
Methodology for Implementing Homogeneous
Federated Database Systems Using Microsoft SQL

Server

Cyrus Azarbod
Professor

Computer & Information Sciences Department
 Minnesota State University at Mankato,
273 Wissink Hall, Mankato, MN 56001

Cyrus.azarbod@mnsu.edu

Jake Roerig
Software Engineer

McKesson Corporation
Minneapolis, MN

Abstract

It is quite common for e-Commerce Web sites and enterprise data-processing systems to
accumulate hundreds of millions of records of data over time. If all of these records need
to be readily available at all times, over time a single database server will become over-
burdened and response time will suffer.
An approach to solving this problem is to scale out horizontally by partitioning data
across multiple servers. When data is distributed over multiple servers in a network, this
becomes what is known as a distributed database environment. In a distributed database
environment, a federation of databases is made up of two or more database servers who
function autonomously, but agree to share data and processing for a larger workload.
A federation of databases might be a versatile solution to this problem by scaling out the
data and processing to handle the growth requirements of extremely large databases.
In this paper, a methodology is presented for designing and implementing homogeneous
federated databases in SQL Server. This methodology includes design patterns for
federated databases, how to implement a federation, how to design applications to use a
federation, how to ensure availability, and how to handle federation maintenance.
In this methodology we are proposing eleven steps to implement a homogeneous
federated database. The steps are as follows:
Profile Database, Design Partitions, Setup Servers, Setup Linked Servers, Setup Security,
Set Lazy Schema Validation Server Option, Partition Data, Define CHECK Constraints,
Define Data Dependent Routing Table, Create Distributed Partitioned Views, and Setup
Replication.

1

Background Overview

A distributed database is defined as a collection of multiple, logically interrelated
databases distributed over a computer network (Ozsu & Valduriez, 1999). A distributed
database management system (DDBMS) is then defined as the software system that
permits the management of the distributed database and makes the distribution
transparent to the users (Ozsu & Valduriez, 1999).

Federated Databases
Federated databases are a particular variety of distributed database architecture. They are
semiautonomous meaning they can best be described as database systems that operate
independently, but also agree to cooperate with other systems in processing user requests
and sharing local data.

Fragmentation
Fragmentation describes how data is partitioned across systems in a distributed
environment (Ozsu & Valduriez, 1999). The goal of fragmentation is to limit the total
execution time of user requests. Since joining fragments from different sites can be
expensive, mutually exclusive fragments should be chosen.
Mutually exclusive fragments also promote improved performance and concurrency.
When a user request is made of the distributed system, that query is broken down into sub
queries. Those sub queries are run in parallel on each server which holds one or more of
the requested fragments. This parallel execution decreases the total execution time of the
request, which again is the goal of fragmentation. The challenging aspect of
fragmentation is determining how to fragment. In order to fragment data, an appropriate
unit of fragmentation must be chosen. The choices of fragmentation units are relation,
attribute, and tuple.

Distributed Query Processing
The objective of distributed query processing is to transform the user request, which
appears as a single database to the user, into efficient local queries executed on the
relevant partitions (Ozsu & Valduriez, 1999). In order to perform distributed queries in a
federation, each member server must be able to communicate with one another, security
must be enforced, transactions must be managed to preserve database integrity, and
functions must be available by which to invoke distributed queries. One mechanism is
called linked sever, which allows connections between participating servers in the
federation.

Linked Servers
In order to perform distributed queries in a federated environment, each member server
must be aware of the other participating member servers, and have the means to
communicate with them. Therefore each member server must have a virtual server
definition for each of the other member servers in the federation. In SQL Server 2000,
this virtual server definition is called a Linked Server. Since linked servers can be
established with any OLE DB or ODBC data source, usually they are created in

2

heterogeneous environments (see Figure 1). In a homogeneous environment with only
SQL Server systems, they can be used to form federations (see Figure 2).
In the heterogeneous environment a client may only connect to the SQL Server a system,
which then initiates communication with the other data sources. The data locations are
transparent to the client, but there are no performance benefits since all connections and
initiations must be made through the SQL Server system.

Figure 1: Heterogeneous Distributed Environment

`

Oracle 8i Text File MySQL

SQL Server

Client

In the homogeneous environment, the client may connect to any one of the SQL Server
systems, which can then initiate communication with the others. The data locations are
still transparent to the client, and there can be performance benefits by distributing the
data and processing workload among the servers forming a federation.

Figure 2: Homogeneous Distributed Environment

3

`

MSSQL1

MSSQL2

MSSQL3

Client

Linked servers can be created, modified, and deleted using either Enterprise Manager or
system stored procedures. In addition to those operations, security between the local
server and its linked servers can be managed using Enterprise Manager or system stored
procedures. Distributed queries can be used to retrieve and join remote data with local
data, as well as perform all the other CRUD operations (create, retrieve, update, and
delete). Remote data can only be used in a distributed query if the software managing the
data supports an OLE DB provider which can expose the data in tabular objects called
rowsets (Sheldon & Wilansky, 2001). SQL Server is able to treat these rowsets as though
they were tables. There are two types of distributed queries: remote tables and pass-
through queries. Remote tables are remote objects that are directly referenced in the
query. When referenced, the entire object is returned to the local server for processing.
Pass-through queries are queries where SQL syntax is passed to a remote server for
processing where a rowset is generated and sent back to the local server for processing.

Four-Part Names
A distributed query that directly references a remote table must contain enough
information to locate a particular object on a remote server. Locating a remote object can
be achieved by using a Four-Part Names reference.
The four-part names reference has the following syntax (Sheldon & Wilansky, 2001):

linked_server_name.catalog.schema.object_name

 The following example shows a join of a remote table with a local table using four-part
naming.

SELECT e.lname, e.fname, b.city, b.state
FROM employee e

INNER JOIN samwise.oes.dbo.branch b ON e.branch_no = b.branch_no
WHERE e.employee_no = 1000

The code for four-part naming is easy to use and follow, but since the entire remote object
must be returned to the local server for processing there may be performance issues. This
approach to distributed queries works well for small remote objects, but performs poorly

4

for large remote objects (exception to this rule is through the use of distributed
partitioned views)

OPENQUERY() Function
A pass-through distributed query sends a query to a remote server to generate a rowset to
be sent back to the local server. Since the query is passed to the remote server where a
rowset is generated, there is opportunity to let the remote server handle some of the
processing. For example, a subset of a join of two tables is needed from a remote
database, the distributed query will most likely perform better if the join takes place on
the remote server and only the resulting rowset be sent back instead of sending both
remote tables to the client for joining.
The OPENQUERY() function has the following syntax (Sheldon & Wilansky, 2001):

OPENQUERY(linked_server, ‘query’)
The following example shows a join of a rowset generated by a pass-through query joined
to a local table.
SELECT e.lname, e.fname, b.city, b.state
FROM employee e

INNER JOIN OPENQUERY(samwise, ‘SELECT city, state FROM branch’) b
ON e.branch_no = b.branch_no

WHERE e.employee_no = 1000

The syntax for OPENQUERY() is a little more difficult than that of four-part naming,
however these types of queries usually perform better especially when dealing with large
objects.

OPENROWSET() Function
The previous two ways of performing distributed queries required linked server
definitions to connect to remote servers. However, some distributed queries may be so
infrequently run there’s no need to create a linked server. In those cases, ideally queries
could specify remote server connection information in an ad hoc way to generate a single
rowset. This type of pass-through query uses the OPENROWSET() function.
The OPENROWSET() function has the following syntax (Sheldon & Wilansky, 2001):

OPENROWSET ('provider_name'
 , { 'datasource' ; 'user_id' ; 'password' | 'provider_string' }

, { [catalog.] [schema.] object | 'query' })

The following example shows a rowset generated by an ad hoc pass-through query joined
to a local table.
SELECT e.lname, e.fname, b.city, b.state
FROM employee e

INNER JOIN OPENROWSET(‘MSDAORA’, ‘oracle2.cs.mnsu.edu’; ‘scott’;
‘tiger’, ‘SELECT city, state FROM branch’) b ON e.branch_no = b.branch_no

WHERE e.employee_no = 1000

5

This approach does not perform as well as OPENQUERY(), and there may be security
risks associated with placing login information in the query itself, but it does satisfy the
need of infrequent ad hoc queries.

OPENDATASROURCE() Function
The last variety of distributed query directly references remote tables using four-part
names, however the query is run so infrequently it connects to the remote server in an ad
hoc manner by specifying the connection information in the query itself. The is achieved
by using the OPENDATASOURCE() function. The OPENDATASOURCE() function is
similar to the OPENROWSET() function, except it references remote tables directly
using four-part names instead of pass-through, and it can return multiple rowsets rather
than just one. The OPENDATASOURCE() function has the following syntax (Sheldon &
Wilansky, 2001).

OPENDATASOURCE(provider_name, init_string)

The following example shows a remote table joined with a local table by using an ad hoc
query with four-part naming.

SELECT e.lname, e.fname, b.city, b.state
FROM employee e

INNER JOIN OPENDATASOURCE(‘MSDAORA’, ‘Data
Source=oracle2.cs.mnsu.edu; User ID=scott; Password=tiger’) .oes.dbo.branch b

ON e.branch_no = b.branch_no
WHERE e.employee_no = 1000

Partitioning Data

How data is partitioned greatly affects the performance and maintainability of the
federation. There are two different ways to partition data, horizontal and vertical, which
can lead to two different types of partitions, symmetric and asymmetric. Based on current
database usage, there are many design considerations when partitioning data.
Once partitions are formed, a mechanism is needed to span the partitions to give the
appearance of a single server to the user or application. The application must also be
augmented in such a way as to allow it to connect to any server in the federation; hence
the load balancing. As data and usage patterns change, partition maintenance becomes
important to the continued balance of the federation. The federation should also provide
high availability; this is accomplished through failover clustering.

Methodology for Design and Implementation of a Federated
Database

The steps needed to implement a federation follow:

6

• Profile Database
• Design Partitions
• Setup Servers
• Setup Linked Servers
• Setup Security
• Set Lazy Schema Validation Server Option
• Partition Data
• Define CHECK Constraints
• Define Data Dependent Routing Table
• Create Distributed Partitioned Views
• Setup Replication.

Before proceeding with the design and implementation of a federation, the current
database and applications should be optimized. Some optimization techniques to
consider are the use of stored procedures, indexing, improving application logic,
normalization and de-normalization of the logical data model where appropriate, and
rearrangement of the physical data model. The results of using these and other techniques
may yield that it is not necessary to scale out to a federation. Scaling out should be the
last optimization technique used.

To discuss the proposed methodology, an order entry database consisting of 15 tables is
used. The ER-diagram for the OES database is shown in Figure 3.

Figure 3: OES Database

7

RETURNPROD

PK RETURN_ID

DATE_RETURNED
RETR_QTY
AMOUNT_REFUNDED
PROD_CONDITION

FK1 ORDERLINE_NO

BACKORDER

PK BACKORDER_NO

FK1 PRODUCT_NO
BO_QTY
BO_DATE

BRANCH

PK BRANCH_NO

STREET
CITY
STATE
ZIP

TAX

PK TAX_NO

STATE
TAX_RATE

ORDERLINE

PK ORDERLINE_NO

FK2 PRODUCT_NO
QTY

FK1 ORDER_NO

PRODUCTSET

PK,FK1 PRODUCT_NO

FK2 PRODUCTSET_NO
PROD _QTY

VENDOR

PK VENDOR_NO

NAME
STREET
CITY
STATE
ZIP
TEL_NO

CUSTOMER

PK CUSTOMER_NO

LNAME
FNAME
STREET
CITY
STATE
ZIP
TEL_NO
BALANCE
CREDIT_LIMIT

FK1 BRANCH_NO

PRODVENDOR

PK PO_NO

FK2 VENDOR_NO
FK1 PRODUCT_NO

ORDER_DATE
EXPECTED _RECVD_DATE
ACTUAL_RECVD_DATE
VEND_QTY
DPRICE

ORDERS

PK ORDER_NO

ORDER_DATE
SHIP_DATE
SHIPPING_METHOD
TAX_STATUS
SUBTOTAL
TAX_AMT
SHIPPING_CHARGE
TOTAL_AMT

FK1 CUSTOMER_NO
FK2 EMPLOYEE _NO
FK3 BRANCH_NO

VENDORPRICE

PK VPRICE_NO

FK1 VENDOR_NO
FK2 PRODUCT_NO

VPRICE
DISCOUNT
START_DATE
END_DATE

PROMOTION

PK PROMOTION_NO

P_PRICE
START_DATE
END_DATE

FK1 PRODUCT_NO

EMPLOYEE

PK EMPLOYEE_NO

LNAME
FNAME
STREET
CITY
STATE
ZIP
SEX
DOB
START_DATE
END_DATE

FK1 BRANCH_NO
POSITION
RATE
COMMISSION PRODUCT

PK PRODUCT_NO

BRAND
CLASS
PRODUCT_DESCRIPTION
UNIT_PRICE
UNIT_COST
PRODUCT_CATEGORY
QOH
ORDER_LEVEL
ORDER_QTY
BACK_ORDER
AVAIL _DATE
DAMAGED_QTY

QTYDISCOUNT

PK QTYDISCOUNT_NO

D_PRICE
MIN_QTY
MAX_QTY

FK1 PRODUCT_NO

Step 1: Profile Database
The first step in creating a federation is to profile the un-partitioned database. Assume the
following tables are identified as having greater than 5% of queries as inserts, updates,
and deletes: orders, customer, orderline, and returnprod. These tables are good
candidates for partitioning. The remaining tables are good candidates for replication.

Step 2: Design Partitions

Once the tables eligible for partitioning have been identified, a partitioning scheme must
be chosen. After careful examination of the database profile, and current application
usage of the database, assume usage can be divided along branch number.
Currently there are two branch numbers, 100 and 111, and usage can be nearly evenly
divided between the two. Of the tables eligible for partitioning, orders and customer both
contain the branch_no column, and therefore will be easy to partition. The other eligible
tables, orderline and returnprod, do not contain the branch_no column, however orderline
is a child of orders and returnprod is a child of orderline, therefore they can easily be
partitioned by their foreign keys.

Step 3: Setup Servers

8

It has been identified that the federation will have two partitions, therefore two servers are
needed. Each server in the federation should be roughly equivalent in terms of hardware
and software since each is responsible for an equal share of the total workload.

Step 4: Setup Linked Servers
In order for the two servers to communicate with one another, each requires a linked
server definition for the other.

Step 5: Setup Security
When users attempt to access data residing on different servers, they must be
authenticated on each server. This is managed through the use of linked server logins.

Step: 6 Set Lazy Schema Validation Server Option
To limit meta data requests between servers until the data is needed, the lazy schema
validation server option must be set.

Step 7: Partition Data
To physically partition the data between the member servers in the federation, ideally a
job should be created which can periodically run to keep the federation balanced. This
can be achieved via a DTS package.

Step 8: Define CHECK Constraints
Once the data has been partitioned, constraints need to be placed on the tables in each
partition to enforce the partitioning scheme. This is accomplished through the use of
CHECK constraints.

Step 9: Define Data Dependent Routing Table
All data dependent routing information is stored in a routing table. This table is used as a
reference for partitioning and repartitioning data, and is used to route applications to
appropriate partitions.

Step 10: Create Distributed Partitioned Views
Distributed partitioned views are the principle mechanism by which the data in the
federation is combined.
The following scripts create two distributed partitioned views, one unions the orders
table, the other unions the customer table.

--executed on server FRODO
CREATE VIEW v_orders AS
SELECT order_no, order_date, ship_date, shipping_method, tax_status, subtotal,

tax_amt, shipping_charge, total_amt, customer_no, employee_no, branch_no
FROM orders
UNION ALL
SELECT order_no, order_date, ship_date, shipping_method, tax_status, subtotal,

tax_amt, shipping_charge, total_amt, customer_no, employee_no, branch_no

9

FROM samwise.oes.dbo.orders

CREATE VIEW v_customer AS
SELECT customer_no, lname, fname, street, city, state, zip, tel_no, balance,
credit_limit, branch_no
FROM customer
UNION ALL
SELECT customer_no, lname, fname, street, city, state, zip, tel_no, balance,
credit_limit, branch_no
FROM samwise.oes.dbo.customer

--executed on server SAMWISE
CREATE VIEW v_orders AS
SELECT order_no, order_date, ship_date, shipping_method, tax_status, subtotal,

tax_amt, shipping_charge, total_amt, customer_no, employee_no, branch_no
FROM orders
UNION ALL
SELECT order_no, order_date, ship_date, shipping_method, tax_status, subtotal,

tax_amt, shipping_charge, total_amt, customer_no, employee_no, branch_no
FROM frodo.oes.dbo.orders

CREATE VIEW v_customer AS
SELECT customer_no, lname, fname, street, city, state, zip, tel_no, balance,
credit_limit, branch_no
FROM customer
UNION ALL
SELECT customer_no, lname, fname, street, city, state, zip, tel_no, balance,
credit_limit, branch_no
FROM frodo.oes.dbo.customer

In order for the distributed partitioned views to support the full behavior of the underlying
tables (insert, update, and delete operations), INSTEAD OF triggers need to be defined on
the views.

Step 11: Setup Replication
The tables that were not partitioned were instead replicated on each member server. To
maintain exact copies on each server, either SQL Server Replication can be specified, or
INSTEAD OF triggers can be defined on each table.

CREATE TRIGGER t_taxinsert ON tax INSTEAD OF INSERT
AS
DECLARE @state AS CHAR(2), @tax_rate AS DECIMAL(5,5)
SELECT @state = state, @tax_rate = tax_rate
FROM INSERTED
BEGIN DISTRIBUTED TRANSACTION

10

INSERT INTO tax(state, tax_rate) VALUES(@state, @tax_rate)
INSERT INTO samwise.oes.dbo.tax(state, tax_rate) VALUES(@state,

@tax_rate)
COMMIT TRANSACTION

Conclusion

An alternative to scaling up is scaling out. Single database servers eventually become
bottlenecked with increasingly large transaction databases. Rather than continually
upgrading a single database server, adding new servers can linearly increase the
processing power of the system (Gray & Waymire, 2004). SQL Server 2000 offers the
functionality to satisfy the requirements of scaling out with a federated architecture. This
functionality makes it possible to partition data across multiple servers while maintaining
data location transparent to users. Some extensions of this research have been left for
future work. One such extension is a more robust implementation where a Partitioning
Agent automatically maintains federation balance without database administrator
intervention. Another extension is the implementation of a failover cluster accompanied
by a study of high availability. The methodology presented in this paper could also be
modified in such a way to support a heterogeneous federation where other database
management systems participate in the federation.

References

1. Gray, J., & Waymire, R. SQL Server Megaservers: Scalability, Availability,
Manageability. Microsoft SQL Server TechCenter. Retrieved April 20, 2004,
from,http://www.microsoft.com/technet/prodtechnol/sql/2000/plan/ssmsam.mspx
?pf=true

2. Microsoft Corporation. Federated SQL Server 2000 Servers. MSDN Library.
Retrieved December 30, 2004, from http://msdn.microsoft.com/library/en-
us/architec/8_ar_cs_4fw3.asp

3. Microsoft Corporation. Designing Applications to Use Federated Database
Servers. MSDN Library. Retrieved December 30, 2004, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/acdata/ac_8_qd_10_48oj.asp

4. Oracle Corporation. (2002). Database Architecture Federated vs. Clustered.
Retrieved March 2, 2004, from
http://www.oracle.com/technology/tech/windows/rdbms/ClusterComp.pdf

11

5. Ozsu, T. M., & Valduriez P. (1999). Principles of Distributed Database Systems
(2nd ed.). New York, NY: Prentice Hall.

6. Sheldon, R., & Wilansky E. (2001). MSCE Microsoft SQL Server 2000 Database
Design and Implementation Training Kit. Redmond, WA: Microsoft Press

12

