
Giving the students an opportunity to learn the constructs and effectively use them in
their programs helps to develop this understanding.

3

ALICE

The programming environment that students use for their programs plays a significant
role in the laying of the common ground. The ability to animate program execution and
to visualize the program is a key component in support of the common ground. The
animation of program execution can be used to help the student put the pieces together,
while visualization is one approach to assist the student in finding out what task each
piece can be expected to perform and how the pieces work together to perform the overall
task of solving the problem at hand. [4]

Alice, which is freely available from http://www.alice.org, is such an environment. Alice
is a 3D Interactive Graphics Programming Environment built by the Stage 3 Research
Group at Carnegie Mellon University under the direction of Pausch. It is an object-
oriented language that uses an animation and storyboard approach to teach students the
fundamental ideas behind object oriented programming without requiring an undue focus
on syntax. The Alice environment uses a drag-and-drop editor for composing object-
oriented programs so that the syntax errors that so frustrate beginning programmers are
eliminated. In addition, you'll get immediate visual feedback on the effect of your
program instructions since the Alice environment encourages programmers to experiment
and to explore three-dimensional programming techniques in an interpreted, object-
oriented environment. Alice's primary design goal is to be accessible to people who don't
necessarily possess a great deal of mathematical training or graphics programming
experience, without unduly tying the hands of the expert programmer.

A screen capture of the interface is shown in Figure 1.

Figure 1: Alice Interface.

4

The interface reflects a world that contains objects. Figure 1 shows the objects in the
world in the upper left object tree, the initial scene in the upper center, a list of events in
this world in the upper right, a code editor in the lower right, and details about the world
and its objects in the lower left. The overlapping window tabs in the world's details allow
for the examination of individual properties or characteristics, dragging methods or
actions into the code editor, and the use of functions to gain information about the state of
an object. Examples of built-in functions include “distance to y” and “is within x meters
of y” which return special information about the objects in question. [5]

Each object encapsulates its own private properties such as height, width, and location
and has its own member methods such as “move” and” “turn”. Figure 1 contains an
initial scene that includes a fire truck and Alice herself. Once the virtual world is
initialized, the program code is created using a drag-and-drop smart editor. Using the
mouse, an object is dragged into the editor where drop-down menus allow the student to
select from primitive methods that send a message to the object. The words in each line
of code cannot be edited and only syntactically correct dragging and dropping can occur.
Hence, there are no syntax errors; students always produce programs that run without
compile errors. Students can also write their own user-defined methods and functions,
which are automatically added to the drop-down menus. [4]

ALICE LANGUAGE CONSTRUCTS

Decisions

Decisions are supported in Alice. For example in Figure 2, if the distance between Alice
and the fire truck is less than 25 meters, the student sees Alice turn right 2 revolutions.
Otherwise, Alice will jump up and down.

This example illustrates some important aspects of using Alice. The actual code
produced is done automatically rather than worrying about the particulars of punctuation.
The net result is a gain from this reduction in complexity. Students are able to focus on
the if-else construct itself and the terminology, rather than dealing with the frustration of
parentheses, commas, and semicolons. It also should be noted that an option is available
in Alice to display the code in Java form, so the transition to Java syntax at a later date
will not be completely new.

5

Figure 2: If-Else construct in Alice.

Looping

The possibility exists for constructing the traditional while loop or a loop mechanism
similar to a for loop. In this example (Figure 3a), Alice will move toward the fire truck as
long as she is not within 10 meters of it. Figure 3b shows the layout of a for loop in
Alice.

Figure 3a: While loop in Alice.

6

Figure 3b: Alice's for loop.

Processing

Alice can execute instructions in sequential order, with a Do in order block, and
concurrently with a Do together block. The default is a Do in order so all of the
examples shown involving a Do in order could have gone without the construct.

Methods and parameters

Figure 4 shows 2 methods (myFirstMethod and speaks), the method calls and the
parameters. The method myFirstMethod is a method similar to the main method in Java.
It is automatically created by Alice and is also the method that will be called when the
program is run. Also note that the user-defined method speaks is now part of the other
methods that belong to the Alice object as shown on the left of Figure 4. This modified
object could be saved with its method speaks to be inherited by another world.

7

Figure 4: Method example in Alice (myFirstMethod and speaks).

COURSE PLAN

It was the author's goal to experiment with this idea of common ground. The intent was
to use Alice for the first 3 weeks of a CS 1 course. The expectation was that this
exposure would strengthen the students' transition to learning Java.

It was the thinking of this author that using Alice would make it easier to learn Java in
some aspects because of the ideas the students would have about key terms like object,
class and method. With Alice the students would experience practical hands-on building
of their own worlds which included placing and coordinating objects. Since every 3D
graphic in Alice is an object, the idea of object and class would be an easy concept to
build up and reinforce.

By using Alice, the students would be gently informed about the world of programming
and fairly insured of success in creating their own programs; therefore the confidence
level of the students would be enhanced. The students would also gain in familiarity, so
the transition to Java would not be a completely new experience. The use of Alice's
visualization of the world also would be very helpful with the development of a student's
understanding with regard to what their program is actually doing.

Finally, students would be exposed to common programming constructs. Using Alice to
lay the groundwork for the syntax that the students will see again later in the course when
using Java would enable a better understanding of the fundamental constructs used.

8

OBSERVATIONS

The course plan has been carried out for only 1 semester so the conclusions are purely
speculative. Given the course plan and rationale for trying Alice in CS 1, the students
seemed to appreciate the intent of using Alice. An informal end-of-the-course survey
inquiring about the benefits of Alice with regard to learning to program in Java showed
that most students, whether they did well in the course or not, thought Alice helped
contextualize classes and objects.

The students thought their experience with Alice helped them better understand loops and
conditionals in Java. Given the introduction with Alice it was easy for the students to
understand and use nested conditionals and nested loops. The use of Alice's visualization
tools to "see" what the program is doing was also a help to the student.

Students were positive about their brief introduction to methods and parameter passing in
Alice. Discussing methods in Alice helped sell the idea that solving a problem by
breaking it up into smaller parts is a good thing. The students found making a method
better by using parameters to allow for communication between the calling statement and
the method being called made good, practical sense to the student.

As mentioned by Cooper, Dann and Pausch in discussing the merits of Alice: "A strength
of our approach is also a weakness." [4] Students do not develop that good old-fashioned,
detailed sense of syntax. The experience of working through compiler errors looking for
a missing semi-colon or the misspelling of a key word is a lost opportunity.

Another negative is similar to other problems with software packages in that the learning
curve for manipulating Alice and methods is not a daunting task, but it does take time. A
student may have to spend more time than 3 weeks in the use of Alice in order to become
very proficient with the product.

Finally, student retention was not improved from this 1 semester experiment. Students
still seemed to have the same types of experiences as in past years regarding
programming. It was the author's perception at times during the semester that using Alice
was helpful but also distracting. The distraction may be a perception that is caused by the
author's years of experience in teaching Java in a more traditional way. But the inclusion
of Alice seemed to give the CS 1 course a softer side with less rigor and intensity.

9

CONCLUSIONS

The author believes the experiment was a good one and worth trying again, primarily for
the reason of this quote from Bennedsen and Caspersen: The idea of revealing the
programming process is not new. Anyone with a reasonable intelligence and some grasp
of basic logical and mathematical concepts can learn to program; what is required is a
way to demystify the programming process and help students to understand it, analyze
their work, and most importantly gain the confidence in themselves that will allow them
to learn the skills they need to become proficient. [2]

When the CS 1 course is offered next, the author will continue to use Alice at the
beginning of the course, although possibly for a shorter period of time.

REFERENCES

[1] Alice v. 2.0, www.alice.org, retrieved March 8, 2006.

[2] Bennedsen, J., Caspersen, M., Revealing the programming process, Proceedings of
the 36th SIGCSE Technical Symposium on Computer Science Education, 37, (1), 176-
190, 2004.

[3] Carlisle, M., Wilson, T., Humphries, J., Hadfield, S., RAPTOR: A visual
programming environment for teaching algorithmic problem solving, Proceedings of
the 36th SIGCSE Technical Symposium on Computer Science Education, 37, (1), 176-
180, 2004.

[4] Cooper, S., Dann, W., Pausch, R., Teaching objects-first in introductory computer
science, Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education, 35, (1), 191-195, 2003.

[5] Cooper, S., Dann, W., Pausch, R., Alice: A 3-D tool for introductory programming
concepts, Consortium for Computing in Small Colleges, 15, (5), 108-117.

[6] Dann, W., Cooper, S., Pausch, R., Learning to Program with Alice, Upper Saddle
River, NJ: Pearson Prentice Hall, 2006.

[7] Gross, P., Powers, K., Evaluating assessments of novice programming
environments, Proceedings of the 2005 International Workshop on Computing
Education, 99-110, 2005.

[8] More than fun and games: New computer science courses attract students with
educational games, www.microsoft.com/presspass/features/2005/sep05/09-
12CSGames.mspx, September 12, 2005

[9] Ramalingam, V., LaBelle, D., Wiedenbeck, S., Self-efficacy and mental models in

10

learning to program, Proceedings of the 9th ITiCSE Conference on Innovation and
Technology in Computer Science Education, 36, (3), 171-175, 2004.

11

