
DESIGN PATTERNS FOR 
DATABASE APPLICATION INTERFACES 

 
 

Yu Fan  
Joline Morrison 

Department of Computer Science 
University of Wisconsin – Eau Claire 

Eau Claire, WI  54702 
fany@uwec.edu, morrisjp@uwec.edu 

 
 

ABSTRACT 
 

Students often struggle with visualizing database application interfaces and designing 
appropriate interfaces for specific application tasks.  To address these issues, this paper 
describes a research project that demonstrates design patterns for a common database 
application through implementing a website.  
 
The website (http://irv.cs.uwec.edu:8080/CS321/SampleJSPSite/) supports an online 
shopping process. A customer is able to view products by category or by price, sign in, 
login/logoff, create/update profile, view previous orders, add products into a shopping 
cart, create/update shipping information, and proceed to check out. The system will then 
insert, modify or delete from the database according to the customer’s request.  
 
The purpose of this project is to help student with interface design and other common 
issues in database application development, such as designing data models, using 
JavaScript and CSSs within JSPs, creating cookies to save temporary information, 
validating data before accessing the database, and resolving transaction conflicts. 
Students can use the web pages as templates to meet their specific needs.   
 
 
 
 
 

http://irv.cs.uwec.edu:8080/CS321/SampleJSPSite/


1. Introduction 
 
Database courses usually emphasize back-end topics such as referential integrity, schema 
design, normalization, transaction management, and system administration.  These 
concepts often seem abstract for students when they try to create their own database 
designs and then implement corresponding applications.  To help students create Web-
based database applications, we developed a website with an associated database and 
application-specific patterns to illustrate topics such as designing data models, connecting 
to the database, inserting/updating/deleting database data, and resolving transaction 
conflicts.  It helps students visualize user interfaces for database applications, and 
provides a template that they can use and apply to other similar problems 
 
The first step in this research was to develop a hierarchy of design patterns for database 
interfaces.  These patterns define elements to represent specific data items, and element 
combinations to display related data.  The final step was to develop domain-specific 
interface patterns to serve as templates for solving real world problems in web/database 
development.    
 
The paper first explores the definition of general and interface design patterns, and then 
describes the design patterns used in the website. Finally it demonstrates some common 
issues in database application development.   
 
 

2. Background 
 
Gamma et. al [1] define a design pattern as an object class that provides a reusable 
solution to a problem.  It is domain-independent, and can be expressed at different 
abstraction levels.  Gamma et. al. propose that a design pattern has the following four 
essential elements: 
 
• Pattern name, which is a short (1-3 word) descriptor  that describes the problem, its 

solutions, and its consequences; 
• Problem, which describes when to apply the pattern; 
• Solution, which describes the design elements and their underlying relationships and 

collaborations; 
• Consequences, which describes the pattern’s results and limitations.  
 

Tidwell [2] applies design patterns to user interface design for creating interfaces in GUI 
and hypermedia environments.  She specifies that interface design patterns can serve as 
learning tools for novice designers, and provide a common interface design language to 
facilitate communication among designers, programmers, and users.  She notes that 

 1



interface designers should use the patterns with some caution, because they do not 
replace standard analysis, design, and usability testing.   

Tidwell’s most recent library [3] contains over 50 general design patterns for common 
interface operations ranging from very high-level items that design the overall navigation 
architecture of the application to specific artifacts such as textual data entry hints or 
ToolTips.  She defines each pattern with a descriptive name (such as “Alternating Row 
Colors,”).  She also specifies when, why, and how to use each pattern, and provides one 
or more visual examples.  This description approach is similar to Gamma et. al’s design 
pattern element requirements, except that it omits an explicit discussion of pattern 
consequences and limitations. 

The next section uses these definitions and description approaches to develop and 
describe a series of design patterns for database application interfaces. 

 

3. Database Interface Patterns 
 
Table 1 describes a hierarchy of database interface design patterns, and provides 
definitions for each pattern.   
Level Description Pattern Name 

Text Item 
Text Box 
Radio Button Group 
Check Box 
List 

Atomic Single data item 

Image 
Single-record 
Tabular Single-Surface Multiple related data items that 

appear on a single surface Master-detail 
Master-detail 
Hierarchy 
Network 
Sequence 

Multiple-Surface 
Multiple related data items that 
appear on different application 
surfaces 

Tab surface 
Logon form 
Shopping cart 
Reservation management form Application  

Combination of single- and/or 
multiple-form patterns that 
commonly appear in applications Appointment management 

form 
 

Table 1: Design pattern hierarchy 

 
 

 2



Table 1’s Level column describes each pattern in terms of its complexity level, from the 
most basic (atomic) elements to the more complex single-surface and multiple-surface 
patterns.  An application pattern represents a single- or multiple-surface pattern that 
corresponds to a common database application domain.  While this hierarchy is not 
comprehensive, it represents a large number of common database interface domains.   

 

The sections that follow describe each level in detail through the implementation of 
patterns in the website.  The pattern definitions define each pattern in terms of what it 
does, when to use it, and how to implement the pattern.  The limitations section provides 
guidelines as to when you should not use a specific pattern. 
 
 

3.1 Atomic Elements 
 
An atomic element represents a single data item that a database stores, such as a customer 
name, or product image.  These elements correspond to GUI controls (text box, radio 
button, and so forth) that developers commonly use represent these data items, and 
describe a standard set of interface elements for most relational database items.   

 

Table 2 summarizes the pattern name, database data type, and usage definitions for the 
atomic elements.   

 

 

3.2 Single-Surface Patterns 
 
A single-surface pattern is a combination of multiple atomic elements that appear on a 
single computer screen.  The following subsections describe the single-record, tabular, 
and master-detail single-surface patterns.   
 
 

3.2.1 Single-Record  
 

What:  Shows data associated with a single record; data may come from a single table or 
from multiple tables through a join query. 
 
When:  Inserting or updating data associated with a single record. 
 
How:  Display non-editable items using text items and editable items using other 
elements.  Retrieve existing values through a sequential or text search function.  Enable 
foreign key selections using radio buttons or a list.  

 3



 
Element 
Name 

Data 
Type/Operation Example & Description 

Text/Number/Date Text Item 

View only 
 

Text background color is the same as the 
background color 

Text/Number/Date Text Box 

View, Add, Update 
 

Outlined text on white background 
Text/Number value 
with five or less 
related, mutually-
exclusive selections 
whose values do not 
change 

Radio Button 
Group 

View, Add, Update 

 
Labels correspond to but don't necessary mirror 
associated data values 

Boolean  Check Box 

View, Add, Update 

 
Label describes data representation; value is 
true if checked, false if unchecked 

Text/Number data 
with restricted values 
that change over 
time; used to 
represent foreign 
keys 

List 

View, Add, Update 

 
Dropdown list that displays current selection 

Binary image data or 
text-based file 
reference 

Image 

View, Add, Update  
Image can optionally have associated text box 
that displays associated folder path/filename 

 
Table 2: Atomic elements 

 
 
Limitations:  Shows data in isolation and not within the context of other related data.  It 
is difficult to use this pattern to retrieve a specific record unless the application provides a 
text search function. 
 
Example:  Figure 1 shows a single-record pattern comprised of text boxes and a list.   
 

 4



 
 

Figure 1: Single-record pattern. 
 

  

3.2.2 Tabular  
 

What:  Shows data associated with a multiple related records; data may come from a 
single table or from multiple tables through a join query. 
 
When:  Viewing multiple related records; inserting, and updating a record within a set of 
records. 
 
How:  Display non-editable items using text items, and editable items using alternate 
elements such as text boxes, check boxes, or lists.  You should provide vertical and/or 
horizontal scrollbars to show additional data, and enable foreign key selections using 
radio buttons or a list. 
 
Limitations:  It is difficult to display multiple columns more than five or six columns 
without running out of horizontal screen space.  It is difficult to find a specific record in 
this display unless the application provides a link or a text search function.  This display 
does not readily display data using a radio button group.   
 
Example:  Figure 2 shows a tabular pattern comprised of text items, a link, a button, and 
a check box.   

 

 
 

Figure 2: Tabular pattern. 
 

 

 

 5



 

3.2.3 Master-Detail (Single-surface)  
 

What:  Shows data associated with a master-detail (one-to-many) relationship.  This 
pattern usually uses a single-record pattern for the master records and a tabular pattern for 
the detail records.  
 
When:  Enabling the user to selecting a master record and then view/insert/update a 
detail record. 
 
How:  Display master records using a list or option buttons, and detail records using a 
tabular display.   
 
Limitations:  This display can become confusing if you allow users to edit master and 
detail records simultaneously.  You usually do not use this pattern in a Web application 
because it requires re-populating the master display each time the server generates the 
page. 
 
Example:  Figure 3’s single-surface master-detail pattern allows the user to select a 
master item (which in this case is a Sub Category name, such as “Sweater”) from a list, 
and displays the related detail items (product, description and price) in a tabular pattern.  
The user can click the Description link to open the item for viewing. 

 

 

 
 

Figure 3:  Single-surface master-detail pattern. 
 
 

3.3 Multiple-Surface Patterns 
 
A multiple-surface pattern combines single-surface patterns that perform one or more 
application tasks across multiple computer screens.   

 6



 
 

3.3.1 Master-Detail (Multiple-surface)  
 

What:  Shows data associated with a master-detail (one-to-many) relationship.  In the 
multiple-surface display, this pattern can use a tabular display for both master and detail 
records.   
 
When: Viewing/inserting/updating master and detail records which display both master 
and detail records in tabular patterns; displaying master-detail data on Web pages. 
 
How:  Display master records using a list, option buttons, or a tabular display, then 
display related detail records using a list, or a tabular display.   
 
Limitations:  Applications require error trapping to prevent users from deleting master 
items and generating referential integrity violations; user may lose the sense of the 
master-detail relationship because it is on multiple screens.   
 
Example:  Figure 4 shows a multiple-surface master-detail pattern.  The user clicks a 
hyperlink on the master item display, and the related detail items appear in a list display.   

 

 

 
Figure 4:  Multiple-surface master-detail pattern. 

 

 

3.4 Application Patterns 
 
An application pattern specifies an appropriate multiple-surface design pattern for a 
common database application.  Table 1 suggests common application patterns (Login 
form, Shopping cart, Reservation management form, Appointment management form).   

 

 7



Figure 5 illustrates a shopping cart application design.  This is application pattern enables 
the user to login, order items using a single-record pattern, and then view order detail 
information.  The order detail interface allows the user to select from a list of ordered 
items that appear in a tabular pattern.   

 

 
 

Figure 5:  Sequence multiple-surface pattern. 
 

 

4. Common Issues in Database Application Development 
 
A relational database was built before the implementation of the website. When a user 
makes a request, the system would then insert, modify or delete from the database 
accordingly.  
 
Figure 6 is a screenshot of the webpage where students can view the initial data model 
diagrams and download the SQLs used in the database.   

 8



 
 
 

 
 

 

 
 
 
 
 
 
 
 

Figure 6: Tables and Queries 
 

 
To give an overall picture of how all the web pages fit together, we have presented a tree 
diagram of the JSP file structure, including where each JSP site is and its related database 
code. Figure 7 is the overall design of the shopping site.  
 

 9



 
 

Figure 7: Shopping Site Design 
 

To make the site more helpful to students who are learning how to develop Web/database 
applications, we have also presented sample code for some critical issues we have 
encountered during the development of this site. These sample code illustrates topics 
such as creating cookies, applying CSSs to webpages, checking required fields in 
JavaScript, and so forth.  Figure 8 is a screen shot of the page where we present sample 
code.  
 

 

Figure 8: JSP Samples 
 

 10



 
 

5. System Evaluation 
 

This website is currently being used to aid a database class in developing a similar Web-
based application, and we are collecting feedback to help us modify the Web site's utility 
as a teaching aid.  Students are required to use the Web site as part of the class project, 
and then complete a survey evaluating its usefulness and usability.  (The survey is 
attached to this paper as an appendix.)  The results will be used to modify and improve 
the Web site's features. 
 
 

6. Conclusion 
 
Design patterns provide a reusable, domain-independent approach for describing 
common database application elements and element pattern combinations.  This paper 
identifies atomic elements for representing individual data items, and application-
independent single- and multiple-surface patterns that combine atomic elements.  The 
guidelines for when and when not to use each pattern will help students and novice 
designers to make sound design decisions.   These patterns provide a logical and 
structured way to teach database application design.   
 
The patterns have limitations.  They are not comprehensive, because each application will 
require custom interface elements to meet their user requirements.  Also, every pattern is 
not amenable to every development environment.   
 
The website implements some typical patterns to help students visualize design pattern 
concepts in database applications.  The database diagrams and queries, sample code, and 
the tree structure of the web pages can be used as templates to facilitate teaching database 
application development:  students can modify the templates to meet the needs of their 
specific database applications.   
 
 

7. Acknowledgements 
 
Thanks to Mike Morrison for his help in developing the design pattern concepts and 
associated application examples. 

 

 

 

 11



References 
 
[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Pattern, Addison-

Wesley, Reading, MA, 1995.  
 
[2] Tidwell, J. Interaction design patterns.  In Patterns Languages of Programs (PLoP 

'98), (Allerton Conference Center, Urbana Champaign, IL.)  
 
[3] Tidwell, J. UI Patterns and Techniques, http://time-tripper.com/uipatterns. 
 
 

 12



Appendix - System Evaluation Survey 

1. How many times have you visited this site? 

  1-5 times 

  6-10 times 

  10-15 times 

  More than 15 times  

On a scale of 1-5:  

2. How helpful is this site for doing assignments? (5 = most helpful) 
 

  5       4       3       2       1      
3. Are the code examples clearly presented? (5 = most clear) 

 

  5       4       3       2       1      
4. Are the code examples relevant to the assignment? (5 = most relevant) 

 

  5       4       3       2       1      
5. Are the other materials (e.g., database examples, sample tables, queries) clearly 

presented? (5 = most clear) 
 

  5       4       3       2       1      
6. Are the other materials relevant to the assignment? (5 = most relevant) 

 

  5       4       3       2       1      
7. Please list issues you find most helpful about this site. (e.g., text formatting, 

cookies) 

 

8. Please list issues you would like to include in this site to make it more useful. 

 

9. Any other comments/Suggestions?  

 13



 

Submit Reset
 

 
 

 14


	1. Introduction 
	2. Background 
	3. Database Interface Patterns 
	 
	Table 1’s Level column describes each pattern in terms of its complexity level, from the most basic (atomic) elements to the more complex single-surface and multiple-surface patterns.  An application pattern represents a single- or multiple-surface pattern that corresponds to a common database application domain.  While this hierarchy is not comprehensive, it represents a large number of common database interface domains.   
	 
	The sections that follow describe each level in detail through the implementation of patterns in the website.  The pattern definitions define each pattern in terms of what it does, when to use it, and how to implement the pattern.  The limitations section provides guidelines as to when you should not use a specific pattern. 
	3.1 Atomic Elements 
	3.2 Single-Surface Patterns 
	3.2.1 Single-Record  
	3.2.2 Tabular  
	3.2.3 Master-Detail (Single-surface)  

	3.3 Multiple-Surface Patterns 
	3.3.1 Master-Detail (Multiple-surface)  

	3.4 Application Patterns 
	4. Common Issues in Database Application Development 
	5. System Evaluation 
	6. Conclusion 
	7. Acknowledgements 
	References 


