Meeting Scheduler Using Mobile Agents

Robert K. Clark Il
University of lllinois at Springfield
Springfield, lllinois 62703
bobbyalicia@insightbb.com

Abstract

Microsoft Outlook gives users a great tool to organize hectic schedules and
provides the ability to be reminded of tasks for those who are forgetful. One of
the shortfalls of Microsoft Outlook is that there has to be some kind of server (i.e.
Microsoft Exchange Server) in order to connect all of the users. If all of the
users are not connected, the schedules of each user cannot be shared amongst
users, managers, supervisors, and others throughout the company. Companies
with 100 or fewer employees would benefit from small and agile software that
could allow supervisors to schedule meetings for employees without the need for
a server or central processing machine to connect the users. The software
should be small and agile without the need for a large number of resources. This
Meeting Scheduler can be written using small and agile pieces of software called
mobile agents.

1 Rationale and Significance

Inside companies throughout the world, managers and supervisors gather
employees for meetings multiple times a month. Software that can provide
information about employees’ appointments and schedules is very important
because it helps managers and supervisors know when and when not to
schedule meetings. Microsoft Outlook is a widely used software program that
allows users to schedule personal tasks and make appointments. Microsoft
Outlook gives users a great tool to organize hectic schedules and provides the
ability to be reminded of tasks for those who are forgetful. One of the shortfalls
of Microsoft Outlook as a stand-alone program in an office environment is that
there has to be some kind of server (i.e. Microsoft Exchange Server) in order to
connect all of the users together. If all of the users are not connected, the
schedules of each user cannot be shared amongst users, managers,
supervisors, and etc throughout the company. While many large companies and
corporations probably have this server or similar software, some smaller
companies with 100 or fewer employees may not find it necessary to purchase
software of that magnitude. Companies in this situation would benefit from
software that could aid in scheduling meetings for employees without the need
for a server or central processing machine to connect the users. The software
should be small and agile without the need for a large number of resources.

2 Problem Statement

The author proposes to develop software that allows a user to retrieve the
schedules of designated users and use that data to determine the best time to
schedule a meeting. This software would use mobile agents to go across the
network to retrieve data from each user’s computer. The agent will retrieve
appointments from Microsoft Outlook and send the dates and times of those
appointments or meetings to the user that requested it. The data will then be
analyzed to determine a common time when all requested employees are
available. The mobile agents will be written in Java using the Aglets Work Bench
developed by International Business Machines (IBM). The software will be able
to be used by any user in the company. The goal of this software is to give
managers, supervisors and other administrators the ability to schedule meetings
without the need for software (such as Microsoft Exchange Server) that connects
all users’ calendars together.

3 Literature Review

3.1 What about other company’s software?

Other companies have made products similar to the one that I'm proposing. In
an attempt to distinguish my application from others, | searched the Internet for
similar meeting scheduler. The author researched three separate meeting
scheduler applications. Two trials were downloaded out of those three. The first
downloaded product was called Meeting Maker. It is meeting scheduler software
that uses its own storage for meetings and calendar information. This software
does not use the calendar storage facilities of Microsoft Outlook. The next
downloaded application was Meeting2000. This application uses Microsoft
Outlook to store appointments and meetings. It also synchronizes meetings with
Microsoft Outlook. The thing that it doesn’t do is look at what times individuals
and conference rooms are available. It relies on the user to know when
employees and conference rooms are available. The last product | found was
Share 360 Scheduler. It was a software package that required a server, a web
server and uses a web browser interface to access the application. This
application had a complicated setup and required many other pieces of software
in order to properly operate. This application required more setup and
maintenance than the application that will be developed with this project. Many
products integrate Microsoft Outlook, but those products still rely on Microsoft
Outlook to determine what dates and times users are available for meetings.
Managers and supervisors still cannot look at what dates and times employees
are available because they don’t have software that goes and looks at employee
calendars. This is where my meeting scheduler will be superior.

3.2 What are mobile agents?

Mobile agents are independent pieces of software that can be dispatched from
one computer to another computer to perform a task and then return with results.
Mobile agents are usually small, agile, flexible, and collaborate with some sort of
host (Wang 2). There are many different kinds or flavors of agent technology.
Examples of mobile agent technology are Telescript (Cockayne 33), IBM Aglets
Workbench and Agents for Remote Access (Ara) (Cockayne 33). The mobile
agent technology that will be used for this meeting scheduler application is IBM
Aglets Workbench (Cockayne 33).

3.3 Why use mobile agents?

Mobile agents solve the well-known problem that plagues client/server
applications. Each request or query that a client performs has to make trips over
the network. These queries consume network bandwidth and as more and more
trips are made, performance suffers. Instead of having multiple transactions that
travel over the network, one mobile agent can be sent over the network to
perform the transactions and return when the transaction is completed
(Sundsted 1). Another problem that client/server applications encounter is that
operations between a client and a server stop if the network connection is lost.
An agent can be setup so that the client that sent the agent can go offline while
the agent is running elsewhere on the network. The agent will then wait for the
client to become online again before transmitting the results. Client/server
transactions normally have to restart if this were to happen (Wang 2). Mobile
agents are also great at adapting to the environment in which they are running
and they also become an independent process that does not immediately rely on
the process that dispatched it (Lange 88).

3.4 Why use the IBM Aglets Workbench?

The IBM Aglets Workbench was chosen because of its foundation. It was built
upon the Java programming language that has some of the best facilities for
network programming. The aglets workbench allows the developer to create
Java applications that dispatch aglets to remote computers to perform the
preprogrammed tasks. Another reason the aglets workbench was selected was
the fact that Java is platform independent and would allow the application on
many different platforms (Cockayne 166). The final reason (the most important
reason) is the fact that Java has a great security layer. The Java security
framework allows the implementation of digital signatures and encryption as well
as a few other secure methods if needed (Cockayne 170).

3.4.1 Aglet security

Aglet security is of the utmost importance when dealing with mobile agents that
will move from computer to computer and access local resources. Companies
normally setup firewalls that allow employees to access the Internet, but rarely
allow computers outside the firewall to request information from computers
behind the firewall. Secure information would have to be encrypted before it was
sent over the network otherwise, because some third party software could
intercept the data and read its contents (Kun 22). Part of the problem with
firewalls is that it assumes that all applications that are executing are due to the
requests of users behind the firewall. That assumption couldn’t be farther from
the truth. When users open email attachments, those attachments may include

executable code that performs some set of instructions that may leave the
computer vulnerable to attack. Sometimes this mobile code could become a
mobile agent by moving itself inside the network. Anything that happens after
this point would appear as an internal attack because the code is being run from
a machine on the network (Kun 23). Several steps can be used to ensure safe
operation of mobile agents. These steps include authenticating the mobile agent,
verifying its code and restrictions to local resource access (Kun 24). Security is
also ensured because each computer an aglet visits must run an “aglet host”.
This aglet host provides an environment for an aglet to operate just as a web
browser gives an applet an environment to execute. This is still one of the main
limitations of aglets. The aglet host is started using local security policies to
prevent the running of malicious code.

3.4.2 Uses for Aglets

Aglets have many uses in the mobile computing world. Aglets have a wide range
of uses in different industries. A purchasing aglet could help a consumer
compare prices for an item among competitors. Individuals involved in finance
could have an aglet that keeps track of stock prices and could notify a user if a
particular stock reaches a certain price. The same concept applies to those in
the travel industry. Travel agents could use aglets to go fetch the best prices for
hotels, car rentals and airfares (Cockayne 11).

4 Plan of Work

4.1 Analysis of Requirements

A list of features that were included in the meeting scheduler software is shown
in Table 1. The software was written in an object-oriented manner and was
mostly written using the Java programming language. A GUI interface is
provided to allow user-friendly operation of the meeting scheduler software. A
list of hardware and system requirements for the software is included in this
report. A readme document, on screen help and Installshield installation were
provided to help users setup the aglet host and application.

Feature Support

Check the availability of users Yes

Email notification to attendees of a meeting Yes
Schedule meeting in Outlook Yes

Help and Setup Documentation Yes
Graphical User Interface Yes

Table 1: Supported Features

4.2 Design

The design of the meeting scheduler software had two separate areas of work.
The first area dealt with dispersing the mobile agents to the specified machines
to retrieve appointment data from a user’s calendar that is located in Microsoft
Outlook and display that data to the meeting scheduler. This area required the
careful development of dynamic link libraries that are used by the meeting
scheduler to retrieve appointment information using the Windows API. Care was
taken when parameters were passed across different programming languages.
One dynamic link library (or DLL) will be required to be installed on each user’s
computer to facilitate the Windows API calls that were used to retrieve
appointment information. The last area dealt with using a mobile agent to create
appointments on the attendee’s machine and allow the meeting scheduler user
to send notices about a meeting to users. The users responded to a question to
make sure the appointment was okay to make and if they could accept the
meeting request, the appointment was made on the user’s computer. This
application only works in Microsoft Outlook 2000, Outlook XP and Microsoft
Outlook 2003. Help is built into the application and an Installshield installaton is
also provided to assist the user in installing the mobile agent service that will be
required to allow mobile agents to run on the machine if time allows.

The Meeting Scheduler dispatched mobile agents to each user’s computer and
retrieves dates and times of current appointments from the Microsoft Outlook
calendar on the local computer. It returned to the computer that dispatched it
with a list of current appointments for each user. The only item that needed to be
known is the IP address or computer name of each person’s computer that
needs to be included in the scheduling process. This is how the Meeting
Scheduler knew where to go to find calendar information. The person
scheduling the meeting had an option to specify priority for times. These options
included a specific day or a specific time of day. The available time frame that
most closely matches the highest priority option was used to create the
appointment. After a meeting time was decided by the software, a message was
sent to each person that will attend the meeting to let the individual know that a
meeting is being scheduled. Each user had to agree to the meeting time by

confirming the appointment. This was accomplished by displaying a pop-up
message to the user asking for approval to make the appointment on the
calendar. The appointment won’t be made on the user’s calendar until they
confirm the date and time. If any user declines, the meeting scheduler will notify
the person that is scheduling the meeting. Confirmation of the appointment was
achieved through two different methods. A pop-up window or an email was the
two methods used to perform confirmation. If pop-up was selected, the user
received a pop-up message telling them that an appointment was scheduled on
their Outlook calendar. If email was selected, the user received an email telling
them that an appointment had been scheduled on their Outlook calendar. Both
options could be selected at the same time.

4.3 Implementation

The software implementation consisted of completing the data retrieval area,
then the dispersion of the agents and getting the data back to the user and finally
analyzing the data and developing the user interface. Since each section of the
software is independent of the other sections, any design changes to a section
had little or no bearing on the other sections of the software that were being
developed. This assisted in the implementation process because the entire
product did not have to be redesigned or overhauled because of a design flaw in
one of the other sections.

4.4 Testing

Testing is the most important part of developing a product. The author
performed testing on three personal computers connected on a local area
network. Each machine played the role of employee machine and manager
machine. This meant that each machine would have the chance to run the
product. The first computer was a 700Mhz Intel Celeron machine with 512
megabytes of RAM running Microsoft Windows XP Professional and Outlook
2000. The second machine was a 2.0Ghz Intel Celeron laptop with 256
megabytes of RAM running Microsoft Windows XP Home Edition and Outlook
2000. The third machine was a 2.66Ghz Pentium 4 with 128MB of RAM running
Microsoft Windows XP Home Edition and Outlook 2000.

Other users were allowed to use the software and were encouraged to try “off
the wall” things that could break the software. | also allowed the users to give
me feedback and give me advice on how the software could be improved.

5 High Level Architectiral Diagram

Figure 1 contains a high level diagram of the Meeting Scheduler architecture.

MtgSched

AgletWindow

finalResults
mainPane rpanell
drawingPane gpane
newContentPane creates > cpanel
sorted ApptsVector tabbedPane
availableAppts
getResultsPanel()
. getApptsPanel()
createGui() getTabbedPane() \
handleMessgge() getClientsPanel() loads
checkMorning() /
checkAftemoon() loads loads
checkEvening1()
checkEvening?2() »
findAvailableDates() GetApptsPanel ResultsPanel ClientsPanel
sortAppts()
P arCseApp ts0) fromMonthBox area addressField
onCreation() fromDayBox drawingPane aliasField
fr(f)\mY;:?rBox scroller emailField
romriour font addr
SchedAgt fromMinute metrics alias
fromPeriod MonthNames email
buffer toMonthBox labels
itinerary toDayBox appts :
masterAglet toYearBox actionPerformed ()
subje;ct tOH_OUT utilizes paintComponent()
location toMinute paintHorizontal()
message toPeriod paintVertical() displ
email Creates & — getDrawingPane(15piays
popup dispatches getAppts()
eAddress h/ makeAppts() gets & i
replies checkAppts() makes utiizes .
™ Appointment
getAppts() utilizes \ tche;kDateS()
makeAppts() action tilizes
handleMessage() utilizes i StartMonth
onCreation() utilizes StartDay
StartYear
StartDayofYear
. StartHour
Julian StartMinute
________________ EndMonth
D - . M EndDay
ay \rchitectur:
Year EndYear
__________________ MaxDaysInMonth EndDayofYear
EndHour
EndMinut
parseDa)
6 System Re(Year GregoriantoJulian() EndDate
JuliantoGregorian()

This application was written using Java SDK Version 1.4.1. It will be developed
on a 700 Mhz Intel Celeron processor system running Windows XP Professional.
Now that the product is finished, the system requirements were able to be more
accurately calculated. The system requirements are as follows.

System: 133 MHz or higher Pentium-compatible CPU

RAM: 64 MB or more

Operating System: Windows 98, Windows Me, Windows 2000,
Windows XP Home Edition, Windows XP
Professional

Hard Drive Space: At least 15 Mb of free space

7 Meeting Scheduler Software

The Meeting Scheduler software has one main window containing three tabs.
The first is the Get Appointments tab. This is where the majority of the work is
accomplished when using the software. On this tab the user can retrieve and
make appiontments as well as change details (start/end date, subject, location).
The second tab is the “View Results” tab. Here the user can view a graphical
representation of all of the clients’ schedules. Nothing is displayed on this screen
until the user retrieves appointments. The final tab is the “Setup” tab. This tab is
used to add and remove clients whose schedules will be used in the scheduling
process.

7.1 Get Appointments Tab

Figure 2 shows a screen shot of the Get Appointments Tab.

] Meeting Scheduler

tocoion: [
Time Periods

I Atiow Momings Alow Afternoons I Aow Evenings IEd Sendan Email 2] Notify with Popup
[l check for Scheduling Conflicts

Auto Scheduling —

@m::llill:‘;ticallysmedule Use: m slotis) af minutes

Information
Appointment refrieval complete.
0 view results, select the “View Results” tab.
o make appointments, change the Start and End Date/Time drop down
boxes and fill in any appointrment details on the right side ofthe screen

en choose the "Make Appointments” button.

o check more appoiniments, change the dates above and select the
"Retrieve Appointments” button. Then select the "View Resuits" tab again,

Figure 2: Get Appointments Tab
7.2 View Results Tab

Figure 3 shows a screen shot of the View Results Tab.

[Meeting Scheduler

View Results

Hovenber 18|
12:00an 1:00an 2:00am 3:00an 4:00an 5:00am 6:00am 7:00am $:00am 9:00am 10:00am 11:00am 12:00pm 1: 00
H L i L L

Bobby Clark

Bobby Clark e e
T T T T T

Figure 3: View Results Tab

7.3 Setup Tab

10

Figure 4 shows a screen shot of the Setup Tab.

] Meeting Scheduler

Name
Type the client's rame...
P AddressHostname
Tyne the client's comauter address

Emal Address
Type the client's email address

Figure 4: Setup Tab

8 Future Enhancements and Improvements

The future is wide open for this project. There are certain things that | think
would greatly improve this software. More extensive help would be the first thing
to enhance. Another thing that would be good for below average users is some
kind of wizard that walks the user through the scheduling process using a series
of dialogs. It would be similar to an Installshield installation. Making this meeting
scheduler work with a web interface as opposed to a local application has many
benefits. Those benefits include a smaller installation and fewer pieces to update
when maintenance needs to be applied.

Some smaller scale improvements could also be implemented while leaving
most of the current architecture in place. Things like allowing the user to select a
current client and view its IP address and email address. Also, if the scheduling
aglet visits a client and the client does not respond to the popup question, the
scheduling aglet may wait indefinitely. It would be nice to put a timer on that
action. The email responsibility can also be shifted from the clients’ Outlook to
the Meeting Scheduler itself. The Meeting Scheduler could also be changed to
allow the user to pick from a set of appointment times that where found to be
available by the software.

References

11

Cockayne, William T. and Michael Zyda. Mobile Agents. Greenwich, CT:
Manning Publications Co, 1998.

Jing, Jin and Abdelsalam Helal and Ahmed Elmagarmid. “Client-Server
Computing in Mobile Environments.” ACM Computing Surveys
(June 1999): 117-157.

Kun, Yang and Guo Xin and Liu Dayou. “Security in Mobile Agent System:
Problems and Approaches.”

Lange, Danny B. and Mitsuru Oshima. “Seven Good Reasons for Mobile
Agents.” Communications of the ACM (March 1999): 88-89.

Sundsted, Todd. “An introduction to agents.” JavaWorld. June 1998.
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-howto.html (07
Mar. 2004).

Wang, David K. and James K. Wang. “Towards the Distributed Processing
of Mobile Software Agents.”

Wong, David and Noemi Paciorek and Dana Moore. “Java-Based Mobile
Agents.” Communications of the ACM (March 1999): 92-102.

12

13

