
A Method of Fast Synchronizing Asynchronous
Clocks in Distributed Applications

Jun Liu
Computer Science Department

University of North Dakota
Grand Forks, ND 58202-9015

jliu@cs.und.edu

Abstract

In many distributed applications, identifying the sequence of event occurrence is useful.
When local clocks lack of synchronization, determination of the order of event occur-
rence is difficult or time-consuming without developing newmethods for synchronizing
clocks. In this paper, we describe a pseudo-synchronization method for projecting oc-
currence time of events onto a common timeline such that the direct “happened-before”
relations are maintained. The basic idea of this technique is to estimate the clock shift
between two clocks from the minimum difference of occurrence time of two events in-
cluded in a direct “happened-before” relation. Evaluationresults suggest that this method
can pseudo-synchronize non-base clocks with a base clock without violating the direct
“happened-before” relations.

Jun Liu
Computer Science Department

University of North Dakota
Grand Forks, ND 58202

jliu@cs.und.edu

1 Introduction

In many distributed application scenarios, identifying the instantaneous state of a dis-
tributed application is useful in matching requirements ofa distributed application to the
characteristics of the underlying system. The instantaneous state of a distributed applica-
tion at a given time moment is the set of events that occurred at that moment. High-level
applications are allowed to express their requirements, and they are notified by the un-
derlying system when events that match their requirements are available [1, 2, 5]. For
instance, in ubiquitous computing applications running onmobile hosts equipped with
wireless transceivers, tasks running on different hosts are difficult to be coordinated be-
cause of the opportunistic communication between hosts. Hence, discovering the state of
a ubiquitous computing application could facilitate the execution of operations issued by
upper-level computing agents so that computing tasks can becoordinated.
Identifying an instantaneous state of a distributed or parallel application is generally diffi-
cult. Even though monitoring events occurred in distributed or parallel systems has been
studied in a number of studies [7, 3, 9], but it is still difficult to design an efficient trac-
ing tool to make different components in a system coordinatein recording events and in
extracting useful information from event traces recorded by different hosts. The task of
tracing events becomes even more complicated when occurrence time is involved due to
lack of a universal clock [7].
In a distributed application consisting of multiple hosts each of them is equipped with its
own local clock, an event is recorded only once by the host where the event occurs, along
with its occurrence time-stamp with respect to the local clock of the recording host. Events
occurred at a host are recorded in sequence with respect to the chronological order of their
occurrence. When the overall chronological order of the occurrence of events is to be
revealed, events recorded at different hosts need to be unified onto a common time line.
When local clocks lack of synchronization, it is generally difficult to unify events, that
are time-stamped with respect to different local clocks, onto a common time line without
synchronizing local clocks.
When lacking of synchronized local clocks, determining theorder of occurrence of events
satisfies needs in many distributed applications. In this case, the order of occurrence of
events can be determined with respect to a logical clock which can be formally charac-
terized using the “happened-before” relations [6] by signifying the mutual order of occur-
rence of two events. The two events having a direct “happened-before” relation could be
two events occurred consecutively at a same host, or two events involved in transmitting a
message between different hosts. Here, we focus on the “happened-before” relations each
of which consists of two events: a send event and a receive event occur in different hosts.
The order of occurrence of events can be determined incrementally by exploring “happened-
before” relations between events through scanning a long history of occurrence of events.
Incrementally sequentializing the order of occurrence of events can achieve a very good
serialization of events, since many seemingly concurrent events could be serialized. (Two
events are calledconcurrentevents when there is not a “happened-before” relation between
them.) However, sequentializing events incrementally could take a long processing time.
The order of occurrence of events can also be determined point-wisely. In this approach,
only a small number of events that occur around the time pointof interest are sequential-

1

ized, such that the processing time can be limited. For example, in order to discover the
cause to an event occurred at a particular moment, only thoseevents occurring in the neigh-
borhood of this moment need to be sequentialized. It is inefficient and inapplicable to do
this task by serializing a long history of events using the method of incremental serializa-
tion.
In this paper, we propose a new technique to pseudo-synchronize local clocks in distributed
applications such that sequence of event occurrence can be serialized under the synchro-
nized clocks. Pseudo-synchronizing one clock with anotherclock is to discover the shift
between the two clocks. The basic idea of pseudo-synchronizing two clocks is to estimate
the shift between the clocks by examining the difference of occurrence time between events
having a direct “happened-before” relation. The term pseudo-synchronization comes after
the fact that the estimated shift between two clocks might not reflect the actual shift be-
tween them.
Under pseudo-synchronized clocks, it is ideal to maintain the original order of occur-
rence of events. However, shifts between clocks estimated using the procedure of pseudo-
synchronization can be over estimated due to lack of knowledge of actual transmission
delays between hosts. When the shift between clocks at two hosts is discovered, relations
of direct transmission involving only these two hosts are examined; the shift is estimated
as the minimum difference between the occurrence time of twoevents having a relation of
direct transmission. This estimation is accurate only whenthe transmission delay between
the two hosts is zero. The accuracy of the estimated shift between two clocks can be im-
proved if the knowledge of transmission delay between the two hosts where the two clocks
are install is available. If the occurrence time, with respect to the reference clock, of events
is estimated based on over-estimated shifts, some relations of direct transmission could be
violated. Therefore, the occurrence time of events needs further adjustments in order to
resolve relations that have been violated.
The rest of this paper is organized as follows. The previous works relating to this subject in
Section 2. The procedure of pseudo-synchronization of clocks is described in Section 3, and
the procedure of estimating occurrence time of events with respect to a common reference
clock is described in Section 4. The evaluation to the methodof deriving momentary states
of distributed applications is in Section 5. Our method is summarized in Section 6.

2 Related Work

Serialization of events with respect to the order of their occurrence has been widely used
in performance analysis and in error debugging. Due to lack of a universal clock in most
distributed application scenarios, one method of serializing the occurrence of events in
distributed applications is by making use of a logical clockin place of a universal clock.
Lamport [6] presented an approach of partially serializingevents by making use of a logical
clock that is formally defined as the “happened-before” relation. The “happened-before”
relations are defined under two assumptions: 1) all events, that occur on the same process,
form a sequence,i.e. they area priori totally ordered; 2) sending or receiving a message is
an event in a process.
Even though the Lamport logical clock satisfies the clock condition, but it is not strongly

2

consistent and not being able to always capture concurrency. To overcome the deficiency
of the Lamport logical clock, a concept of vector clock was later proposed by a number of
researchers, most notably Fidge [4] and Mattern [8]. A vector clock is an array of integers
V T [n], wheren is the number of processes in the system. Each processor maintains its
own vector clock that assigns time stamps to events by three rules: 1) all events that occur
consecutively on the same processor are time-stamped sequentially; 2) the time stamp of a
sending event is carried in the message being sent; 3) upon receipt of a message, the event
of receiving a message is time-stamped by the maximum of the time stamp carried in the
message and the local clock of the receiver.
Events having “happened-before” relations have been made use of in our methods of
pseudo-synchronization of clocks, and of adjustments to occurrence time of events with
respect to a common reference clock. Moreover, the method ofadjusting occurrence time
of events has a flavor of the elastic method because not all occurrence time of events oc-
curred at a same host is adjusted consistently.
Srinivasanet al. proposed the Near-Perfect State Information (NPSI) adaptive protocols [11]
and the Elastic Time Algorithm (ETA). In parallel computingsystems, in order for the logi-
cal processes (LPs) to schedule their executions, the correct state information of the system
needs to be informed to the LPs. However, the overhead of delivering the correct state
information of the system is not acceptable in reality, a protocol of propagating of good
approximation of perfect state information is desired. Both NPSI and ETA are control
mechanisms to guide LPs to schedule their next events. The difference between NPSI and
ETA is that NPSI defines a class of algorithms with controlledoptimist, whereas ETA is
an instance belonging to this class. Quaglia [10] proposed the scaled version of ETA to
speed up the execution of LPs by taking into account of execution delays of events in the
optimism control in LPs.

3 Pseudo-Synchronization

When all hosts share a universal clock, the occurrence time of an event recorded on dif-
ferent hosts is identical. In this case, the order of occurrence of events could be naturally
determined with respect to their occurrence time. However,when local clocks at different
hosts lack of synchronization, an event can have different occurrence time with respect to
different clocks. Without having the local clocks synchronized with respect to a univer-
sal clock, it is difficult to serialize the occurrence of events according to their occurrence
time recorded with respect to different local clocks. Hence, the efficient method of clock
synchronization is highly desired in application scenarios in which a universal clock is
unavailable.
Since it is very difficult or time-consuming to make asynchronous clocks to be precisely
synchronized, a method of synchronizing clocks imprecisely is described in this section.
This method focuses more on maintaining “happened-before”relations than precisely syn-
chronizing local clocks. Doing so reduces the computational overhead in the synchroniza-
tion. The basic idea of this method is to determine the shift between two clocks impre-
cisely making use of the “happened-before” relations. In a “happened-before” relation, the
send event must occur prior to the receive event, no matter how their occurrence time are

3

recorded. Hence, the shift between two local clocks is reflected in the difference of the
occurrence time of the send and receive events in a “happened-before” relation.

3.1 Pair-wise Pseudo Synchronization of Clocks

For two hosts involved in a “happened-before” relation, their local clocks are assumed to
be asynchronous. The two hosts are called hosts1 and2. A time point t with respect to
a universal clock is assumed to map intot1 andt2 on host1 and2, respectively. The shift
between the local clock in host1 and the universal clock can be derived asS1 = t1 − t, and
the shift between the local clock in2 and the universal clock isS2 = t2 − t. Sincet1 andt2
should represent the same time point if the two local clocks are perfectly synchronized, the
shift between the two clocks is expressed as|t1 − t2| = |S1 − S2|. A “happened-before”
relatione1,ta → e2,tb means that the send evente1,ta occurs in host1 at a local timeta, and
the receive evente2,tb occurs in host2 at a local timetb. The relatione1,ta → e2,tb can be
used to synchronize the clock in host2 to the clock in host1. In this case, the clock in host
1 is treated as the base clock, and the delay between the occurrence of eventse1,ta ande2,tb

is denoted asdab. The local timetb in host2 can be expressed in terms of the local time
ta in host1, i.e., tb = ta + dab − S1 + S2. Hence, if the value of delaydab is known, the
shift from the clock in host2 to the base clock in host1, denoted asS21, can be precisely
measured asS21 = t2 − t1 − dab = S2 − S1. If the value of delaydab is unknown, thenS21

can be approximated usingt2 − t1. The approximation to shiftS21 usingt2 − t1 is called
pseudo-synchronizationof two clocks. The approximated value of shiftS21 is denoted as
S ′

21
which is bigger than the actual shiftS21, i.e., S ′

21
> S21. Likewise,S12 can be measured

using a pair of events in a relatione2,tu → e1,tv when the clock in host2 is treated as the
base clock. Even thoughS12 = −S21, butS ′

12
6= −S ′

21
if dab 6= duv.

Under two pseudo-synchronized clocks, the main concern is whether “happened-before”
relations can be violated. The set of “happened-before” relations with the send and receive
events occurring in host2 and1, respectively, is denoted asE21 = {e2,ta → e1,tb} where
ta and tb are the time-stamps recorded with respect to the local clocks in hosts1 and2,
respectively. After the clock in host2 has been synchronized with the clock in host1 by
a pseudo-shiftS ′

21
, the receive event in a relatione1,ta → e2,tb has a new occurrence time

t′b = tb − S ′
21

(ref. Figure 1). The relatione1,ta → e2,tb is violated under the pseudo-
synchronized clocks ift′b < ta. It is possible that some “happened-before” relations can be
violated under two pseudo-synchronized clocks, if the pairof send and receive events used
in estimating the pseudo-shift have not been selected carefully.
When the clock in host2 needs to be synchronized with the base clock in host1, an ap-
propriate relation needs to be selected from a setE12 = {e1,ta → e2,tb} which is the set
of “happened-before” relations with the send and receive events occurring in host1 and2,
respectively. In this case, the appropriate relation to be used is the one with the minimum
value oftb − ta. This fact can be formally claimed into Proposition 3.1.

Proposition 3.1 No relation in setE12 is violated after the clock in host2 is pseudo-
synchronized with the clock in host1 by the pseudo-shiftS ′

21
= min

e1,ta→e2,tb

{tb − ta}. �

Proof: Consider an arbitrary relatione1,tx → e2,ty in setE12. After the clock in host2 is

4

pseudo-synchronized with the clock in host1 by a pseudo-shiftS ′
21

= min
e1,ta→e2,tb

{tb − ta},

the occurrence time of evente2,ty becomest′y = ty − S ′
21

. Sincety − tx ≥ S ′
21

, t′y − tx =
ty − tx − S ′

21
≥ 0. Hence, all relationse1,tx → e2,ty in E12 will not be violated under the

pseudo-shiftS ′
21

. �

timeline 2

t x

t

t a

t’y t ut’u

t v

timeline 1

bbt’ t y

Figure 1:Estimation of a pseudo-shift by maintaining “happened-before” relations when the clock
in host2 is synchronized with the clock in host1.

Under the same pseudo-shiftS ′
21

, another concern is whether the relations in form of
e2,tu → e1,tv will be violated. The answer to this concern is formally described in Proposi-
tion 3.2.

Proposition 3.2 No relation in setE21 is violated after the clock in host2 is pseudo-
synchronized with the clock in host1 by the pseudo-shiftS ′

21
. �

Proof: Consider an arbitrary relatione2,tu → e1,tv in setE21. tv = tu + du,v − S2 + S1.
After the clock in host2 is pseudo-synchronized to the clock in host1 with a pseudo-shift
S ′

21
, the occurrence time of evente2,tu becomest′u = tu − S ′

21
. Since the pseudo-shiftS ′

21

can be expressedS ′
21

= S2 − S1+. Thus,tv − t′u = tv − tu + S ′
21

= du,v − (S2 − S1) > 0
because the delay in transmissiondx,y is always assumed to be bigger than0. Hence, all
relations inE21 will not be violated under the pseudo-shiftS ′

21
. �

Combining the facts stated in Proposition 3.1 and Proposition 3.2, no relation in setE12 or
E21 is violated after the clock in host2 is pseudo-synchronized with the clock in host1 by
a pseudo-shiftS ′

21
= min

e1,ta→e2,tb

{tb − ta}.

The estimated pseudo-shift is always no less than the actualshift, and the amount of over-
estimation is bounded by the maximum delay from the base hostto the non-base host. For
instance, the median values of round-trip time (RTT) measured in the Internet [12] are
mostly less than150 ms, thus, the uni-directional transmission delay between two hosts
should mostly be less than75 ms. Hence, the maximum delay should be no more than
75 ms most of the time, and a75 ms over-estimation in excess to the actual shift is still
reasonably small. Meanwhile, the knowledge of minimum delay between two hosts can be
obtained in many application scenarios. There are network measurement tools for obtaining
delay information between two hosts in the Internet. Moreover, these measurement tools

5

are gradually becoming a part of designs of operating systems to facilitate decision making
at the application level.
The over-estimation of the shift between two clocks will cause problems when multiple
clocks are pseudo-synchronized with respect to a common base clock.

3.2 Pseudo Synchronization of Multiple Clocks

When the pseudo-synchronization method is applied to synchronize multiple clocks, “happened-
before” relations can be violated. The fundamental reason for this fact is due to the un-
known delays. That is, if the delays are known, then no violation is made possible. How-
ever, if the delay information is unknown, then some combination of delay values can lead
to violations. For example, in an application scenario consisting of3 hosts, when the clocks
in hosts2 and3 are pseudo-synchronized with the clock in host1 by respective pseudo-
shiftsS ′

21
andS ′

31
, some “happened-before” relations involving only hosts2 and3 might

be violated. This claim is formally stated in Proposition 3.3. Following the same notion
on the set of “happened-before” relations, the setE23 andE32 can be defined accordingly.
The minimum delay going from hosti to hostj is denoted asDij (1 ≤ i, j ≤ 3, i 6= j).

Proposition 3.3 After the clocks in host2 and3 are pseudo-synchronized with the clock
in host1, respectively, a relatione2,tx → e3,ty in E23 is violated ifdxy < D13 − D12. �

Proof: Consider an arbitrary relatione2,tx → e3,ty . The occurrence time of evente2,tx is
tx with respect to the local clock in host2, and the occurrence time of evente3,ty is ty with
respect to the local clock in host3. When the shift from the local clock in host2 to the local
clock in host3 is S32 = S3 − S2, ty = tx + dx,y − S2 + S3 wheredxy is the transmission
delay between the two eventse2,tx ande3,ty .
After the clock in host2 is pseudo-synchronized with the clock in host1 by a pseudo-
shift S ′

21
, the occurrence time of evente2,tx becomest′x = tx − S ′

21
. Correspondingly, the

occurrence time of evente3,ty becomest′y = ty − S ′
31

after the clock in host3 is pseudo-
synchronized with the clock in host1 by a pseudo-shiftS ′

31
. Sincet′y−t′x = dxy+D12−D13,

t′y < t′x by the assumption thatdxy < D13 − D12. Hence, under the pseudo-synchronized
clocks, the relatione2,tx → e3,ty is violated because the the receive event has a smaller
value of occurrence time than the send event. �

3.3 Resolving the Violations

Over-estimation of the actual shift between a pair of clocksis the fundamental cause to
violations of “happened-before” relations. In order to resolve the violations, the over-
estimated values of shifts need to be adjusted. Consider thecase when both clocks in hosts
2 and3 have been synchronized with the clock in host1 by pseudo-shiftsS ′

21
andS ′

31
,

respectively. Under the pseudo-synchronized clocks, “happened-before” relations inE23

and/orE32 can be violated. The new values of occurrence time of events in a relation
e2,tx → e3,ty becomet′x = tx − S ′

21
andt′y = ty − S ′

31
.

When violations only occur in setE23, only the value ofS ′
31

needs to be adjusted. For a
violated relatione2,tx → e3,ty in E23, the difference between the new values of occurrence

6

time is negative,i.e., t′y − t′x < 0. Thus, the violated relations in setE23 can be resolved if a
negative valuemin{t′y −t′x} is compensated toS ′

31
. The valuemin{t′y −t′x} is derived from

those violated relations in setE23. No compensation is necessary forS ′
21

, i.e., S ′′
21

= S ′
21

.
After this compensation, the clock in host3 is synchronized with the base clock in host1
by a new pseudo-shiftS ′′

31
= S ′

31
+min{t′y − t′x} (S ′′

31
≤ S ′

31
). Under new pseudo-shiftsS ′′

21

andS ′′
31

, it can be shown thatt′′y − t′′x ≥ 0 for any relatione2,tx → e3,ty in E23 as follows.

t′′x = tx − S ′′
21

= tx − S ′
21

= tx − S2 + S1 − D12

t′′y = ty − S ′′
31

= (tx + dxy − S2 + S3) − (S3 − S1 + min{dxy} + D12)

= tx + dxy − S2 + S1 − min{dxy} − D12

t′′y − t′′x = dxy − min{dxy}

≥ 0 (1)

In the meantime, no relation in setE32 will be violated under the new pseudo-shiftsS ′′
21

andS ′′
31

. For an arbitrary relation,e3,tu → e2,tv , in E32, the new occurrence time ofe3,tu

ande3,tv with respect to the clock in host1 are:

t′′u = tu − S ′′
31

= tu − S ′
31
− min{t′y − t′x}

= tu − S3 + S1 − min{dxy} − D12

t′′v = tv − S ′′
21

= (tu + duv − S3 + S2) − (S2 − S1 + D12)

= tu + duv − S3 + S1 − D12

t′′v − t′′u = (tu + duv − S3 + S1 − D12) − (tu − S3 + S1 − D23 − D12)

= duv + min{dxy}

> 0 (2)

Therefore, no relations in setE32 is violated under new pseudo-shiftsS ′′
21

andS ′′
31

.
Similarly, if violations only occur in setE32, only the value ofS ′

21
needs to be adjusted. In

this case, a negative valuemin{t′v−t′u} can be estimated from the violated relationse3,tu →
e2,tv in setE32. After the adjustment, the new pseudo-shifts areS ′′

21
= S ′

21
+ min{t′v − t′u}

andS ′′
31

= S ′
31

. Following the same line of reasoning in Equations (1) and (2). It can be
shown that no violation is present in setE23 andE32.
When violations occur in bothE23 andE32 after both clocks in host2 and3 have been
synchronized with the clock in host1 by pseudo-shiftsS ′

21
andS ′

31
, respectively, one ofS ′

21

andS ′
31

needs to be adjusted in order to resolve the violations. In this case,min{t′y − t′x}
andmin{t′v − t′u} are derived from the violated relations in setE23 andE32, respectively.
If min{t′y − t′x} < min{t′v − t′u}, then the new pseudo-shifts areS ′′

31
= S ′

31
+ min{t′y − t′x}

andS ′′
21

= S ′
21

. If min{t′y − t′x} > min{t′v − t′u}, then the new pseudo-shifts areS ′′
21

=

7

S ′
21

+ min{t′v − t′u} andS ′′
31

= S ′
31

. In both cases, it can also be verified that no violation
in E23 andE32 is possible.
Therefore, in all the above described cases, no violation insetE23 andE32 is made possible
under adjusted pseudo-shiftsS ′′

21
andS ′′

31
.

4 Serialization of Events Under Pseudo-Synchronized Clocks

In a distributed environment consisting ofm hosts, each host is equipped with a local
clock, and all clocks are no synchronized. There is not a universal clock. Each host only
time stamps events occurred locally with respect to its local clock. Each host also periodi-
cally sends the incremental segment of event trace recordedlocally from last transmission
of trace segment. Upon receiving trace segments sent by other hosts, each host tries to
reconstruct a sequence of overall event occurrence. The events in this sequence have to
make sure that no “happened-before” relation is violated.
The basic idea of serializing the occurrence of events from trace segments is to first pseudo-
synchronize local clocks, and then to serialize the occurrence of events with respect to the
new occurrence time of events under pseudo-synchronized clocks. Each host treats its local
clock as the base clock and pseudo-synchronize other clockswith respect to its own clock.
The segment of event trace recorded in hosti (1 ≤ i ≤ m) is denoted asGi = {ei,tk :
1 ≤ k ≤ ni} whereni is the number of events inGi and tk is the occurrence time of
ei,tk with respect to the local clock in hosti. The set of “happened-before” relations with
the send events occur in hosti and the receive events occur in hostj is denoted asEij =
{ei,tu → ej,tv : 1 ≤ u ≤ ni, 1 ≤ v ≤ nj}. The local clock in hosti is assumed to
differ from an imaginary universal clock with a shiftsi. The shift from the clock in host
i to the clock in hostj is denoted asSij = si − sj such that a time pointti in hosti and
the time pointti − Sij in hostj mean the same time point with respect to the imaginary
universal clock. The delay of transmission between a send eventei,tu and a receive event
ej,tv is denoted asduv, and the minimum delay sending from hosti to hostj is denoted
asDij, i.e., Dij = min

∀ei,tu→ej,tv

{duv}. In the following, the description of the procedure of

pseudo-synchronization and serialization assumes that the clock in host1 is the base clock.

4.1 Procedure of the Pseudo-Synchronization

Pseudo-synchronization of other clocks to the base clock inhost1 is to estimate the pseudo-
shift S ′

i1 from the clock in hosti (2 ≤ i ≤ m) to the clock in host1. This procedure takes
the following steps.

(1) Computing the difference of occurrence time between each pair of events inE1i, i.e.,
tv − tu for all relations in the form ofe1,tu → ei,tv in E1i;

(2) Taking the minimum value of these differences as the pseudo-shiftS ′
i1, i.e.,

S ′
i1 = min

∀{e1,tu→ei,tv}∈E1i

(tv − tu).

8

When the clock in hosti is synchronized to the clock in host1 with the pseudo-shiftS ′
i1, no

violation of “happened-before” relations in setsE1i andEi1 will be resulted under pseudo-
synchronized clocks. This fact has been shown in Proposition 3.1 and Proposition 3.2. The
processing time spent in pseudo-synchronizing two clocks is the amount of time needed to
scan through the two relevant trace segments.

4.2 Estimating the Adjustments to the Pseudo-Shifts

After all local clocks have been pseudo-synchronized to a base clock, violations to “happened-
before” relations are made possible between non-base clocks. This fact is stated in Propo-
sition 3.3. Adjustments to the estimated pseudo-shiftsS ′

i1 (2 ≤ i ≤ m) are necessary in
order to resolve the violations under pseudo-synchronizedclocks. The procedure of esti-
mating the adjustments and compensating the adjustments tothe pseudo-shifts is described
as follows.

(1) Computing the new occurrence time of events inGi (2 ≤ i ≤ m), i.e., t′x = tx − S ′
i1

for all eventsei,tx in Gi; (an eventei,tx with a new occurrence timet′x is denoted as
ei,t′x

.)

(2) Detecting violations to the “happened-before” relations inEij (2 ≤ i, j ≤ m) making
use of new occurrence time,i.e., a relationei,t′x

→ ej,t′y
is violated ift′y < t′x;

(3) Recording in variableqij (2 ≤ i, j ≤ m, i 6= j) the minimum value of(t′y − t′x) for
those violated relationsei,t′x

→ ej,t′y
;

(4) Estimating the adjustmentaij andaji (2 ≤ i, j ≤ m, i 6= j) based onqij andqji:

(a) If bothqij ≥ 0 andqji ≥ 0, thenaij = 0 andaji = 0;

(b) If qij ≥ 0 andqji < 0, thenaij = 0 andaji = qji;

(c) If qij < 0 andqji < 0, then:

(i) If qij < qji, thenaij = qij andaji = 0;

(ii) otherwise,aji = qji andaij = 0;

4.3 Derivation of New Pseudo-Shifts

After all aij ’s (2 ≤ i, j ≤ m, i 6= j) have been determined, the new pseudo-shiftsS ′′
j1’s

(2 ≤ j ≤ m) can be obtained as that

S ′′
j1 = S ′

j1 + min
2≤i≤m

{aij}.

4.4 Serialization of Segments of Event Traces

The new occurrence time of events included inGi, a segment of event trace recorded in
hosti (2 ≤ i ≤ m), can be derived ast′′j = tj −S ′′

j1 wheretj is the original occurrence time
of an eventei,tj . The original values of occurrence time of all events included in event sets

9

Gi’s (2 ≤ i ≤ m) can be projected into new values of occurrence time onto thetime-line
with respect to the base clock in host1. Hence, the events inGi’s can be naturally serialized
based on the new values of occurrence time projected onto thetime-line with respect to the
base clock.

5 Evaluation

The method of serializing occurrence of events by pseudo-synchronizing local clocks has
also been validated by an experiment. In this experiment, a distributed application runs on
8 hosts each of which only records events occurring locally. Each host is equipped with its
own clock which is lack of synchronization with other clocks. The clock at host1 is used
as the base clock. The non-reference clocks are set asynchronous with the reference clock
by clock shifts shown in Table 1.

hosti 2 3 4 5 6 7 8

Si1 1.9800 0.2950 1.0617 0.9566 0.3391 0.0967 1.7971

Table 1:The actual clock shifts used in the experiment.

5.1 Setting of the Experiment

An event generator is attached to each host, which generatesLOCAL or SEND events.
When a LOCAL event, which does not involve sending or receiving a message, occurs at
a host, the host just records this event along with the occurrence time of this event with
respect to the local clock at the host. When a SEND event occurs at a host, the host has
to physically send out a message to the destination host prescribed by the event generator,
and records the SEND event along with its occurrence time with respect to its own clock.
When a host receives a message from another host, a RECEIVE event occurs at the host
and is recorded with respect to the clock at the receiving host.
Every event generator randomly generates LOCAL events and SEND events with equal
probabilities, and the generated series of events by a generator follows aPossiondistribu-
tion with the mean inter-arrival timeai for each hosti (shown in Table 1). The choice of
a destination host upon a SEND event is also randomly made with equal probabilities for
every remote host. Each event generator is set to generate a total of1000 LOCAL or SEND
events. A minimum transmission delay is also randomly chosen between each pair of hosts
as shown in Table 2. The actual transmission delay of a message transmitted is the sum of
the minimum delay between two corresponding hosts and a random queueing delay which
is drawn uniformly in[0, 0.5s].
Before any performing our method, the numbers of violationsto direct “happened-before”
relations are shown in Table 3.

10

i\j 1 2 3 4 5 6 7 8

1 0 0.0631 0.0608 0.3495 0.2291 0.2849 0.4302 0.2466
2 0.0153 0 0.1269 0.0872 0.0669 0.4545 0.2586 0.0261
3 0.1563 0.2048 0 0.4451 0.1286 0.1837 0.0911 0.1217
4 0.4145 0.4455 0.4380 0 0.3777 0.2321 0.1713 0.4325
5 0.1073 0.2895 0.2293 0.4774 0 0.0240 0.2511 0.3437
6 0.4231 0.3467 0.2469 0.2918 0.3950 0 0.2245 0.3702
7 0.0529 0.4947 0.2412 0.4404 0.1057 0.0265 0 0.4819
8 0.1694 0.4137 0.2678 0.2088 0.4051 0.3332 0.3010 0

Table 2:The minimum transmission delaysDij from the send hosti to a receive hostj.

i \ j 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 39 0 29 34 21 28 39 17
3 17 0 0 0 0 0 13 0
4 34 0 24 0 0 30 33 0
5 21 0 36 0 0 35 30 0
6 0 0 0 0 0 0 2 0
7 2 0 0 0 0 0 0 0
8 33 0 36 36 26 38 30 0

Table 3:Under unsynchronized clocks, the numbers of violations to relations of direct “happened-
before” relations between an arbitrary pair of hostsi, j in the form ofei,tx → ej,ty .

5.2 Simple Pseudo-Synchronization

Making use of the procedure of pseudo-synchronization of clocks, estimations to the shifts
S ′

i1 from the base clock1 to the non-base clocki are shown in Table 4. Compared toSi1,
the original shifts from the base clock1 to a non-base clocki, the estimated shifts (S ′

i1’s)
are over-estimated. The estimation to the clock shifts could be made more close to the
actual shifts when the knowledge of minimum transmission delays is available. (ref. the
columnS ′

i1 − D1i in Table 4)
Under the estimated pseudo-shiftsS ′

i1’s, the occurrence time of events recorded with re-
spect to non-base clocks can be projected onto the timeline with respect to the base clock.
Using the new occurrence time of events, violations to direct “happened-before” relations
can be evaluated, and numbers of violations are shown in Table 5. It is clear that no vio-
lations happen between non-base hosts and the base host because number of violations are
all 0 for the row ofi = 1 and the column ofj = 1 in Table 5. Meanwhile, it is still possible
that violations can happen between non-base hosts.

11

i\ Si1 S ′
i1 D1i S ′

i1 − D1i

2 1.9800 2.0581 0.0631 1.9950
3 0.2950 0.3679 0.0608 0.3071
4 1.0617 1.4202 0.3495 1.0707
5 0.9566 1.1904 0.2291 0.9613
6 0.3391 0.6293 0.2849 0.3444
7 0.0967 0.5389 0.4302 0.1087
8 1.7971 2.0465 0.2466 1.7999

Table 4:The estimated shifts from the base clock1 to the non-base clocksi’s. (All metrics are in
unit of a second.)

i \ j 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 27 5 0 18 17
3 0 0 0 0 6 3 25 8
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 7 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Table 5:After non-base clocks are pseudo-synchronized with the base clock, the numbers of vio-
lations to direct “happened-before” relations between a pair of hostsi, j.

5.3 Resolving Violations by Adjusting Pseudo-Shifts

Violations to direct “happened-before” relations can be resolved by adjusting the estimated
pseudo-shifts shown in Table 4. The adjustmentsaij ’s are shown in Table 6. A new pseudo-
shift S ′′

i1 can be obtained by applying the minimum value ofaij ’s (2 ≤ j ≤ m) on the initial
pseudo-shiftS ′

i1. The values of new pseudo-shifts are shown in Table 7. Indeed, after non-
base clocksi’s are synchronized with the base clock1 by pseudo-shiftsS ′′

i1’s, all violations
to direct “happened-before” relations are eliminated.

5.4 Serialization of Events

After the pseudo-synchronization of non-base clocks with the base clock by shiftsS ′′
i1, new

occurrence time of events can be evaluated. The comparison of the original occurrence time
to the new occurrence time after pseudo-synchronization isshown in Figure 2. The new
values of occurrence time of events are very close to the values of their original occurrence
time, because a pair of the new and original occurrence time of an event is located very to
the diagonal line which illustrates the ideal case when the two time values are equal.

12

i\j 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 -0.1799 0 0 0 0 0 0
5 -0.0870 -0.0286 0 0 0 0 0
6 0 -0.0246 0 -0.0308 0 0 0
7 -0.0988 -0.2658 0 0 0 0 0
8 -0.1421 -0.0426 0 0 0 0 0

Table 6:Adjustments to pseudo-shifts. The values of adjustment arein unit of a second.

\j 2 3 4 5 6 7 8

S ′′
j1 2.0581 0.3679 1.2403 1.1034 0.5985 0.2731 1.9044

Sj1 1.9800 0.2950 1.0617 0.9566 0.3391 0.0967 1.7971
S ′

j1 2.0581 0.3679 1.4202 1.1904 0.6293 0.5389 2.0465

Table 7:The pseudo-shiftsS′′
j1 after the adjustment.

6 Conclution

In this paper, a method of pseudo-synchronization of local clocks in distributed applica-
tions is proposed. Pseudo-synchronization of local clockswith a base clock is to estimate
the pseudo-shift between each non-base clock and the base clock without violating direct
“happened-before” relations. The pseudo-shifts are over-estimated when the knowledge
of delays is unknown. Over-estimated values of pseudo-shifts introduce the violations to
the direct “happened-before” relations. In order to resolve the violations, adjustment to
the pseudo-shifts is necessary. This method has been validated in a distributed application
running on8 hosts. The results show that the values of new occurrence time of events
projected onto the base timeline are very close to the valuesof actual occurrence time with
respect to a universal clock.

References

[1] Context-sensitive access control for open mobile agentsystems. InProceedings of
the 3rd International Workshop on Software Engineering forLarge-Scale Multi-Agent
Systems (SELMAS’2004), pages 42–48, Edinburgh, Scotland (UK), May 2004.

[2] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system. In
Symposium on Principles of Distributed Computing, pages 53–61, 1999.

13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

O
cc

ur
re

nc
e

T
im

e
A

ft
er

 S
yn

ch
ro

ni
za

ti
on

 (
in

 s
ec

on
ds

)

Original Occurrence Time (in seconds)

Comparison of Occurrence Time
Ideal Case (x=y)

Figure 2:The comparison of the original occurrence time to the new occurrence time after pseudo-
synchronization.

[3] Karthikeyan Bhargavan and Carl A. Gunter. Requirementsfor a practical network
event recognition language. InProceedings of the Runtime Verification Workshop,
July 2002.

[4] C. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Australian Computer Science Communications, 10(1):56–66, February 1988.

[5] John Heidemann, Fabio Silva, and Deborah Estrin. Matching data dissemination
algorithms to application requirements. InProceedings of the first international con-
ference on Embedded networked sensor systems, pages 218–229. ACM Press, 2003.

[6] L. Lamport. Time, clocks and the ordering of events in a distributed system.Commu-
nications of the ACM, 27(7):558–565, July 1978.

[7] Zoltán Ádám Mann. Tracing system-level communication in object-oriented dis-
tributed systems. Winner of the 2001 Student Paper Contest of IEEE Hungary Section,
2001.

[8] Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cos-
nard et. al., editor,Parallel and Distributed Algorithms: proceedings of the Interna-
tional Workshop on Parallel and Distributed Algorithms, pages 215–226. Elsevier
Science Publishers B. V., 1989.

[9] L. Mummert and M. Satyanarayanan. Long term distributedfile reference tracing:
Implementation and experience.Software Practice and Experience, 26(6):705–736,
1996.

14

[10] Francesco Quaglia. A scaled version of the elastic timealgorithm. InProceedings of
the fifteenth workshop on Parallel and distributed simulation table of contents, pages
157 – 164, Lake Arrowhead, California, 2001.

[11] Sudhir Srinivasan and Paul F. Reynolds Jr. NPSI adaptive synchronization algorithms
for PDES. InWinter Simulation Conference, pages 658 – 665, 1995.

[12] the Cooperative Association for Internet Data Analysis (CAIDA). Round-trip
time internet measurements from caida’s macroscopic internet topology monitor.
http://www.caida.org/analysis/performance/rtt/walrus0202/.

15

