A New Look at the Standardization of Scientific Data

Ryan Skar
Computer Science Department
Augsburg College
Minneapolis, MN 55454
skar@augsburg.edu

This work was supported by NASA grant NNGO5SGE18G.

Abstract

Scientists in the field of Space and Solar Physics have in the last few years accumulated
several terabits of data. Data collected from these sites are stored at several places
throughout the world, all in different formats and with different modes of access. In order
for this data to be useful there must be a standard way to define the data available. The
SPASE consortium has been working to make all these different data available to the
scientific community.

A uniform set of terms has been defined for how data are to be described by SPASE.
This was accomplished using an XML schema. The next step is to make a uniform way
to store, add to and search the different sets of data from anywhere in the world. This
paper will explain the software to accomplish this.

1 Introduction

Data has been around for as long as people have tried to quantify the world around them.
Data can be anything from someone’s shoe size to the change in the magnetic field along
the vertical axis. It is through using data that so many accomplishments have been made,
but with this data comes the problem of standardization. The problem comes from the
fact that when data are taken in, the purpose is to represent something else that is found in
the environment. Considering that data simplifies the various characterizations which the
object possesses (e.g., height, weight, color), there can be some confusion as to what data
means. s the length of an object one foot or two feet? Whose feet? One of the earliest
measurements, the foot, dating back to Babylonian times, was modeled after a human
foot [1]. This could be confusing as not everyone’s foot is the same size. This is only
one of the many examples that led to the need for data standardization.

In the 21* century, standard units exist to measure the data that is collected. These units
help to eliminate some of the confusion of what data means, but there is more to
understanding data than the units used when recording data. One must also think of the
sample rate at which data is taken. A measurement can be taken only once or a series of
times. Also how accurate do you want the measurement to be? The height of an object
could be taken in m, cm, mm, etc. These different decisions can change the look of data.
After all the data are collected they must also be stored. This could be accomplished in a
text file, a binary file or maybe even a graph. These decisions have been made by
scientists throughout history.

In the area of Space and Solar Physics the need for easy access to data is growing. With
several different types of instruments from locations both on the earth’s surface and in
space, finding the data needed has become a difficult task. Each group uses a slightly
different way of obtaining and storing the data and there is no way of knowing what data
is stored at a specific site. Also more of the research in the area of Space and Solar
Physics is requiring several different sources of data. This increases the need for a
standard way of dealing with data.

1.1 Previous Attempts at Standardization

Due to the fact that the data standardization problem has been around for a while there
have been several attempts to create a standard way for storing data. The goal was to
make data readable even if nothing was known about the data before hand. Most
attempts tried to make the data files so that they were self describing. A header would be
added to the beginning of the file to describe the data that followed. The way that each
standard made the header and stored the data set them apart. Some of the more common
data standards are: Common Data Format (CDF), Flexible Image Transport System
(FITS), and Hierarchical Data Format (HDF). These different attempts have had varying

degrees of success and are still used today, but no one standard has been accepted in all
the scientific community.

The Common Data Format was created by NASA to help with their Climate Data System
[2]. It created an abstract way of accessing, editing and storing data. The goal was to
format the data in such a way that it could be manipulated by a universal program. The
standard consisted of a header which contained global descriptions such as title,
documentation, and modification, followed by variable specifications such as field name,
min/max values and order. The data was then stored in an array format following the
header. The problem with the CDF is that it was difficult to describe the data in such a
way that a universal program could manipulate it accurately. Scientists usually left the
data in the format in which the instruments collected it. However, these formats were
usually different than the CDF standard. In order to conform to the CDF standard all the
data had to be converted. This process was very time consuming and required writing a
program to convert from the previous format to the CDF format. In many cases it was
easier to write programs to manipulate the data in the current format, then convert it to
the CDF format and then manipulate the data with the universal program.

The Flexible Image Transport System was similar to the CDF in that it used headers to
describe the data [3]. The difference was that FITS used a more concrete system for
describing data and how the data was stored. The different portions of the file were
divided up into HDUs (Header/Data Units). Each HDU consists of a header unit that
describes the data contained in the HDU. Instead of the header being dynamic it was
restricted to having a fixed length of 2880 bytes. The header also had five required
keywords that must appear in each file. The data in FITS was not limited to being stored
in just ASCII format; there were also image and binary extensions for storing the data.
The option of a binary format made it more versatile than CDF, as large amounts of data
could be condensed when using a binary format. The fact that the headers are more
concrete than the CDF format makes it easier to create a universal data manipulator, but
the problem remains of having to convert the data to conform to the FITS standard.

The Hierarchical Data Format mixes the CDF and FITS standards [4]. Like the FITS
standard the header is of a fixed length with the first 46 bytes identifying the file. The
next part of the file then consists of data descriptor blocks which describe how the data
can be referenced in the file. Each data descriptor block is 12 bytes long which was
divided up into four parts: a two byte tag, a two byte reference number, a four byte offset,
and a four byte length. Following the descriptor blocks the data is stored in a binary data
object. This allows for any part of the data to be accessed individually as each variable
contains an offset where the data are stored. The main drawback of the HDF is the same
as CDF and FITS: the data still needs to be changed to conform to the proper format.

2 SPASE Data Standard

The Space Physics Archive Search and Extract (SPASE) consortium is made up of an
international team of Space and Solar physicists and information scientists [5]. The

SPASE consortium has attempted to address the problem of data standardization from a
new direction. Instead of trying to convert the data into a standard form from which it
can easily be read using a global compiler, SPASE attempts instead to create a standard
set of terms from which data can be defined. Then using these standard ways to define
data it would be easy to catalog the data that is available from around the world. SPASE
is concerned with defining Space and Solar Physics resources. This paradigm follows
closely from that of a “Virtual Observatory.” The basic idea of a Virtual Observatory is
an archive of data and software tools to modify the data available through the web. So far
this paradigm has been successfully applied using the Planetary Data System (PDS) for
Planetary Science and the International Virtual Observatory Alliance (IVOA) for
Astronomy and Astrophysics. SPASE attempts to expand on this model by providing a
database of links to the data and software instead of storing all the data and software in
the database. This allows the database to be significantly smaller while still fulfilling the
same purpose. Once the links have been defined it would be an easy matter to retrieve
the data using simple searches and then use the programs that have already been
developed to manipulate the data.

The focus of the SPASE model is to define products, similar groups of data, image and
plot files. The files can be generalized in this way because they share the same purpose
and format. The definition of products does not need to be exacting as it does not need to
describe the data completely; the definition only needs to describe the basic information
about the data, enough to understand what the data represents, and to call the data. This
generalization makes it easy to search for data with simple criteria such as source,
measurement description, and time collected without having to worry about all the
specifics.

In order to define the vocabulary that is to be used to describe data, the SPASE
consortium examined the current existing models and from them took the vocabulary
needed to accurately describe the data. They found that the product definitions could be
split into Numerical, Data Display and Catalogue. These types could then be linked to
the resource types Observatory, Repository, Instrument, and Person which would give a
complete description of the entire product. In order to define this standard, the SPASE
consortium used eXtensible Markup Language (XML). Using XML schema they were
able to create a hierarchical representation of what parts needed to appear in each of the
main types. The XML schema allowed them to show, using attributes, which elements
were required and which were optional as well as which could appear more than once as
seen in Figure 2.1.

The schema also controlled what would be allowed in any definition of data, filtering all
the parts that were not applicable to the current type. For example, start and stop dates
are not relevant when describing a person. Only the nodes that are children of a product
node would be used to describe the data. The rest would be skipped over. As seen in
Figure 2.1 when a person node is selected a large part of the document is omitted.

<xs:element name="PERSON">
<xs:complexType>

<xs:sequence>
<xs:element ref="RESOURCE_ID"/>
<xs:element minOccurs="0" ref="PERSON_NAME"/>
<xs:element ref="ORGANIZATION _NAME"/>
<xs:element minOccurs="0" ref="ADDRESS"/>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="E-MAIL"/>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="PHONE NUMBER"/>

</xs'seaquence>

</xs:element>

<xs:element name="ORGANIZATION NAME" type="xs:string"/>
<xs:element name="ADDRESS" type="xs:string"/>

<xs:element name="E-MAIL" type="xs:string"/>

<xs:element name="PHONE NUMBER" type="xs:string"/>
<xs:element name="RESOURCE _ID" type="xs:string"/>

3 Imprementaton

Now that a standard data definition is created, the next step is to implement the standard.
There are several different ways that this could be accomplished. Each group of scientists
could apply the standard to their data and post those definitions on their web page.
However, this would not move them very far from where they were before the standard
was developed. The data would be defined in a standard way, but it would be for the
most part inaccessible to the rest of the scientific community. There would be no way to
know if there were Antarctic magnetometer data available for August of 2004 unless each
site was searched individually. This process would take a significant amount of time and
the chances of finding all the data available would still be small. This means that there
must be some way of cataloging the data that is available at one or many central
locations. If this was done, different data definitions could be added into these locations
either manually or automatically. It would then be an easy matter to go to one of these
locations and search for available data which meets the described specifications. The
system needed for this must be available over the web with no downloads required to use.
In light of these goals, Java Servlets appeared to be an appropriate architecture to use in
creating one of these databases.

A servlet is a Java based platform to create web based applications. The servlet still has
all the functionality of a regular Java program as well as the ability to send and receive
Hypertext Transfer Protocol (HTTP) requests. Servlets also have access to a host of Java
Application Program Interfaces (API) including the Java Database Connectivity (JDBC)
API, which allows the servlet to connect to databases. The outline for the process can be
seen in Figure 3.1. _

Server | Client

SRASnE HT L
Schama Choose Type

1iParse XML schema

Z1Send type

Sy CreataelSend Fornm e
e

Serviet Apvarify Required| 1 nL
Fields Filled Display Forms

_—

w; Form

SrShow Sucoess

S hack duplicat
antries

7iadd to database

HTRL
SUGOESS

Cratabase

Figure 3.1 Flow chart for the web interface.

3.1 Validation program

The specifications for the SPASE data standardization are stored in an XML document,
so the first step in getting the interface to work is to load and parse the XML file into a
format that is Java readable. There are three standard ways of parsing an XML
document: Simple API for XML (SAX), Document Object Model (DOM) or JDOM [6].
These different standards were developed by different groups in an effort to make a
standard way of parsing XML. SAX, an open source effort, reads through the XML file
linearly, so it would be difficult to build an interface that uses different nodes more than
once as they would have to be stored manually then looked up when needed again.
DOM, the W3C standard, and JDOM, another open source effort, use a tree like structure,
making it easier to reach nodes in a non-linear fashion. This means that both methods
would work, but JDOM had the added benefit of containing concrete methods accessing
the nodes and their attributes. This made the process of traversing the node structure
easier, which is why JDOM was chosen over the others. Once a method had been chosen
it was an easy matter to parse the XML file.

After the XML schema file was parsed, it could be used to construct Hypertext Markup
Language (HTML) forms. These forms could then be used to add data specifications to a
database. To do this the servlet must know a place to start in the node structure. Due to
the way the schema is set up there are several different data types for which the
specification is defined: Catalog, Display Data, Instrument, Numerical Data, Observatory
and Person. Based on the type of data the schema would be specified using different
starting points. To find out which type of data specification is to be created, a small
HTML form was created to offer the client a choice and then return that value to the
servlet. This allowed the servlet to pick a starting point in the array and start building the
forms for the current specification.

3.2 Form Generation

Once a data type has been picked through the simple HTML form and passed back to the
servlet, the servlet can begin traversing the parsed XML schema. To do this the servlet
must go through the tree in a depth first traversal and grab on to the relevant data found at
each node. The servlet must also follow references to other nodes as they appear in the
traversal.

Traversing through the tree was done using two recursive methods. The first method
worked through each node and accumulated the needed data, such as node name, node
type and node attributes. The method also visits the children of the node in a depth first
fashion as seen in Figure 3.2.

1} Person

2} complexType
3 SE-|I:|LIEI'IEE ..
/f% W\ - . _E =
7 7 ~N -
4} element G} element &) element
5} RESOURCE_ID T} PERSON_MNAME 9} ORGAINIZATION_MNAME

Figure 3.2 Example of a Depth First Search.

This allowed the code for the HTML forms to be created during the traversal. The second
method is used to gather the attributes of each node and to follow any references from one
node to another. The two methods work hand in hand to identify the nodes where data
specifications need to be added and create a form that can be used to input data
specifications. These methods also keep track of the element name of each form created
so that it can later be used to get the values back from the HTML after it has been
modified by the user. To accomplish this, each time a leaf node is accessed, its name is
added to the end of a vector. Also since the node may be accessed more then once at
different parts of the tree, some code must be implemented to differentiate between the
instances of the node each time it is called. To accomplish this, the parent nodes are also
stored as part of the name. For example, the node named email would be [root].[parent].
email with each ancestor separated by a period. This allows for multiple instances of a
form element to occur without confusing which belongs to which. The code is displayed
in Figure 3.3.

Vector formNames = new Vector(); //creates the vector to store the node names
parent = req.getParameter("DataType"); //gets starting type (root value)

//When a node is a non-leaf node the following code in executed.
parent=parent+formName+".";

//When node is a leaf node the following code is executed.
String id = parent+formName;
formNames.add(id);

Figure 3.3 Code for accumulating data fields.

After the form has been created it is then passed by an HTTP request back to the client
where the form then acts the same as an HTML form. The client does not notice any
difference between the first form, where they chose the data type and this one, where they

can add specifications, but the first was static while the other was created dynamically by
the servlet. The form for the data specification looks something like Figure 3.4
depending on what data type was selected.

23 Spase Form Test - Microsoft Internet Explorer B@[g
File ~ Edit “iew Faworites Tools Help -.i*-

A : ; Y — L ZH
4 - | | | | j F i} T o] ;
@ Ea':k L 1-“,l 4 [7] .._l | J')- Searl:h \U.-'-_'l Favuorites

Address "@j I1space. augsburg. edu: 8050 servlet/SpaseTest v | 30 Liriks

>

Gﬂl.-.lgl,e - !screen caphure W !}} Fite Prirt FedEx Kinka's :‘““

PERSOHN
RESOURCE ID| | Required
PERSON NAME|] |
ORGANIZATION NAME|

ADDRESS . |
E-MATL |
PHONE_NUMREE |
[Submit] [Heset]

Figure 3.4 Form for data specification.

3.3 Form Validation

Once the client has received the form, the fields can be edited to match the data. After
the form is complete, it is sent back to the servlet where the values are processed. To
make sure that all the necessary fields were filled, the form needs to undergo some form
of verification. This could either be done on the client side, the server side or both. To
make the validation streamlined, the form validation was done on the client side with the
remaining validation done on the server side. To do the client side validation, a few
JavaScript functions were written to make sure that all required elements were filled.
These functions are generic; to save lines of code, they were placed in a separate file and
accessed from the servlet. The required fields were found during the creation of the
forms and it was therefore easy to add the calls to the JavaScript functions into those
methods using the onblur() operation as seen in Figure 3.5.

if(req)
{

// Prints out a text input to the HTML which cannot be left blank.
out.println("<input type="text' id=""+id+"' name=""+id+

"' ONBLUR=present(this,2"+id+"");>");
//Creates a span that is later used to print error messages if necessary.
out.println("Required");

else
// Prints out a text input field to the HTML with no validation.
out.printIn("<input type="text' name=""+id+"">");

Figure 3.5 Code to produce HTML form fields.

The method checks the value of the element to see if it is empty and if so writes and error
message to the HTML page. The result of the code is client-side element by element
validation as seen in Figure 3.6.

CATATOG) _

REESOUERCE ID | Error: walue required
EESOUERCE _HEADEE _
FEESOUECE_MAWE | | Eequired

Figure 3.6 Client Side Validation.

To ensure that all the required fields are filled in, the entire form is checked again before
submission. In order to confirm that fields (e.g. phone number, email) contain a
particular structure, other JavaScript functions can be implemented in the same way.
Once the form has passed the client side validation it is passed back to the servlet.

After the servlet receives the form via the post request, it takes all the form values and
checks to see that certain values, the IDs for example, are not duplicated. The servlet
does this by creating a connection to the MySQL database using Connector/J a native
driver for JDBC (Java Database Connectivity) [7]. Using this connection the servlet then
compares the values from the current form with those already in the table. If there is a
duplicate entry, the servlet will send the form back to the client and prompt them to
choose a different value for the duplicated entry. This keeps the database free of
duplicated data specifications. If the form passes the server side validation the servlet
adds the form fields to the MySQL database using the insert command. Now the data
description is available to anyone checking the database. If the values have been added
into the database correctly the servlet will send a success message back to the client along
with the information they just added.

4 Benefits

The main advantage of the SPASE standard is that there is no changing of how data are
stored. All that is needed is to add a data specification to the database so that the users
will be able to find it with a search and link to where it is stored. There is no converting
of the data to meet the new standard. This makes it much easier to use than some of the
other formats such as CDF, which requires that data be wrapped in a self describing
header. SPASE does not try to change the data into a new form, but only to list the data
that is available. Another benefit of this implementation is there is no special software
required by the client, so it is easily usable from any computer with Internet access. The
fact that the server side is made up of a XML file and a servlet makes it extremely
portable. The MySQL database need not be local, but can instead be anywhere in the
world allowing several of these servlets to feed into one database. Also as the standard
grows and changes, the servlet itself will need little or no modification since all the rules
are contained in the XML file. This means that to update the servlet to a new version of
the schema all that needs to be done is to destroy and reinitialize the servlet context. This
will load the new XML schema, which makes updating nearly automatic. Due to the fact
that the servlet is written in Java it will be easy to implement new functionality to the
servlet by adding classes which can be easily referenced from the servlet.

5 Future Work

Now that an interface has been created to define and store data descriptions, a method of
searching these definitions must be established. The SPASE standard can describe data
in both a general and a specific way. Therefore, the methods for searching the data can
range from simple field based searches to complex multi-field queries. The focus is on
the ease in which a search is conducted rather than on what methods are used. The search
should seamlessly find data meeting the client’s specifications from local and remote sites
automatically. Data found from a remote site should look identical to data found locally.
The transparency of data regardless of its source is the ultimate goal of SPASE. To
accomplish this goal, new methods to share data between databases must be created and
automated. Once this is accomplished, data will be available from around the world
regardless of where the search originated.

References

[1] O'Connor, J J and Robertson, E F. “The history of measurement.” JOC/EFR.
2003. HTML. Available: HTTP://www-history.mcs.st-
andrews.ac.uk/HistTopics/Measurement. HTML

[2] Space Physics Data Facility. “CDF User's Guide.” Common Data Format. 2006.
pdf. Available: ftp://nssdcftp.gsfc.nasa.gov/standards/cdf/doc/cdf31/cdf3 lug.pdf

[3] High Energy Astrophysics Science Archive Research Center. “A Primer on the
FITS Data Format.” Flexible Image Transport System. 2004. HTML. Available:
HTTP://fits.gsfc.nasa.gov/fits_primer. HTML

10

[4]

[5]

[6]
[7]

National Center for Supercomputing Applications. “HDF4 User’s Guide.”
Hierarchical Data Format. 2003. pdf. Available:
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation/HDF4.2r0/HDF42r0_UserGd.p
df

The SPASE consortium. “Space and Solar Physics Data Model.” Space Physics
Archive and Extract. 2006. pdf. Available:
HTTP://www.igpp.ucla.edu/spase/data/makedoc.php.

McLaughlin, Brett. Java & XML 2" Edition. California: O’Reilly & Associates,
Inc. 2001.

Khan, Faisal. “A Connecting to a MySQL Database using Connector/J JDBC
Driver.” Stardeveloper. 2003. HTML. Available:
HTTP://www.stardeveloper.com/articles/display. HTML?article=2003090401&pa
ge=1

11

