

Inter-Package Dependency Networks in Open-Source
Software

Nathan LaBelle and Eugene Wallingford
Department of Computer Science

University of Northern Iowa
Cedar Falls, Iowa 50613

labelle@uni.edu

Abstract

The new subject of network science examines large graphs that model real-world,
growing, and dynamic systems of interacting components. These networks form outside
the realm of centralized control, but exhibit global organization and share common non-
trivial properties. This research analyzes networks in Open-Source Software (OSS) at the
package level, where dependencies link diverse software systems constructed by
otherwise disjoint development groups.

Data was mined from two OSS repositories and interaction graphs were constructed. We
show that this module coupling creates a clustered network with low separation between
packages (a “Small-World”). We show that the distribution of edges in the graph is self-
similar at all scales and skewed, yielding a power-law distribution. These properties
indicate that package networks share natural organization patterns with previously
studied systems in natural and social sciences. We argue that software networks are
governed by similar dynamics. Finally, we discuss the implications of network structure
on software engineering.

 2

Introduction

Since Euler’s 1735 solution to the Königsberg Bridges problem, a huge amount of
knowledge has been built on the topic of mathematical graphs. In the last 5 years alone, at
least 21,000 papers have been published on the topic of complex networks (National
Academies, 2005). A network is a typically unweighted and simple large graph

(,)G V E= where V denotes a vertex set and E an edge set. Vertices represent discrete
objects in a system, such as social actors, economic agents, computer programs, or
biological producers and consumers. Edges represent interactions among these
“interactons”. For example, if software objects are represented as vertices, edges can be
assembled between them by defining some meaningful interaction between the objects,
such as inheritance or procedure calls (depending on the nature of the programming
language used). In this paper, the term “network” generalizes large dynamic graphs
where each agent has the ability to change its own set of links based on limited
information, goals, and capacity.

In Open-Source Software (OSS) systems, applications are often distributed in the form of
packages. A package is a bundle of related components necessary to compile or run an
application. Because resource reuse is naturally a pillar of OSS, a package is often
dependent on resources in some other packages to function properly. These packages
may be third-party libraries, bundles of resources such as images, or UNIX utilities such
as grep and sed. Package dependencies often span across project development teams, and
since there is no central control over which resources from other packages are needed, the
software system self-organizes in to a collection of discrete, interconnected components.

The collection of OSS interactions was chosen because it is large (about 22,000 packages
with 84,000 interactions), and contains a diverse set of software developed by many
people. Additionally, links between packages can be defined in discrete, definite ways;
and the data set is free of extraneous data. OSS is also particularly relevant to modern
computing, given the growth in popularity of Linux and UNIX-like operating systems in
recent years. Finally, OSS repositories provide software engineering researchers with a
view of a large collection of software that is used “in the wild”, and developed using
many methodologies, providing a unique opportunity to identify development practices
with the ultimate goal of producing better software.

Previous Research

Real-world networks tend to share a common set of non-trivial properties: they have
scale-free degree distributions following a power-law, exhibit the Small-World effect,
and have a large connected component. These properties are non-trivial in the sense that
they do no appear in randomly constructed graphs (Watts, 1999). Real-world networks
such as the Internet (Faloutsos, Faloutsos, & Faloutsos, 1999), the World-Wide Web
(Albert et al., 1999), software objects (Potanin et al., 2004), and networks of scientific
citations (Lehmann, Lautrup, & Jackson, 2003; Redner, 1998) all have these properties.

 3

The goal of this research is to show that these properties are also found in networks of
package dependencies in OSS repositories.

The degree of a vertex v , denoted k , is the number of vertices adjacent to v , or in the
case of a directed graph either the number of incoming edges or outgoing edges, denoted

ink and outk , respectively. The distribution of edges in real-networks roughly follows a
power law: ()P k k α−∝ . That is, the probability of a vertex having k edges decays with
respect to some constant α +∈ which is typically between 2 and 3. This is significant
because it shows deviation from randomly constructed graphs, first studied by Erdös and
Rényi and proven to take on a Poisson distribution in the limit of large n , where | |n V=
(Watts, 1999). Also, it has been shown that dynamical systems undergoing phase
transitions near the “edge of chaos” often display power-law behavior (Bak, 1996). The
power-law distribution of edges implies that many vertices will not be highly connected
and will have one or two edges, while some vertices will be “hubs” of the network and
contain thousands of edges.

Real-world networks have two specific length-scaling features not found together in
random networks: (1) a low characteristic path length and (2) a high degree of clustering
(Watts & Strogatz, 1998). Together, these these properties are known as the “Small-
World” (SW) effect, popularly known as “Six Degrees of Separation”. Formally, a
network is Small-World if ln() 1k n , randomL L≈ and randomC C . ln()k n places a lower
limit on the sparseness, preventing the graph from becoming disconnected.

randomL L≈ indicates that the geodesic path length (unweighted number of hops) between
vertices is, on average, of the same order as that of random networks. In real-world
networks, the number of hops between vertices grows on the order of log()n . The
clustering coefficient C is the propensity for local cliques to form, and is much higher in
real networks than in randomly constructed networks. In more formal terms, if a vertex v
is adjacent to vertices u and w, then u and w are more likely to be adjacent to each other
than in a random network. The clustering coefficient measures this value, which is the
likelihood of the neighbors of a vertex to also be neighbors.

The size of the connected component is the number of vertices such that there exists an
edge traversal path between each vertex in the set. For real-world networks, the size of
this set is approximately 90% or more, which is much larger than statistically expected in
randomly-constructed networks. This fact makes Internet routing possible: at any given
time, a large subset of the entire Internet is connected by some path. Those nodes that are
not connected to the main component are disjoint and unreachable from most users.

Previous research in networks of software has focused on software at low levels of
abstraction relative to the current research. Clark and Green (1977) found Zipf
distributions (a ranking distribution similar to the power-law, which is also found in word
frequencies in natural language (Zipf, 1965) in the structure of CDR and CAR lists in
large Lisp programs during run-time. In object-oriented programming languages, several
studies (Valverde & Solé, 2004; Wheeldon & Counsell, 2003) have identified the Small-
World effect and power-law edge distribution in networks of objects or procedures where

 4

edges represent meaningful interconnection between objects, such as inheritance or in the
case in procedural languages, procedures are represented as vertices and edges between
vertices symbolize function calls. These networks may be constructed either from source
code by using syntax analysis; or from run-time analysis of objects stored on the
program’s heap. Similar statistical features have also been identified in networks where
the vertices represent source code files on a disk and edges represent a dependency
between files rather than objects or procedures (de Moura, Lai, & Motter, 2003). For
example, in C and C++ one source file may #include another, thus creating a network of
meaningful interaction inside a program. The Small-World property and a power-law
distribution of edges has also been found in documentation systems such as JavaDoc
(Wheeldon & Counsell, 2003).

Methodology

Data was gathered from the Debian GNU/Linux and FreeBSD systems, primary using the
Advanced Package Manager (APT) tool for database querying. This data was gathered as
“snapshots” of different system maturity levels (Unstable, Testing, and Stable) and
different hardware architectures. The raw statistical data was processed using Minitab 14.

Dependency and Repository Anatomy

Several reasons for package dependencies have been identified:
1. Resource sharing. Multimedia resources such as graphics and sounds may be part

of a package and required by another package.
2. Library dependency. Programs make calls to various libraries, such as libPNG or

libc6.
3. Interpretation dependency. Programs may rely on language interpreters such as

Perl or Python to parse their code and execute them.
4. Executable dependency. A program may call some other system executable, such

as grep or sed for processing textual data.
5. Dummy references. Some packages are “umbrella” packages that exist to aid the

user in installing other packages. This is the case where many packages are part of
a large project, such as the X Window System.

6. “Provides”. These “pseudo-packages” provide some function that is package
independent. An example would be the “x-window-manager” package, where
specific windowing management packages provide this pseudo-package, and are
assumed to supply the same functionality, transparent to dependent packages.

7. “Conflicts”. Sometimes, two packages which provide similar functionality will
conflict with each other when installed in a system. An example is the “abiword”
package, which conflicts with the “abiword-gtk” and “abiword-gnome” packages.

 5

Figure 1: A cyclical dependency

Statistical Software

Customized software was constructed in Java to interact with APT, create the networks,
and calculate the statistics. The JUNG (Java Universal Network/Graph Framework)
libraries provided calculation of the clustering coefficient, component size, and diameter.
In order to obtain the power-law fitting, the following steps were taken:

1. Cumulative tallies of and outk and ink were calculated. That is, the sum of the
number of nodes having exactly outk and ink edges was calculated.

2. 1k k= + . Each package is dependent on itself.
3. log(())N k was plotted against log()k and fitted with linear regression.

4. The slope ym
x

∆
=

∆
 of the fitted line was calculated. The power-law exponent

is | |mα = .

Results

Results for the i386 distributions are given in Table 1. The i386/Unstable network is the
largest architecture in Debian with 22,264n = packages and 84,437k = dependencies,
giving each package an average coupling to 3.79 packages. For each network snapshot,
L and C were in the SW range, since they have path lengths shorter than those of SW
networks but have higher cliquishness. There are about 2,500 components, but the largest
component contains 88% of the vertices. The rest of the vertices are disjoint from each
other, resulting in a large number of components with only 1 vertex. The diameter of the
largest component is 19. The distribution of outgoing edges, which is a measure of
dependency to other packages, follows a power-law with 2.33outk = (Figure 2). The
distribution of incoming edges, which measures how many packages are dependent on a
package, follows a power-law with 0.90ink ≈ (Figure 2). About 73% of packages depend
on some other package to function correctly. The “Pure” dependencies in Table 1 are
dependencies that are not categorized as Provides, Conflicts, or Dummy. Correlation

 6

between ink , outk , and package size is not calculated because the normality assumption is
violated.

Another way of categorizing the edge distribution is by ranking event sizes and
frequencies, instead of comparing event sizes and frequencies directly. Each node is
assigned a rank 1 r n≤ ≤ based on the degree of the node, where a lower number implies
a higher rank. log()r is then plotted against log()k . If linear regression yields a close fit
over several orders of magnitude (which is implied by log scale), then a Zipf distribution
is present. Figure 3 shows the Zipf distributions for Debian i386/Unstable
where 22,264n = vertices. In Figure 3, outk diminishes for large ranks, implying finite size
effects in the number of outgoing dependencies. This is because no project is dependent
on thousands of other projects for functionality, since a project encapsulating that much
utility would be infeasible due to programmer and management limits.

 n k k Components Largest
Component
Size

Unstable 22264 84437 3.792 2524 87.9%
Testing 21310 75699 3.552 2865 85.7%
Stable 19677 74642 3.793 2014 88.8%
Unstable
Pure

17183 72501 4.219 1407 91.2%

 C randomC L randomL
Unstable N/A 0.0017 N/A 7.509
Testing 0.498 0.0016 3.441 7.862
Stable 0.533 0.0019 3.352 7.415
Unstable
Pure

0.528 0.0024 3.056 6.774

Table 1: Debian i386 Dependency Network Statistics.

In the Debian network, the 20 most highly depended-upon packages are libc6 (7861),
xlibs (2236), libgcc1 (1760), zlib1g (1701), libx11-6 (1446), perl (1356), libxext6 (1110),
debconf (1013), libice6 (922), libsm6 (919), libglib2.0-0 (859), libpng12-0 (622),
libncurses5 (616), libgtk2.0-0 (615), libpango1.0-0 (610), libatk1.0-0 (602), libglib1.2
(545), libxml2 (538), libart-2.0-2 (524), and libgtk1.2 (474). The number in parentheses
represents the number of incoming edges. The list is composed mainly of libraries that
provide some functionality to programs such as XML parsing or that provide some
reusable components such as graphical interface widgets. Because the most highly-
connected package (libc6) is required for execution of C and C++ programs, we can infer
that these are the most widely used programming languages. These “authority” packages
form the backbone of the Debian system, just as large routers on the Internet (Faloutsos et

 7

al., 1999) or informational hubs on the Web (Albert et al., 1999) are major contributors to
connectivity.

Several non-i386 architectures were analyzed with similar results. A summary of the
results are given in Table 2. In each case, the networks created fit the SW criteria and the
distributions were skewed towards a power-law. The AMD64 architecture is significantly
smaller than the others because software for AMD64 is in the process of being ported
from other architectures. If AMD64 develops like the other architectures, more
dependencies will be created as more packages are ported.

 n k k C L Largest
Component

Size
AMD64
Unstable

11061 15980 1.444 0.509 5.516 63.8%

AMD64
Testing

10504 14926 1.420 - - 63.5%

Alpha
Unstable

21537 83722 3.887 0.536 3.411 87.5%

Alpha Testing 20814 78198 3.756 0.490 3.543 86.5%
Alpha Stable 18687 70696 3.783 0.535 3.355 88.1%

HP-PA
Unstable

21550 83323 3.866 - - 87.1%

HP-PA
Testing

20466 77918 3.807 0.544 3.402 86.1%

HP-PA
Stable

18670 70599 3.781 0.536 3.357 88.1%

Table 2: Networks for AMD64, Alpha, and HP-PA Architectures.

Figure 2: Log-log scatterplots of outk and ink , respectively, of Debian i386/Unstable.

The BSD network yielded similar results. This network was constructed from a single
snapshot taken in October, 2004. In the case of both source code and binary dependencies,
the networks were similar. For the source-code network, n =10,222 packages and

 8

k =74,318 dependencies, giving an average of 7.27 dependencies per package. The SW
statistics are 0.56 0.00071randomC C= = and 2.865 4.653randomL L= ≈ = . The network
has a diameter of 5 and component size of 72% of all packages. The remaining packages
are disjoint from each other. The BSD source-code network has a power-law degree
distribution with 0.62ina = and 1.28outa = .

Figure 3: Zipf distribution of outk and ink , respectively, of Debian i386/Unstable.

Figure 4: A rendering of n=100 random packages.

 9

Figure 5: A rendering of 163n = random packages.

Conclusion and Future Research

The customized software used in this research queried the Debian and FreeBSD package
repositories, created networks from the results, and calculated graph statistics which gave
the following results:

1. Short geodesic path lengths with high clustering (the Small-World effect).
2. A near power-law distribution of edges.
3. A giant component connecting about 88% of the packages.

This research has contributed to the body of knowledge about complex networks in
Computing by showing that a previously unstudied group of components have naturally
emerging structures similar to other networks. Using statistical analysis on large graphs
representing package interactions, we have shown the existence of the power-law
distribution and the Small-World effect in networks mined from two large software
repositories. We have also identified statistically significant motifs, and shown the
existence of a large connected component. Each of these results are in concordance with
results from other studies of complex networks. Our research indicates that despite the
absence of a central governing body to engineer global structure in the package
interaction network, software structures follow patterns that are found in many natural
and artificial systems. These results not only extend the number of classified complex
networks, but suggest that there are organizational patterns in software that transcend
explicit design.

 10

The network can also have an effect on software engineering and robustness, that should
be investigated in future research. For example, many OSS projects implement a
“changelog” standard, where changes to a project are ad-libbed into a plain text file. For
highly-dependent projects, a machine-readable documentation standard could be
implemented using existing XML standards and used to communicate possibly important
changes. This may prove to be more efficient than the current “Victorian Novel” style of
documenting changes in software.

Also, highly-dependent projects should engage in high quality testing for bugs and
security problems. As an example, consider libPNG, a package that provides Portable
Network Graphics format usage and manipulation to other packages. In 2004, a list of
security vulnerabilities in libPNG were made public (U.S. CERT, 2004). These security
vulnerabilities could allow a malformed PNG image to crash applications and allow
arbitrary code execution. At the time this vulnerability was made public, libPNG had
over 650 dependent packages. Because many different web-browsers, file managers,
email clients, and graphics editing programs depend on libPNG for rendering and
creating PNG files, they were all subject to potential security vulnerabilities inherent in
libPNG (depending on which functions in libPNG being used).

The dynamics of software development is an interesting area for study. Many feedback
loops exist in the package system, which ultimately provide the basis for “increasing
returns” in the development of robust software. A simple model of these feedback loops
are shown in Figure 6. As illustrated, changes in one package may inspire changes in
another. Creating and using software in a connected system is ultimately self-reinforcing
behavior and provides nonlinear feedback. Additionally, because an ecosystem of
dependent packages adapt to each other, the effects of evolution on network dynamics
should be investigated. Future research should identify how feedback loops work in
software, their effect on software robustness and software size, and on network creation.

Figure 6: Feedback loops influencing network dynamics and software robustness.

 11

It is known that general power-law networks have a high resistance to random failure, but
particular vulnerability to direct attacks on “hub” packages (Albert et al., 2000). Since
software networks have no natural homeostasis against failure, the highly-connected
nodes should strive to avoid malfunction. Potential avalanches of cascading failures
should be identified and isolated before propagated through hub packages.

There are many directions for future research in the study of software networks.
Currently, there is no model of network formation that takes software dynamics (reuse,
refactoring, and addition of new packages) in to account. Also, the impact of the network
structure on software dynamics should be investigated, for example, security exploit
propagation through a network of dependent software. Future research should identify
other networks in software and move towards formulating a theory of networks and their
value to software engineering. Additional dependency networks can be constructed on
Windows computers using memory profiling tools, and determining interactions based on
shared .DLL (Dynamic Library Link) files and Active-X controls.

References

Albert, R., Jeong, H., & Barabási, A. (1999). Diameter of the World-Wide Web. Nature,

401, 130-131.

Albert, R., Jeong, H., & Barabási, A. (2000). Error attack and tolerance of complex

networks. Nature, 406, 378-381.

Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. New

York: Springer-Verlag.

Clark, D., & Green, C. (1977). An empirical study of list structure in Lisp.

Communications of the ACM, 20, 78-87.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the

internet topology. Proc. of ACM SIGCOMM, 251-262.

Lehmann, S., Lautrup, B., & Jackson, A.D. (2003). Citation networks in high energy

physics. Phys. Rev. E, 68, 026113.

Lopez-Fernandez, L., Robles, G., & Gonzalez-Barahona, J. (2004). Applying social

network analysis to information in CVS repositories. Proc. of the First
International Workshop on Mining Software Repositories, 101-105.

de Moura, A.P.S., Lai, Y.-C., & Motter, A. (2003). Signatures of small-world and scale-

free properties in large computer programs. Phys. Rev. E, 68, 017102.

Myers, C.R. (2003). Software systems as complex networks: structure, function, and

evolvability of software collaboration graphs. Phys. Rev. E., 68, 046116.

 12

National Academies (2005). Network Science. Washington: National Academies Press.

Noble, J., Vitek, J., Potter, J. (1998). Flexible alias protection. Proc. of the 12th European

Conference on Object-Oriented Programming, 158-185.

Potanin, A., Noble, J., Frean, M., & Biddle, R. (2004). Scale-free geometry in object-

oriented programs. To appear in Communications of the ACM.

Redner, S. (1998). How popular is your paper? An empirical study of the citation

distribution. European Physical Journal B, 4, 131-134.

Valverde, S., Solé, R. V. (2004). Hierarchical small-worlds in software architecture.

Santa Fe Institute working paper SFI/03-07-044.

U.S. CERT: United States Computer Emergency Readiness Team (2004). Technical

Cyber Security Alert TA04-217A. Accessed October 25, 2004 from http://www.us-
cert.gov/cas/techalerts/TA04-217A.html

Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature,

393, 440-442.

Watts, D. (1999). Small Worlds: The Dynamics of Networks Between Order and

Randomness. Princeton, New Jersey: Princeton University Press.

Wheeldon, R., & Counsell, S. (2003). Power law distributions in class relationships.

Proceedings of the Third IEEE International Workshop on Source Code Analysis
and Manipulation. Arxiv: cs.SE/0305037.

Zimmerman, T., & Zeller, A. (2001). Visualizing memory graphs. Lecture Notes in

Computer Science, 2269. 191-204. New York: Springer.

Zipf, G. (1965). The Psycho-Biology of Language: An Introduction to Dynamic Philology.

Cambridge: MIT Press.

