
Applying Software Engineering Principles in
Developing Safety-Critical Software Systems: A Class

Project

Tyler Kaye, Sudhanwa Kholgade, Jeffrey Knutz, David Lannoye,
and John Sartori

Department of Computer Science
University of North Dakota

Grand Forks, North Dakota 58202-9015
grante@cs.und.edu

Abstract

The application of software engineering principles in software development is growing in
occurrences and importance. This growth is driven by the increasing number of safety-
critical software systems being developed. Development of safety-critical software
systems require the use of dependable, reliable, and standardized methodologies, tool
support, and modeling and programming languages.

One such set of methodology, tool, and language is an object-oriented model-driven
software development methodology, Rational Rose CASE tool, the Unified Modeling
Language (UML), and Java programming language, respectively. The growth and
dominance of object-oriented development is based on the view that this approach to
software development offers a better representation of real world problems and solutions
than other methodologies.

In this report we document the work done, and experience gained by teams of upper-class
undergraduate students on a one-semester long software engineering course project. The
project involves the development of a safety-critical software system using the
aforementioned development methodology, tool and languages.

1. INTRODUCTION

The problem of diabetes is a growing concern in the world, especially among Americans.
According to the American Diabetes Association (ADA) diabetes is a “disease in which
the body does not produce or properly use insulin.”[1]. Currently, this disease is believed
to affect 20.8 million Americans – almost 7 % of the total population. Within these
numbers, the ADA also includes the estimated 6.2 million people that have yet to be
officially diagnosed. The diagnosis of diabetes falls into two categories – Type 1 or
Type 2. Type 1 diabetes, which accounts for about 10 % of the total patients, occurs
when the body stops producing insulin or produces too little insulin to regulate the
glucose. Type 2 diabetes occurs when the body is partially or completely unable to use
insulin. With this disease, there are several medical complications that can arise. Some
of the most common health problems that affect both types of diabetics are heart disease,
strokes, high blood pressure, blindness, kidney disease, and damage to the nervous
system. Currently, diabetics practice several methods to help prevent or lessen the effects
of these complications.

The easiest way for Type 2 patients to manage their health is through a healthy diet and
exercise plan. For Type 1 patients, treatment almost always involves the daily injection
of insulin, which is the focus of the Automated Insulin Pump System (AIPS). Currently,
there are two ways in which a patient can administer insulin. In the first method, the user
must check his or her blood sugar with a glucose sensor, calculate the appropriate amount
of insulin to administer, and personally inject the insulin. In the second method, the
patient uses a AIPS. The AIPS detects the level of glucose in the user’s blood, calculates
the amount of insulin need, then triggers a pump to administer the correct dosage to the
user via a needle that inserted into the user. Both of these methods require the user to
play a critical role in his or her treatment. Using the AIPS minimizes the possibility of
errors occurring.

To accomplish this, the AIPS integrates the blood glucose sensor and the insulin pump
into one system. Integrating these two processes allows the autonomous delivery of
insulin to the user. This ability of the system to remove the user from the glucose self
monitoring and injection process allows diabetics to live a healthier and more enjoyable
lifestyle.

1.1 Problem Description

The spring 2005 Software Engineering undergraduate class at the University of North
Dakota, Department of Computer Science was assigned the goal of developing a
simulation of a Automatic Insulin Pump System that would demonstrate the usefulness of
such a device to diabetic patients.

The class of twenty two students was invited to form teams of two (2) to four (4) students
that worked independently as a software development project group. Each team elected a
team leader, whose responsibilities including, consulting with the customer (instructor)

2

outside of class time, ensuring that all deliverables were handed in on time, and schedule
meeting times and assignment of work for the team. The course instructor acted as the
customer of the product, and the work had to be completed over the course of the
semester. In the last week of the semester each team made a presentation of their work to
the class and answered questions field from both the instructor and other students in the
class. The teams had to submit a series of progress reports, during the semester, which
outlined (1) work accomplished to date; (2) problems encountered and their solutions;
and (3) tasks to be completed by the next reporting period. Along with a working
application each team had to submit write-up of the work done, object-oriented models of
the system at various stages of development, and instruction on using the application.

The theoretical course material was presented in sequence with the project such that the
students learnt the fundamental software engineering principles and concepts before
needing to apply them on the project. The material used in this course was mainly from
the required course text [2], and the suggested reference text [3]. Teams were expected to
source additional information to supplement not only the project requirements, but also
the theoretical foundation of the course.

1.2 Significance of the Work

As software development moved from the realm of a science to an engineering process,
the importance of systematic software development became more and more apparent [2].
Today’s software development takes place in a distributed, multinational environment
where hundreds of people may be simultaneously working on the same project. A
methodical approach to requirement capture, system specification, design and
implementation is an approach that supports development on such a scale, interaction and
co-operation. History has taught us how crucial systematic software development can be
[4].

The Denver International Airport’s failed baggage delivery system is a prime example of
how expensive an improperly undertaken software development process can be [5]. After
spending $230 million and a decade to fix the system which was not built properly in the
first place, the project was given up. Another example is the recall of Abbott Labs Blood
Glucose Meters [6], which could be inadvertently commanded to display glucose
measurements from US standards to European standards. As a result, the user could take
possible harmful actions to ‘control’ the incorrect sugar level in his or her body. These
examples underline the importance of building a system correctly, and in this report we
outline our attempt to do by following established software engineering principles.

1.3 Scope of the Work

The development of the AIPS was constricted by the time available to complete the
project. As the culmination of a semester long introductory course in software
engineering principles, work on the project was accomplished alongside concepts as they

3

were taught as part of the coursework. Consequently, some elements of a real life
software development cycle were not performed. Particularly, there was no feasibility
study performed to ascertain the merits/demerits of this software engineering effort.
Although requirements for the project were provided by the contractor and not captured
by the project team, requirement analysis was performed to better understand the project.
An object-oriented iterative waterfall software development process was then employed
to develop the AIPS. After implementation and testing, the project was deemed to be
complete. System maintenance was not performed to enhance the system after testing.

The remainder of this report structure is as follows: Section 2 presents the fundamental
theory and concepts used in the project; Section 3 documents the actual work done for
this project; and Section 4 presents our conclusions.

2. BACKGROUND

Students in this course were introduced to a number of theories and concepts that were
not encountered in previous computer science courses. The course structure exposed the
students to an equal quantity of theory and practical applications of the theory, by way of
the team project. In this section we outline the key topics covered and used in the team
project.

2.1 Software Engineering Principles

The first weeks of the course covered the set of software engineering principles [7] from
which were a focus in carrying out the team project. The software engineering principles
theory covered in the course were:

• Rigor and Formality – focuses on the accuracy and precision associated with the
system, and the use of mathematical theory and concepts in measuring and
ensuring this accuracy and precision.

• Separation of Concern – has to do with the developers’ ability to focus on a
particular view of subset of issues of the overall system.

• Modularity – is related to the separation of concerns, as it seeks to
compartmentalize related concerns into modules.

• Abstraction – is a technique that is also related to separation of concern as it
allows developers to concentrate levels (layers) of understanding of the problem
and its solution.

• Anticipation of Change – is the ability to factor into the system its evolution, from
the initial system to one that will incorporate additional functionality and features,
some of which are unknown at the initial stage.

• Generality – involves the ability of being able to identify this specific problem as
an instance of a more general class of problems – This is related to the principle of
abstraction.

• Incrementality – is the act of building the system in deliverable modules and grow
the complete system in increments.

4

During the development cycle in this project these principles acted as guides, with the
exceptions of formality, generality and incrementality. The nature of this project being
completed in one semester did not lend itself to apply these principles.

2.2 Development Process

The next few classes covered the topic of process development. The class was introduced
to a number of development processes, namely: the classical Waterfall and Spiral
approaches. We learnt about component-based software development, process iteration,
and the object-oriented approach to software development. Fundamental to all these
approaches is the stages (phases) of the respective cycles.

In this course we adapted an iterative waterfall approach that was object-oriented based.
This development process is graphically depicted in Figure 1.

Figure 1 – Project Development Process

The process of Figure 1 allowed us to return to a previous development phase to correct,
modify or add information based on our discovery at a later stage.

2.3 Modeling Notation

In object-oriented development, the Unified Modeling Language (UML) [8] is the de
facto modeling language and is supported by major corporations. The UML is a set of
graphical and textual notations for modeling various views of software systems, using
object-oriented (00) concepts. The UML specification offers a set of syntactically well-
defined modeling notations, and is a general purpose modeling language. The UML's EMs
are used to tailor the standard UML concepts for specific enterprise, domain or application
requirements. The UML EMs were specifically defined to meet the requirements of some
projects which require features beyond those defined in the UML specification. The UML
defines a set of models of which the following ones are used in this project:
• Class Diagram – is used at all stages of the development cycle and captures the

relationships between the static entities of the system.

Requirements
Definition

Requirements
Analysis

System
Design

Code
Production

Unit & System
Testing

5

• Use Case Diagram – is used at the requirement stage of the development cycle and captures
the functional (dynamic) properties of the system, and the relationships between the users
and other systems.

• Activity Diagram – are used at the early design stage to define the task involved in carrying
out a system activity. An activity diagram implements a use case of the use case diagram.

• Collaboration Diagram – details the communication sequences between objects in carrying
out a task.

We also include a static and a dynamic dictionary as a deliverable item. These
dictionaries are textual representations of the static and dynamic aspects of the system.

2.4 Development Tool

The project was developed using the computer aided software engineering too Rational
Rose [9]. Rational Rose is an object-oriented UML software design tool intended for
visual modeling and of enterprise-level software applications. Rational Rose provide
iterative development and round-trip engineering. It allows designers to take advantage
of iterative development because the application can be created in stages with the output
of one iteration becomes the input of the next. Rational Rose can also perform "round-
trip engineering" by allowing the developer to trace changes from the code back to the
models from which the code was derived.

3. PROJECT DEVELOPMENT

In this section we present some of the models developed in the project. As was
mentioned earlier – different models were developed at various stages of the development
life cycle. We built system models at the requirement analysis stage, high level design
and detail level design stages of the development life cycle. These models were UML
objected-oriented models.

3.1 Requirement Models

At the requirement stage of development two models were developed. The first was a
Use Case Diagram, that captured the services (functionalities) offered by the system to
the user. Along with the use case diagram a requirements level class diagram was
developed. This class diagram eventually evolves into the detailed design level class
diagram. The requirements level class diagram contains the classes that are known to the
user of the system and the relationships between them. In the final detail design class
diagram all known attributes and methods of the system are included. The use case
diagram is presented in Figure 2 and the requirements level class diagram is presented in
Figure 3.

6

Figure 2 – Requirement Use Case Diagram

Figure 3 – Requirement Class Diagram
3.2 Design Models

At the design stage of development a set of activity and collaboration diagrams were
developed. Figure 4 present the activity diagram for checking the state of the system.

Pump Insulin

Check Blood Sugar
User

Set Mode

7

Figure 4 – Check System Activity Diagram

Figure 5 – Collaboration Diagram
Figure 5 above illustrates the collaboration for checking the system. The detailed design
class diagram is illustrated in Figure 6 below.

Figure 6 – Detail Design Class Diagram

8

3.4 Code Production

The software coding for the insulin pump system was written in the Java programming
language. Java was used for the ability to create classes which closely mimicked those
from the Detail Design Models. Java also allowed us to code more like we would for a
true embedded system. We had class of objects that formed two major parts of the
system, a backend where all the hardware interaction takes place and a user interface.
This user interface, which represents the front panel display that can be accessed by the
system user, contains all relevant controls and indicators necessary to monitor and
administrate system operation. The graphical user interface (GUI) for the system is
presented in Figure 7 and 8.

The above user interface displays all relevant system information to the user, as well as
all controls needed to operate the system in “manual” mode. In accordance with the
project requirements, the GUI displays the current time, the last time a dose of insulin
was administered, and the corresponding amount of that dose. If any hardware
component malfunctions while the system is running, a system alarm indicator activates,
prompting the user to check the system messages. This alarm is both auditory and visual.
By scrolling through the system messages, the user can isolate the source of the error and
take appropriate measures. Other indicators on the GUI show the level of charge in the
battery and the amount of insulin remaining in the reservoir, there is also a history button
which displays a table containing a history of blood sugar values and doses.

9

Figure 7: System User Interface. Figure 8: System User Interface
 During Failure.

Figure 9: Table of history of the system.

10

Besides displaying relevant system information, the user interface also functions as a
control panel for manual operation of the insulin pump. To deliver a manual dose of
insulin, the toggle switch controlling the operation mode must be set to manual. Once the
system is running in manual mode, the user may press the “Inject 1 Unit” button to
deliver one unit of insulin. Even in manual mode the system users decisions are checked
make sure they do not exceed the maximum daily dose. Figure 10 illustrates the error
message from attempting to deliver more than the maximum daily dosage.

Figure 10: Visual Notification of Maximum Insulin Dose for the Day.

In addition to the User Interface a hardware simulator was design and coded to run on
beneath the insulin pump and provide the backend with different state levels for the
various internal variables. Figure 11 displays the portion of the GUI that displays the
internal variables.

Figure 11: Visual Representation of Internal Variables.

This interface provides greater control over the system during testing. The tester can
change the levels for both the battery and insulin reservoir. The interface allows the tester
to manually specify blood sugar levels to test if the system accurately responds to changes
in sugar levels. Finally the panel allows the tester to simulate a variety of different system
failures to test the systems response to these.

11

3.5 Testing

Upon completion of the coding of each subsystem they were tested for correct operation.
Upon passing all specified test cases, the subsystem was integrated into the larger system
model. Finally, when all subsystems were completely specified and integrated, the entire
AIPS model was tested rigorously. To ensure proper functioning of the system, a test
plan was created, describing each case to be tested, the expected result, and the observed
result. Verification of the test plan led to changes in the system architecture. Once all
test cases passed together, the system was deemed ready for delivery. The test plan
matrix used in system verification can be found in Appendix A.

4. CONCLUSION

The process of software development has become ubiquitous. Only a few decades ago,
most software development was accomplished by small teams and was considered part of
computer science. Most of today’s software systems are extremely complex, high-speed,
distributed systems. As complexity has increased, the art of building software has
evolved into the software engineering discipline. Without the techniques, protocols and
methods of software engineering, designing and implementing today’s software systems
would be extremely challenging if at all possible. This software engineering project
enabled the team to get a taste of each of the phases of the software development cycle
and helped put textbook principles into a real life perspective.

The development of a new software system begins with the capturing of system
requirements. In many senses, this can be the making or breaking portion of the project.
More often than not, the real life process that is being modeled or automated is not a part
of the software engineer’s field of knowledge. It thus becomes necessary that the
software engineer understands the system and its requirements in the same manner that
the customer understands them. Although the contractor provided the system
requirements, this team extracted additional requirements from a diabetic. This exercise
helped the team understand the project from an end user’s perspective and get a feel for
what an ideal system should be like. It also forced the team to make a decision between a
system that is good enough and will satisfy all requirements and an ideal system. Given
time, budgetary and resource constraints, demarcating this boundary can be a critical
decision in real life.

The team relied heavily on the Unified Modeling Language for the entire design process.
The project was iteratively broken into smaller and smaller, more manageable chunks
until all the major components and processes were identified. These components could
then be interpreted in terms of software components and implementation could begin. In
the implementation phase, the team had to make another important decision, the choice of
a language and platform to implement the design. The purpose of a software design via
UML is such that it can be implemented in any language that supports the object-oriented
paradigm. Choices such as this one will definitely benefit a lot in real life projects, and
aid in completing the project in a conservative timeframe.

12

The testing phase immediately followed the implementation phase. Creating a realistic
and at the same time thorough test plan is extremely important – especially while testing a
life support system such as the AIPS. After the system was found to behave as required,
the system was ready for release. In the real world, beta testing would follow this stage
and gather statistics and human sentiments about the product so that it can be further
improved. This would also help sort out any bugs that went undiscovered. A final
version of the product would then be released. Maintenance and release of improved
versions of the system would then continue until a new technology is discovered and the
product is retired.

This project has been a valuable experience that closely followed a real life scenario. The
core software engineering concepts that were learned in the classroom were applied in
this project, and insight about their power or shortcomings was gained. One of the most
important lessons learned was that of time management and delegation of tasks. The
importance of breaking down tasks into modules that can be assigned to different
development teams also became very evident.

REFERENCES

[1] http://www.diabetes.org/home.jsp

[2] Sommerville, Ian Software Engineering 7th Edition, Addison Wesley, ISBN 0-321-
21026-3, 2004

[3] Larman, Craig Applying UML and Patterns 3rd edition, Prentice Hall, ISBN 0-13-
148906-2, 2005

[4] Shaw, Mary; Garlan Gavid, Software Architecture: Perspective on an Emerging Field
Prentice Hall, 1996

[5] Weiss, Todd United to Scrap Baggage System at Denver Airport Computerworld,
June 13, 2005

[6] Recalls & Safety Alerts Blood-Glucose Meter could give Incorrect Readings
Consumer Report, December 2005

[7] Ghezzi, Carlo; Jazayeri, Mehdi and Mandrioli, Dino Fundamentals of Software
Engineering 2nd edition, Prentice Hall, 2003

[8] http://www.uml.org

[9] http://www-306.ibm.com/software/rational/

13

APPENDIX A
Test description Component being tested Test Input Expected

Response
Observed Response

The battery alarm shall be set if battery level falls below
battery alarm level.

Power Supply BatteryAlarmLevel = 10
BatteryLevel = 50

No alarm No alarm

Power Supply BatteryAlarmLevel = 10
BatteryLevel = 5

Alarm set Alarm set

The blood sensor alarm shall be set if the blood sensor
malfunctions.

Blood sensor/Controller SensorStatus = false Alarm set Alarm set

The needle assembly alarm shall be set if the needle
assembly malfunctions.

Needle assembly/Controller NeedleStatus = false Alarm set Alarm set

The pump alarm shall be set if the pump malfunctions. Pump/Controller PumpStatus = false Alarm set Alarm set
The insulin alarm shall be set if the insulin level falls
below the maximum allowable dose

Insulin reservoir InsulinAlarmLevel = 10
InsulinLevel = 15

No alarm No alarm

Insulin reservoir InsulinAlarmLevel = 10
InsulinLevel = 8

Alarm set Alarm set

The system shall administer an insulin dose if the blood
sugar, is in the safe zone but increasing at an increasing
rate

Controller CurrentReading = 115
PastReading1 = 100
PastReading2 = 90

Issue dose Issue dose

The system shall administer an insulin dose if the blood
sugar is above 120 mg/dl and steady or increasing, but
not is the rate of decrease is increasing

Controller CurrentReading = 140
PastReading1 = 140

Issue dose Issue dose

Controller CurrentReading = 130
PastReading1 = 150
PastReading2 = 160

Do not issue dose Do not issue dose

The system shall not administer a dose if the blood
sugar is in the safe region and the rate of increase is not
increasing.

Controller CurrentReading = 110
PastReading1 = 100
PastReading2 = 85

Do not issue dose Do not issue dose

The system shall not administer a dose if the blood
sugar is less than 80 mg/dl

Controller Current Reading = 60
TriggerDose = true

Do not issue dose Do not issue dose

There will be no dosage of insulin after the daily
maximum allowable limit has been reached.

Controller MaxDailyDose = 25
DailyTotal = 25
Dose = 5

Do not issue dose Do not issue dose

14

