
.NET Framework Support for XML in the Database
Curriculum

Charles M. (Mike) Morrison
Associate Professor

Department of Computer Science
University of WI – Eau Claire

Eau Claire, WI 54701
715 836-4425

morriscm@uwec.edu

ABSTRACT

The eXtensible Markup Language (XML) provides a way to share data among applications
that use different data storage technologies. Teaching database oriented XML concepts is
enhanced when students are assigned exercises illustrating how XML documents are created,
transformed, and validated. This paper explains how Microsoft’s .NET 2.x Framework
classes can be used to work with XML.

1 INTRODUCTION

XML is a topic in most database courses and teaching database oriented XML concepts is
enhanced when students are given exercises illustrating how XML documents are created,
transformed, and validated.

Microsoft’s .NET Framework supports the DOM and SAX models for interacting with XML
documents. The .NET DOM model is implemented through the XmlDocument class. This
requires the more overhead than SAX, but adds the capability of editing an XML document
and traversing back and forth through the nodes in the document. The SAX model is
implemented through the XmlTextReader and XmlTextWriter classes. These SAX classes
provide a fast, non-cached, forward-only method for reading, creating and writing an XML
document.

.NET datasets are objects used to store data retrieved from databases, XML documents, and
other sources. A dataset’s ReadXml method retrieves the data within an XML file and stores
it in the dataset. Datasets can be bound to interface controls that display and allow editing
the data. Any data stored in a dataset, including data retrieved from databases and other
sources, can be written in XML format by calling the dataset’s WriteXml method.

Validating an XML document with an associated XSD is done using a combination of the
XmlReader and XmlReaderSettings classes. An XmlReaderSettings object is associated with
the XSD file. The XmlReader object is associated with the SmlReaderSettings object. Each
XML node is then validated at the time it is retrieved with the XmlReader.

.NET supplies an XSLT processor in its XslCompiledTransform class making XSLTs an
option for transforming an XML document into the different formats that are needed by
applications using different data storage schemas and technologies.

This paper explains how to use the XML classes Microsoft placed in its .NET 2.x Framework
for reading, writing, transforming, and validating XML.

2 XML Overview

As with HTML, XML uses tags and attributes to define data. Unlike HTML, however, XML
allows developers to create custom tags that define data items and relationships.

The original intent of XML was to markup content – XML combined with cascading style
sheets can be used to create custom tags formatting text displayed within browsers. It quickly
became clear, however, that XML-formatted text files, also called XML documents, were
equally well suited for storing structured data in a text file. Since then, XML has become the
common denominator for database applications that share data across multiple organizations,
or that share data across different hardware and software platforms.

1

2.1 XML Document Structure

Individual data items within an XML document are called elements. Elements can have
hierarchical relationships in which one parent element has multiple related child elements.
Figure 1 shows an example of an XML document with a root element named allstudents
containing two child elements named studentdata. Studentdata in turn contains child
elements named lastname and firstname.

<allstudents>
 <studentdata>
 <lastname>Wallen</lastname>
 <firstname>Clifford</firstname>
 </studentdata>
 <studentdata>
 <lastname>Volovsek</lastname>
 <firstname>Marion</firstname>
 </studentdata>
</allstudents>

Figure 1. XML document

2.2 Extensible Stylesheet Language Transformations (XSLTs)

The eXtensible Stylesheet Language, XSL, provides programming commands and structures
to process and format XML data. An XSL program is called an XSL stylesheet or an
eXtensible Stylesheet Language Transformation, XSLT. XSLTs enable programmers to sort,
filter, modify, and format XML data, as well as transform its data structure. Although any
language can be used to transform XML, XSL was specifically designed for this purpose and
can simplify and speed up the process of writing a program to transform XML from one
format to another.

XSL is built on the XML Path Language, XPath, a W3C standard. XPath is used to locate
nodes within an XML document and it also provides a programming language with functions
for working with number, string, and Boolean data values.

XSL templates are used to retrieve XML data, while XPath provides the syntax for describing
the path to a particular part of an XML document, provides a mix of basic programming
language instructions, and provides a number of functions that can be used to describe and
manipulate XML data. XPath paths are similar to directory and folder paths and are specified
with expressions like /inventory/item/inventorysize.

If an application expects to see Figure 1’s data formatted with a root node named students,
child elements named student, and with student having a single child element of
studentname, the XSLT example shown in Figure 3 will transform the Figure 1’s XML into
what is shown in Figure 4.

2

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <students>
 <xsl:for-each select="AllStudents/StudentData">
 <student>
 <studentname>
 <xsl:value-of select="lastname"/>,
 <xsl:value-of select="firstname"/>
 </studentname>
 </student>
 </xsl:for-each>
 </students>
</xsl:template>
</xsl:stylesheet>

Figure 3. XSLT example

<students>
 <student>
 <studentname>Wallen, Clifford</studentname>
 </student>
 <student>
 <studentname>Volovsek, Marion</studentname>
 </student>
<student>

Figure 4. Transformed XML

2.3 XML Schema Definitions

Database tables have fields, field data types, field constraints, and integrity constraints for
primary and foreign keys. XML documents, however, don’t support data types and
constraints. Something additional is needed if this information is to be retained. An XML
Document Type Definition, DTD, specifies which pairs of XML tags are required, which are
optional, and the order in which they should be nested. DTDs are incapable of specifying all
the data types and constraints possible in a relational database, however. XML Schema
Definitions, XSDs, were developed for this purpose and are of more interest to a database
course.

An XML Schema Definition (XSD) defines the data's structure in terms of data types,
relationships, order and grouping mechanisms, and constraints. To validate an XML
document, an external program is used to compare an XML file to its corresponding XSD
file. XSDs can be used to describe an existing relational database structure, and then

3

migrate, or move, the database data to an XML document. The XSD stores all of the
database structure information from the original database while the XML document stores the
actual data. Figure 5 shows the part of a schema definition for the XML in Figure 1
specifying lastname and firstname are strings limited to 30 characters and that lastname is
required and firstname is not required.

<xs:element name="lastname" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>
<xs:element name="firstname" maxOccurs="1" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Figure 5. XML Schema Definition

3 .NET Framework Support for XML

Classes within the .NET Framework support reading, writing, parsing, and transforming
XML. Both the Document Object Model, DOM, and Simple API for XML, SAX, models for
parsing are supported.

In addition, .NET datasets provide methods for generating XML and XSDs, XML Schema
Definitions, from data stored within them. Therefore, any data that can be read into a dataset
(from a database table, spreadsheet, or anywhere else) can quickly be converted to XML.

Microsoft’s Visual Studio applications are usually written using the VB or C# development
tools supplied with Visual Studio. Over twenty other languages can be used however, so
long as the language’s compiler generates Microsoft Intermediate Language, MSIL, which is
a low level language designed to be used by the .NET Framework’s common language
runtime, CLR. When the CLR runs MSIL for the first time, it compiles it into binary code
and caches the compiled binary file to allow faster startups when the program is run in the
future.

The XML examples in this paper will be shown using VB, however they could have been
written using C# or any other MSIL compatible language.

4

3.1 Reading XML Documents

When reading an existing XML document, one of the following .NET Framework 2.x classes
is normally used:

• XmlTextReader – This is the basic parser in .NET. It is read only, forward only and
is Microsoft’s version of SAX.

• XmlDocument – This is Microsoft’s DOM implementation. The XML document is
read into memory and presented in a tree like fashion. Updates are allowed to the
XML.

3.1.1 XmlTextReader

The XmlTextReader makes sense when you don’t need to update an XML file and want the
fastest possible execution time. Figure 6 shows the code needed to open and read through an
XML file.

Dim tr As New System.Xml.XmlTextReader("student.xml")
Dim xmlOutput As String = ""
While tr.Read
 If tr.NodeType <> Xml.XmlNodeType.Whitespace And tr.Value <> "" Then
 xmlOutput += tr.Value & vbCr
 End If
End While
MessageBox.Show(xmlOutput)

Figure 6. Reading an XML file

An easier way to read an XML file takes advantage of a .NET dataset’s ReadXml method.
This method is derived from the XmlTextReader class (and the XmlTextReader’s parent
XmlReader class). Since datasets can be data bound to interface controls, a wide variety of
choices are then available for displaying the file. For example the code in Figure 7 will read
the XML from Figure 1 into a dataset and bind it to a DataGridView control. Figure 8 shows
how the data is displayed in the DataGridView control.

Dim ds As New System.Data.DataSet
ds.ReadXml("Student.xml")
dgvStudent.DataSource = ds.Tables(0)

Figure 7. Reading an XML file into a dataset

5

Figure 8. Displaying the XML in a DataGridView control

DataGridView controls can also be used to insert, update, and delete nodes from an XML
document.

3.1.2 XmlDocument

The XmlDocument class provides support for DOM Level 2 and is possibly the most used
XML class. Its extra overhead is often acceptable due to its navigation and updating
capabilities. XmlDocument objects have methods for loading an XML file into memory,
retrieving sets of nodes based on XPath locations and filters, traversing sets of nodes,
appending new nodes, editing current nodes, and saving changes.

Figure 9 shows how to navigate through Figure 1’s XML file using an XmlDocument object.
The arguments .NET adds to event handlers have been replaced with ellipses (…) due space
constraints. The Windows form containing this code is named xmlDocNavigate and there are
textbox controls named txtLast and txtFirst on the form to display the contents of the nodes.
A button control named btnNext is used to move from one node to the next.

An XmlNodeList is used to store the set of nodes retrieved by the XmlDocument object’s
SelectNodes method. Figure 1’s studentdata element has two child elements, lastname and
firstname. This knowledge is used in DisplayStudent when setting currentNode to the first
child, assigning its InnerXml to txtLast, moving to the NextSibling, and then assigning its
InnerXml to txtFirst. Since there are only two child nodes there’s no need to call NextSibling
again. Buttons for moving backwards, moving to the first node and to the last node aren’t
included in this example, but can be easily added using similar operations (with minor
changes).

6

Public Class xmlDocNavigate
 Private xmlDoc As New System.Xml.XmlDocument
 Private currentNode As System.Xml.XmlNode
 Private nodeList As System.Xml.XmlNodeList
 Private currentIndex As Integer = 0

 Private Sub xmlDocNavigate_Load(…) Handles MyBase.Load
 xmlDoc.Load("student.xml")
 nodeList = xmlDoc.SelectNodes("allstudents/studentdata")
 DisplayStudent()
 End Sub

 Private Sub btnNext_Click(…) Handles btnNext.Click
 If currentIndex < nodeList.Count - 1 Then
 currentIndex += 1
 DisplayStudent()
 End If
 End Sub

 Private Sub DisplayStudent()
 currentNode = nodeList.Item(currentIndex).FirstChild
 txtLast.Text = currentNode.InnerXml
 currentNode = currentNode.NextSibling
 txtFirst.Text = currentNode.InnerXml
 End Sub
End Class

Figure 9. Navigating within an XmlDocument object

3.1.3 Validating XML from an XSD

Validating XML from an XSD requires creating an XmlReader object and an
XmlReaderSettings object. The XmlReaderSettings object is associated with the XSD file.
Then when the XmlReader object is instantiated, the XmlReader is associated with the
XmlReaderSettings object (containing the XSD association). Each node is validated at the
time it is retrieved with the XmlReader. Figure 10 shows how this is done. Note that if this
seems different from what you might have done in the past using the 1.x .NET Framework,
the newer 2.x .NET Framework classes are used in these examples.

7

Public Sub ValidateXML()
 Dim rs As New System.Xml.XmlReaderSettings
 Dim xr As System.Xml.XmlReader
 Try
 rs.Schemas.Add("", "student.xsd")
 rs.ValidationType = Xml.ValidationType.Schema
 Catch ex As Exception
 MessageBox.Show(ex.Message & vbCr & "Can't perform schema validation", _
 "Error reading XSD file")
 End Try
 xr = Xml.XmlReader.Create("student.xml", rs)
 Try
 ' loop through all the nodes in the file to validate them
 While xr.Read()
 ' no additional code is needed here
 End While
 Catch ex As Exception
 MessageBox.Show("Validation Error: " & ex.Message)
 End Try
 xr.Close()
End Sub

Figure 10. Using an XSD to validate an XML document

This catches missing but required elements, oversize entries, incorrect data types, and any
other schema definition errors specified in the XSD.

3.2 Writing XML Documents

SQL Server can retrieve data in various XML formats by adding the FOR XML clause to
SELECT queries [1]. This can then be written to a file using any of .NET’s file I/O methods.

.NET also provides ways to write XML from data that isn’t necessarily formatted as XML
when it is initially retrieved. Any data, once stored within a dataset, can be written as XML
using a dataset’s WriteXml method. Datasets also have a WriteXmlSchema method that will
infer the schema definition for a set of data stored within it and write the corresponding XML
to a file.

Figure 11 shows how to make a connection to a SQL Server 2005 Express database file and
retrieve data into a dataset. (A modified ConnectionString property would be needed if
connecting to a remote SQL Server instance.) The next to last line of code creates the XML
file and the last line of code creates an XSD file from the structure of the data within the
XML file.

8

Private Sub WriteXML()
 Dim cn As New Data.SqlClient.SqlConnection
 Dim da As New Data.SqlClient.SqlDataAdapter
 Dim sqlCmd As New Data.SqlClient.SqlCommand
 Dim ds As New Data.DataSet

 cn.ConnectionString = "Data Source=.\SQLEXPRESS;" & _
 "AttachDbFilename=” & _
 "|DataDirectory|\DatabaseName.mdf;" & _
 "Integrated Security=True;"

 sqlCmd.CommandText = "SELECT * FROM UniversityStudent"

 da.SelectCommand = sqlCmd
 da.SelectCommand.Connection = cn

 da.Fill(ds, "StudentDataTable")

 ds.Tables("StudentDataTable").WriteXml("Student.xml")
 ds.Tables("StudentDataTable").WriteXmlSchema("Student.xsd")
End Sub

Figure 11. Creating an XML file from data in a dataset

If you need finer control over how XML is written to a file, the XmlTextWriter and
XmlDocument classes provide ways to do this. The XmlDocument class provides higher
level, easier methods for writing XML than the XmlTextWriter class, but oddly, has no
methods for creating an XML file if it doesn’t already exist. Creating an application with a
backend XML file for storing data entries is done with a combination of an XmlTextWrite
object to create and initialize the XML file if it doesn’t exist, and an XmlDocument object to
insert, update, and delete entries in the file.

The code listing in Figure 9 can be modified to allow creating the file if it doesn’t initially
exist by adding the shaded code shown in Figure 12. Since an XmlDocument object can’t
create a file, an XmlTextWriter object is used.

9

Private Sub xmlDocNavigate_Load(…) Handles MyBase.Load
 Try
 xmlDoc.Load("student.xml")
 Catch ex As Exception
 ' if file isn't found, create it
 Dim tw As New System.Xml.XmlTextWriter("student.xml", _
 System.Text.Encoding.UTF8)
 tw.WriteStartElement("allstudents")
 tw.Close()
 xmlDoc.Load("Courses.xml")
 End Try
 nodeList = xmlDoc.SelectNodes("allstudents/studentdata")
 DisplayStudent()
End Sub

Figure 12. Creating an XML document with XmlTextWriter

Appending new entries to the XML file requires an XmlDocument’s CreateElement and
AppendChild methods. Figure 13 demonstrates how these are used.

Private Sub btnSubmit_Click(…) Handles btnSubmit.Click
 Dim newNode As XmlElement = xmlDoc.CreateElement("studentdata")
 xmlRoot.AppendChild(newNode)

 Dim lastnameNode As XmlElement = xmlDoc.CreateElement("lastname")
 lastnameNode.InnerText = txtLast.Text
 newNode.AppendChild(lastnameNode)

 Dim firstnameNode As XmlElement = xmlDoc.CreateElement("firstname")
 firstnameNode.InnerText = txtFirst.Text
 newNode.AppendChild(firstnameNode)
End Sub

Figure 13. Appending to an XML file

The XmlDocument object will store changes and appended entries in memory. Writing the
changes to a file can be done at whenever needed by using the XmlDocument’s Save method:

xmlDoc.Save(“filename.xml”)

3.3 Transforming XML Documents

With a combination of XmlTextReader and XmlTextWriter a custom program can be written
to read an XML file and write it back in format desired… An easier solution, however, is to
write an XSLT and use that to transform the original XML into whatever is required. The .

10

NET XslCompiledTransform class contains Microsoft’s XSLT processor. Figure 14 shows
how an XSLT can be applied to an XML file with three lines of code.

Dim xslt As New System.Xml.Xsl.XslCompiledTransform
xslt.Load("student.xsl")
xslt.Transform("Student.xml", "StudentReformatted.xml")

Figure 13. Transforming an XML file

4 SUMMARY

Microsoft’s .NET Framework supports the DOM model for interacting with XML documents
with the XmlDocument class. This requires the more overhead than the SAX classes, but
allows editing an XML document and traversing back and forth through the nodes in the
document.

The SAX model is supported by the XmlTextReader and XmlTextWriter classes. These
classes provide a fast, non-cached, forward-only method for reading, creating and writing an
XML document.

.NET datasets are objects used to store data retrieved from databases, XML documents, and
other sources. A dataset’s ReadXml method retrieves the data within an XML file and stores
it in the dataset. Datasets can be bound to interface controls that display and allow editing
the data. Any data stored in a dataset, including data retrieved from databases and other
sources, can be written out in XML format by calling the dataset’s WriteXml method.

The XmlReader class and XmlReaderSettings classes together allow validating XML
documents from XSDs.

,NET supplies an XSLT processor in its XslCompiledTransform class making XSLTs an
option for transforming an XML document into the different formats that are needed by
applications using different data storage schemas and technologies.

Other technologies exist to do similar XML tasks. The intent of this paper isn’t to place
Microsoft’s .NET technologies above others. It is only to make the reader aware that there is
strong XML support in .NET and this is a viable choice to consider when introducing
students to XML with hands on exercises and assignments.

5 REFERENCES

Dietrich, S. W., Urban, S. D., Ma, H., Xiao, Y., Patel, S. Exploring XML for Data Exchange
in the Context of an Undergraduate Database Curriculum. In Proceedings of the ACM
Technical Symposium on Computer Science Education (SIGCSE ’05) (St. Louis, Feb. 2005).
ACM Press, New York, NY, 2005, 53-57.

11

Wagner, P. and Moore, T. Integrating XML into a Database Systems Course. In Proceedings
of the ACM Technical Symposium on Computer Science Education (SIGCSE ‘03), (Nevada,
Feb. 2003). ACM Press, New York, NY, 2001, 26-60.

12

