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Abstract 

The new subject of network science examines large graphs that model real-world, 
growing, and dynamic systems of interacting components. These networks form outside 
the realm of centralized control, but exhibit global organization and share common non-
trivial properties. This research analyzes networks in Open-Source Software (OSS) at the 
package level, where dependencies link diverse software systems constructed by 
otherwise disjoint development groups. 

Data was mined from two OSS repositories and interaction graphs were constructed. We 
show that this module coupling creates a clustered network with low separation between 
packages (a “Small-World”). We show that the distribution of edges in the graph is self-
similar at all scales and skewed, yielding a power-law distribution. These properties 
indicate that package networks share natural organization patterns with previously 
studied systems in natural and social sciences. We argue that software networks are 
governed by similar dynamics. Finally, we discuss the implications of network structure 
on software engineering. 
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Introduction 
 
Since Euler’s 1735 solution to the Königsberg Bridges problem, a huge amount of 
knowledge has been built on the topic of mathematical graphs. In the last 5 years alone, at 
least 21,000 papers have been published on the topic of complex networks (National 
Academies, 2005).  A network is a typically unweighted and simple large graph 

( , )G V E=  where V denotes a vertex set and E an edge set. Vertices represent discrete 
objects in a system, such as social actors, economic agents, computer programs, or 
biological producers and consumers. Edges represent interactions among these 
“interactons”. For example, if software objects are represented as vertices, edges can be 
assembled between them by defining some meaningful interaction between the objects, 
such as inheritance or procedure calls (depending on the nature of the programming 
language used). In this paper, the term “network” generalizes large dynamic graphs 
where each agent has the ability to change its own set of links based on limited 
information, goals, and capacity.  
 
In Open-Source Software (OSS) systems, applications are often distributed in the form of 
packages. A package is a bundle of related components necessary to compile or run an 
application. Because resource reuse is naturally a pillar of OSS, a package is often 
dependent on resources in some other packages to function properly. These packages 
may be third-party libraries, bundles of resources such as images, or UNIX utilities such 
as grep and sed. Package dependencies often span across project development teams, and 
since there is no central control over which resources from other packages are needed, the 
software system self-organizes in to a collection of discrete, interconnected components.  
 
The collection of OSS interactions was chosen because it is large (about 22,000 packages 
with 84,000 interactions), and contains a diverse set of software developed by many 
people. Additionally, links between packages can be defined in discrete, definite ways; 
and the data set is free of extraneous data. OSS is also particularly relevant to modern 
computing, given the growth in popularity of Linux and UNIX-like operating systems in 
recent years. Finally, OSS repositories provide software engineering researchers with a 
view of a large collection of software that is used “in the wild”, and developed using 
many methodologies, providing a unique opportunity to identify development practices 
with the ultimate goal of producing better software. 
 
 
Previous Research 
 
Real-world networks tend to share a common set of non-trivial properties: they have 
scale-free degree distributions following a power-law, exhibit the Small-World effect, 
and have a large connected component. These properties are non-trivial in the sense that 
they do no appear in randomly constructed graphs (Watts, 1999). Real-world networks 
such as the Internet (Faloutsos, Faloutsos, & Faloutsos, 1999), the World-Wide Web 
(Albert et al., 1999), software objects (Potanin et al., 2004), and networks of scientific 
citations (Lehmann, Lautrup, & Jackson, 2003; Redner, 1998) all have these properties. 
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The goal of this research is to show that these properties are also found in networks of 
package dependencies in OSS repositories.  
 
The degree of a vertex v , denoted k , is the number of vertices adjacent to v , or in the 
case of a directed graph either the number of incoming edges or outgoing edges, denoted 

ink  and outk , respectively. The distribution of edges in real-networks roughly follows a 
power law: ( )P k k α−∝ . That is, the probability of a vertex having k  edges decays with 
respect to some constant α +∈  which is typically between 2 and 3. This is significant 
because it shows deviation from randomly constructed graphs, first studied by Erdös and 
Rényi and proven to take on a Poisson distribution in the limit of large n , where | |n V=  
(Watts, 1999). Also, it has been shown that dynamical systems undergoing phase 
transitions near the “edge of chaos” often display power-law behavior (Bak, 1996). The 
power-law distribution of edges implies that many vertices will not be highly connected 
and will have one or two edges, while some vertices will be “hubs” of the network and 
contain thousands of edges. 
 
Real-world networks have two specific length-scaling features not found together in 
random networks: (1) a low characteristic path length and (2) a high degree of clustering 
(Watts & Strogatz, 1998). Together, these these properties are known as the “Small-
World” (SW) effect, popularly known as “Six Degrees of Separation”. Formally, a 
network is Small-World if ln( ) 1k n , randomL L≈  and randomC C . ln( )k n  places a lower 
limit on the sparseness, preventing the graph from becoming disconnected. 

randomL L≈ indicates that the geodesic path length (unweighted number of hops) between 
vertices is, on average, of the same order as that of random networks. In real-world 
networks, the number of hops between vertices grows on the order of log( )n . The 
clustering coefficient C  is the propensity for local cliques to form, and is much higher in 
real networks than in randomly constructed networks. In more formal terms, if a vertex v 
is adjacent to vertices u and w, then u and w are more likely to be adjacent to each other 
than in a random network. The clustering coefficient measures this value, which is the 
likelihood of the neighbors of a vertex to also be neighbors.  
 
The size of the connected component is the number of vertices such that there exists an 
edge traversal path between each vertex in the set. For real-world networks, the size of 
this set is approximately 90% or more, which is much larger than statistically expected in 
randomly-constructed networks. This fact makes Internet routing possible: at any given 
time, a large subset of the entire Internet is connected by some path. Those nodes that are 
not connected to the main component are disjoint and unreachable from most users. 
 
Previous research in networks of software has focused on software at low levels of 
abstraction relative to the current research. Clark and Green (1977) found Zipf 
distributions (a ranking distribution similar to the power-law, which is also found in word 
frequencies in natural language (Zipf, 1965) in the structure of CDR and CAR lists in 
large Lisp programs during run-time. In object-oriented programming languages, several 
studies (Valverde &  Solé, 2004; Wheeldon & Counsell, 2003) have identified the Small-
World effect and power-law edge distribution in networks of objects or procedures where 
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edges represent meaningful interconnection between objects, such as inheritance or in the 
case in procedural languages, procedures are represented as vertices and edges between 
vertices symbolize function calls. These networks may be constructed either from source 
code by using syntax analysis; or from run-time analysis of objects stored on the 
program’s heap. Similar statistical features have also been identified in networks where 
the vertices represent source code files on a disk and edges represent a dependency 
between files rather than objects or procedures (de Moura, Lai, & Motter, 2003). For 
example, in C and C++ one source file may #include another, thus creating a network of 
meaningful interaction inside a program. The Small-World property and a power-law 
distribution of edges has also been found in documentation systems such as JavaDoc 
(Wheeldon & Counsell, 2003). 
 
 
Methodology 
 
Data was gathered from the Debian GNU/Linux and FreeBSD systems, primary using the 
Advanced Package Manager (APT) tool for database querying. This data was gathered as 
“snapshots” of different system maturity levels (Unstable, Testing, and Stable) and 
different hardware architectures. The raw statistical data was processed using Minitab 14. 
 
 
Dependency and Repository Anatomy  
 
Several reasons for package dependencies have been identified: 
1. Resource sharing. Multimedia resources such as graphics and sounds may be part 

of a package and required by another package. 
2. Library dependency. Programs make calls to various libraries, such as libPNG or 

libc6.  
3. Interpretation dependency. Programs may rely on language interpreters such as 

Perl or Python to parse their code and execute them. 
4. Executable dependency. A program may call some other system executable, such 

as grep or sed for processing textual data. 
5. Dummy references. Some packages are “umbrella” packages that exist to aid the 

user in installing other packages. This is the case where many packages are part of 
a large project, such as the X Window System. 

6. “Provides”. These “pseudo-packages” provide some function that is package 
independent. An example would be the “x-window-manager” package, where 
specific windowing management packages provide this pseudo-package, and are 
assumed to supply the same functionality, transparent to dependent packages. 

7. “Conflicts”. Sometimes, two packages which provide similar functionality will 
conflict with each other when installed in a system. An example is the “abiword” 
package, which conflicts with the “abiword-gtk” and “abiword-gnome” packages.  
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Figure 1: A cyclical dependency 

 
 
Statistical Software  
 
Customized software was constructed in Java to interact with APT, create the networks, 
and calculate the statistics. The JUNG (Java Universal Network/Graph Framework) 
libraries provided calculation of the clustering coefficient, component size, and diameter. 
In order to obtain the power-law fitting, the following steps were taken: 
 

1. Cumulative tallies of and outk  and ink  were calculated. That is, the sum of the 
number of nodes having exactly outk  and ink  edges was calculated.  

2. 1k k= + . Each package is dependent on itself. 
3. log( ( ))N k  was plotted against log( )k  and fitted with linear regression. 

4. The slope ym
x

∆
=

∆
 of the fitted line was calculated. The power-law exponent 

is | |mα = . 
 
 
Results 
 
Results for the i386 distributions are given in Table 1. The i386/Unstable network is the 
largest architecture in Debian with 22,264n =  packages and 84,437k =  dependencies, 
giving each package an average coupling to 3.79 packages. For each network snapshot, 
L and C were in the SW range, since they have path lengths shorter than those of SW 
networks but have higher cliquishness. There are about 2,500 components, but the largest 
component contains 88% of the vertices. The rest of the vertices are disjoint from each 
other, resulting in a large number of components with only 1 vertex. The diameter of the 
largest component is 19. The distribution of outgoing edges, which is a measure of 
dependency to other packages, follows a power-law with 2.33outk = (Figure 2). The 
distribution of incoming edges, which measures how many packages are dependent on a 
package, follows a power-law with 0.90ink ≈ (Figure 2). About 73% of packages depend 
on some other package to function correctly. The “Pure” dependencies in Table 1 are 
dependencies that are not categorized as Provides, Conflicts, or Dummy. Correlation 
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between ink , outk , and package size is not calculated because the normality assumption is 
violated. 
 
Another way of categorizing the edge distribution is by ranking event sizes and 
frequencies, instead of comparing event sizes and frequencies directly. Each node is 
assigned a rank 1 r n≤ ≤  based on the degree of the node, where a lower number implies 
a higher rank. log( )r is then plotted against log( )k .  If linear regression yields a close fit 
over several orders of magnitude (which is implied by log scale), then a Zipf distribution 
is present. Figure 3 shows the Zipf distributions for Debian i386/Unstable 
where 22,264n = vertices. In Figure 3, outk diminishes for large ranks, implying finite size 
effects in the number of outgoing dependencies. This is because no project is dependent 
on thousands of other projects for functionality, since a project encapsulating that much 
utility would be infeasible due to programmer and management limits. 
 
 

 n  k  k  Components Largest 
Component 
Size 

Unstable 22264 84437 3.792 2524 87.9% 
Testing 21310 75699 3.552 2865 85.7% 
Stable 19677 74642 3.793 2014 88.8% 
Unstable 
Pure 

17183 72501 4.219 1407 91.2% 

      
 C  randomC  L  randomL   
Unstable N/A 0.0017 N/A 7.509  
Testing 0.498 0.0016 3.441 7.862  
Stable 0.533 0.0019 3.352 7.415  
Unstable  
Pure 

0.528 0.0024 3.056 6.774  

Table 1: Debian i386 Dependency Network Statistics. 
 
 
In the Debian network, the 20 most highly depended-upon packages are libc6 (7861), 
xlibs (2236), libgcc1 (1760), zlib1g (1701), libx11-6 (1446), perl (1356), libxext6 (1110), 
debconf (1013), libice6 (922), libsm6 (919), libglib2.0-0 (859), libpng12-0 (622), 
libncurses5 (616), libgtk2.0-0 (615), libpango1.0-0 (610), libatk1.0-0 (602), libglib1.2 
(545), libxml2 (538), libart-2.0-2 (524), and libgtk1.2 (474). The number in parentheses 
represents the number of incoming edges. The list is composed mainly of libraries that 
provide some functionality to programs such as XML parsing or that provide some 
reusable components such as graphical interface widgets. Because the most highly-
connected package (libc6) is required for execution of C and C++ programs, we can infer 
that these are the most widely used programming languages. These “authority” packages 
form the backbone of the Debian system, just as large routers on the Internet (Faloutsos et 
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al., 1999) or informational hubs on the Web (Albert et al., 1999) are major contributors to 
connectivity. 
 
Several non-i386 architectures were analyzed with similar results. A summary of the 
results are given in Table 2. In each case, the networks created fit the SW criteria and the 
distributions were skewed towards a power-law. The AMD64 architecture is significantly 
smaller than the others because software for AMD64 is in the process of being ported 
from other architectures. If AMD64 develops like the other architectures, more 
dependencies will be created as more packages are ported.  
 

 n  k k C L Largest 
Component 

Size 
AMD64 
Unstable 

11061 15980 1.444 0.509 5.516 63.8% 

AMD64 
Testing 

10504 14926 1.420 - - 63.5% 

Alpha 
Unstable 

21537 83722 3.887 0.536 3.411 87.5% 

Alpha Testing 20814 78198 3.756 0.490 3.543 86.5% 
Alpha Stable 18687 70696 3.783 0.535 3.355 88.1% 

HP-PA 
Unstable 

21550 83323 3.866 - - 87.1% 

HP-PA 
Testing 

20466 77918 3.807 0.544 3.402 86.1% 

HP-PA  
Stable 

18670 70599 3.781 0.536 3.357 88.1% 

Table 2: Networks for AMD64, Alpha, and HP-PA Architectures. 
 
 

     
Figure 2: Log-log scatterplots of outk  and ink , respectively, of Debian i386/Unstable. 

 
 

The BSD network yielded similar results. This network was constructed from a single 
snapshot taken in October, 2004. In the case of both source code and binary dependencies, 
the networks were similar. For the source-code network, n =10,222 packages and 
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k =74,318 dependencies, giving an average of 7.27 dependencies per package. The SW 
statistics are 0.56 0.00071randomC C= =  and 2.865 4.653randomL L= ≈ = . The network 
has a diameter of 5 and component size of 72% of all packages. The remaining packages 
are disjoint from each other. The BSD source-code network has a power-law degree 
distribution with 0.62ina =  and 1.28outa = .  
 

      
 

Figure 3: Zipf distribution of outk and ink , respectively, of Debian i386/Unstable. 
 

 
Figure 4: A rendering of n=100 random packages. 
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Figure 5: A rendering of 163n = random packages. 

 
 

Conclusion and Future Research 
 
The customized software used in this research queried the Debian and FreeBSD package 
repositories, created networks from the results, and calculated graph statistics which gave 
the following results: 
 
1. Short geodesic path lengths with high clustering (the Small-World effect). 
2. A near power-law distribution of edges. 
3. A giant component connecting about 88% of the packages. 
 
This research has contributed to the body of knowledge about complex networks in 
Computing by showing that a previously unstudied group of components have naturally 
emerging structures similar to other networks. Using statistical analysis on large graphs 
representing package interactions, we have shown the existence of the power-law 
distribution and the Small-World effect in networks mined from two large software 
repositories. We have also identified statistically significant motifs, and shown the 
existence of a large connected component. Each of these results are in concordance with 
results from other studies of complex networks. Our research indicates that despite the 
absence of a central governing body to engineer global structure in the package 
interaction network, software structures follow patterns that are found in many natural 
and artificial systems. These results not only extend the number of classified complex 
networks, but suggest that there are organizational patterns in software that transcend 
explicit design.  
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The network can also have an effect on software engineering and robustness, that should 
be investigated in future research. For example, many OSS projects implement a 
“changelog” standard, where changes to a project are ad-libbed into a plain text file. For 
highly-dependent projects, a machine-readable documentation standard could be 
implemented using existing XML standards and used to communicate possibly important 
changes. This may prove to be more efficient than the current “Victorian Novel” style of 
documenting changes in software. 
 
Also, highly-dependent projects should engage in high quality testing for bugs and 
security problems. As an example, consider libPNG, a package that provides Portable 
Network Graphics format usage and manipulation to other packages. In 2004, a list of 
security vulnerabilities in libPNG were made public (U.S. CERT, 2004). These security 
vulnerabilities could allow a malformed PNG image to crash applications and allow 
arbitrary code execution. At the time this vulnerability was made public, libPNG had 
over 650 dependent packages. Because many different web-browsers, file managers, 
email clients, and graphics editing programs depend on libPNG for rendering and 
creating PNG files, they were all subject to potential security vulnerabilities inherent in 
libPNG (depending on which functions in libPNG being used). 
 
The dynamics of software development is an interesting area for study. Many feedback 
loops exist in the package system, which ultimately provide the basis for “increasing 
returns” in the development of robust software. A simple model of these feedback loops 
are shown in Figure 6. As illustrated, changes in one package may inspire changes in 
another. Creating and using software in a connected system is ultimately self-reinforcing 
behavior and provides nonlinear feedback. Additionally, because an ecosystem of 
dependent packages adapt to each other, the effects of evolution on network dynamics 
should be investigated. Future research should identify how feedback loops work in 
software, their effect on software robustness and software size, and on network creation. 
 
 

 
Figure 6: Feedback loops influencing network dynamics and software robustness. 
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It is known that general power-law networks have a high resistance to random failure, but 
particular vulnerability to direct attacks on “hub” packages (Albert et al., 2000). Since 
software networks have no natural homeostasis against failure, the highly-connected 
nodes should strive to avoid malfunction. Potential avalanches of cascading failures 
should be identified and isolated before propagated through hub packages.  
 
There are many directions for future research in the study of software networks. 
Currently, there is no model of network formation that takes software dynamics (reuse, 
refactoring, and addition of new packages) in to account. Also, the impact of the network 
structure on software dynamics should be investigated, for example, security exploit 
propagation through a network of dependent software. Future research should identify 
other networks in software and move towards formulating a theory of networks and their 
value to software engineering. Additional dependency networks can be constructed on 
Windows computers using memory profiling tools, and determining interactions based on 
shared .DLL (Dynamic Library Link) files and Active-X controls. 
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