

A Rational Unified Process (RUP) Plug-in
To Support Requirements Quality Assurance

Andreas Altmannsberger
Schulstraße 6

63128 Dietzenbach, Germany
A.Altmannsberger@freenet.de

Prof. Dr. Frank Bühler
Dept. of Computer Science / FB Informatik

University of Applied Sciences / FH Darmstadt
Haardtring 100

64295 Darmstadt, Germany
f.buehler@fbi.fh-darmstadt.de

Michael Rowe, Ph.D.
Computer Science and Software Engineering Department

University of Wisconsin – Platteville
215 Ullrich Hall

Platteville, Wisconsin 53818
rowemi@uwplatt.edu

Abstract

There are many general-purpose, off-the-shelf software development processes that
require tailoring to better fit the needs of an enterprise and/or a specific project. Process
activities, roles and/or artifacts may be streamlined or deleted when a less formal, heavy
weight process is appropriate; process activities may be modified to support continuous
software process improvement. Contrariwise, new process activities, roles or artifacts
may be added to support missing features. This paper studies the process and feasibility
of tailoring the Rational Unified Process (RUP) by means of a plug-in to add
Requirements Quality Assurance (RQA) functionality. Although this is a specific
example, the study of the tailoring mechanism is a good educational exercise in both the
motivation for and practice of customizing a given software engineering process. The
paper discusses the coupling and cohesion problem of the different RUP process
elements. As a result students will learn to take a critical standpoint with respect to
"predefined" process models.

1

1. Background and Motivation

In the Standish Group’s CHAOS report [TSG-1994], a survey of projects indicated that
31.1 percent of projects were canceled before they could be completed and another 52.7
percent were completed but were over-budget, over time estimate and offered fewer
features than originally specified. Of the canceled projects, the two most commonly
reported reasons were “Lack of User Input”, 12.8 percent, and “Incomplete Requirements
and Specifications”, 12.3 percent.

In another survey of 3,800 software industry professionals, Leffingwell and Widrig [LW-
2003] reported that 50 percent of the respondents indicated that the two largest software
engineering problems were related to requirements specification and management of
requirements. Finally, Lefflingwell and Widrig concluded that requirements errors were
likely to consume 25 to 40% of the total project budget [LW-2003].

The above two studies support a fundamental need for requirements quality assurance in a
software engineering process. Though one of these studies was conducted more than 10
years ago [YSG-1994], the newer study [LW-2003] indicates that requirements quality
assurance has been and remains a chronic problem in software engineering. The question
arises to what extent commonly known process models such as IBM's Rational Unified
Process (RUP) [RUP] take this into account and offer an improved treatment of the
requirements engineering discipline.

The Rational Unified Process is an iterative software development process that describes
how to deploy software effectively using commercially proven techniques. It is not a rigid
process but a process framework. It encompasses a large number of different activities,
and is designed to be tailored, in the sense of selecting only the needed features suited for
a particular software project, considering its size and type. After analyzing RUP’s process
activities it becomes apparent that each project has to implement its own software
development process in order to meet its needs.

Referring to [BERGS-2004] and [PEP] a process implementation is the effort of putting
a process to use within an organization or a project. This process may be pre-
customized before the implementation. If the process is customized while implementing
it within an organization or a project, Bergström coins this adoption of a process. The
adoption is carried out as a four step approach:

"Assessment + Planning + Customization + Implementation (Execution/Evaluation)".

In this paper, the following definition of the term "process customization" and “process
tailoring” is used: "process customization/tailoring is the act of refining, adjusting and
adapting a given process model, to suit the special requirements of a particular enterprise,
business unit or project, by modifying, expanding or removing process elements of the
process model with appropriate approval”.

2

With respect to requirements analysis the RUP specifies a so-called requirements
workflow. Use Cases are the core artifacts for capturing functional requirements in the
requirements discipline and are defined as the basis for the entire development process.
In section 3, we will describe the requirements workflow in more detail.

2. Related Work and Research Questions
Requirements Specification and Management have been the focus in the Software
Engineering field for many years. Frameworks such as VOLERE [ROB-1999] address
these problems. In addition, various requirements analysis techniques, which all focus on
different aspects, have been developed over the last years. To name a few, Inspection
[IEEE-1983], Simulation [IESE-2005], Natural Language Requirements Measurement,
[FGLM-2002], [ARM-1996], and Petri Nets [SILVA-2003] have been investigated. In
addition, many research efforts have concentrated on the improvement of specific areas
such as value-based requirements engineering for e-Commerce information systems
[GORDIJN-2002], or work based on linguistic and ontological approaches for the
creation of a normative expert language [OS-1996]. However, an evaluation of these
techniques is beyond the scope of this paper.

Furthermore, various software process models which include a requirements process have
been established over the years. Among so called heavy-weight models, the RUP is a well
known and widely used software developed process both in the academic and commercial
world. An interesting research question is to what extend the various research results on
requirements engineering have been adopted and included within the RUP.

RUP’s Environment Discipline introduces the Process Engineering Process, for short
PEP, which itself focuses on the improvement of the development process [PEP]. The
development of RUP plug-ins helps extend or change the RUP with respect to missing
features or not needed activities and artifacts. Though the development of the plug-ins is
supported by specific tools, this is not a trivial task. This brings up the questions, how
easily is the RUP changed and what does this tailoring process look like?

3. Overview of the RUP

3.1 Introduction

The IBM Rational Unified Process [RUP] is one of the more formal, all encompassing
software engineering processes being used in current software development projects. Like
other process frameworks, the RUP defines three components for a process. As depicted
in figure 1, these include Roles, Activities and Artifacts.

3

Figure 1: RUP’s Meta Model.

Roles define responsibilities of individuals in the process. The individuals are assigned to
their roles to perform Activities. The outputs of Activities are Artifacts. Artifacts are also
the inputs that drive other Activities and become transformed by an Activity into new
Artifacts. The Artifacts are the key pieces of information produced during the project to
describe or visualize specific parts of the system or the project. The most important
Artifact for a successful software project is the compiled, executable code. Other
Artifacts include requirements, use cases, UML diagrams, test cases, etc. The purpose of
other Artifacts, like models, documentation and plans, are for supporting the project
progress. In addition to Roles, Activities and Artifacts, the RUP also provides
Workflows. Workflows Details provide the sequence of when to perform the Activities.

Despite the RUP being considered one of the most complete software engineering
processes for object-oriented development, it provides only minimal support for ensuring
the quality of requirements. The following figure 2 illustrates the Requirements
Discipline Workflow.

4

Figure 2: RUP’s Requirements Discipline Workflow.

There is only one activity named Review Requirements in the whole requirements
discipline, which deals with the evaluation of the requirements' quality. However, this
activity is only carried out when requirements are changed. There is no mention of an
activity that specifically ensures the quality of the set of originally requirements.
Referring to the RUP, the purpose of the Review Requirements activity is to formally
verify that the results of Requirements conform to the customer's view of the system
[RUP]. Even though this is a very important quality criterion, it is only one of many
quality criteria that high quality requirements must satisfy. Therefore, in the authors'
view the RUP does not provide a sufficient way to assure high quality requirements.

As illustrated in figure 3 we propose a hierarchy of artifacts which handle the evolution of
manageable requirements which is not just based on checklists as defined within the
RUP. In particular, the analysis and management levels will be regarded by the new
proposed RUP plug-in. To support this, new activities and artifacts will be defined.

We have argued for the need to augment the RUP with a Requirements Quality Assurance
(RQA) plug-in. This plug-in has been successfully developed and will be discussed in
section 4. In addition, this paper describes the process for and feasibility of tailoring the
RUP.

5

Figure 3: The Artifacts Hierarchy in the Requirements Discipline.

3.2 RUP Tools and Plug-In's

The RUP comes with a few tools which help customize the RUP. The RUP Builder
[RUP-TOOLS] provides an environment for tailoring or customizing the RUP. This is
done through the support of Builder plug-ins that employs three mechanisms for tailoring
a process. These mechanisms include: deleting, adding, and modifying process elements.

Over the past years RUP plug-ins have been developed for different purposes. Plug-ins
are commercially available for a fee and through open source channels free of charge. On
IBM's website many plug-ins are downloadable for free, from many different categories:
domain specific plug-ins (e.g. System Engineering), tool specific plug-ins (e.g. Rational
Rapid Developer), platform specific plug-ins (e.g. J2EE), technology specific plug-ins
(e.g. IBM WebSphere Application Server) and resource specific plug-ins (e.g. Wylie
College Resources). A market analysis revealed that there is no specific plug-in available
which focuses on the points we raised with respect to the Requirements Discipline.

6

The RUP Builder and the Rational Process Workbench (RPW) [RUP-TOOLS], which are
bundled with the RUP, facilitates the creation of new plug-ins and modification of
existing plug-ins. The RPW contains two individual tailoring tools, the RUP Modeler (an
add-in to Rational Rose XDE) and the RUP Organizer. The Modeler supports activities
involved in developing and managing process models and is used to create completely
new process models or to modify existing ones. After a process model is developed with
the Modeler, it is loaded with the Organizer to create and assign new process content
(html files, icons, images, text documents) to the process elements in the process model.
At the end, the process model and the process content can be compiled into a RUP plug-
in, which then can be loaded by the RUP Builder to publish the process website. Figure 4
shows the tools provided by IBM for customizing the RUP. In particular, it clarifies the
development of plug-ins and tools involved in this process (see also next section 4).

Figure 4: RUP's Toolset for process customization.

7

4 Description of the Requirements Quality Assurance (RQA)
Plug-in
In this section, we will describe and discuss the new plug-in, Requirements Quality
Assurance (RAQ), which has been developed in order to improve the quality of
requirements defined during a software development project. The development of a
specific plug-in is regarded as a good educational exercise. First, it enforces to study a
given process model in some depth. Second, students learn to handle the different
instruments needed to develop a plug-in and realize that the adoption process is by far not
easy. Third, students are set in the position to argument for further improvements or
amendments of the process model.

The assessment of RUP's requirements discipline indicates that actually no role exists,
which is responsible for the quality assurance of requirements. Therefore, a new role,
namely Requirements Quality Controller, is required. The assessment of the solution
domain came up with new quality assurance techniques, which are currently not
supported by RUP and would enrich the requirements discipline by helping to assure
high quality requirements. The new role (Requirements Quality Controller) must perform
four activities to carry out the techniques and one additional activity to create and
establish a specification of quality criteria, which shall be fulfilled by requirements.
These five new activities produce six new artifacts.

The Requirements Quality Controller is responsible for the quality assurance of all new
developed, modified and changed functional and non-functional requirements. The five
new activities are defined as follows:

• Specify Quality Criteria – to establish a catalog of quality criteria, which every
requirements, functional and non-functional must satisfy.

• Simulate Requirements – to evaluate the requirements in a more formal and
precise way to check whether they fulfill the specified quality criteria.
For a simulation it is necessary to rewrite the natural language requirements in a
formal requirements specification language, in order that the requirement can be
executed by a simulator.

• Inspect Requirements – together with other development team members,
formally verify that the requirements fulfill the specified quality criteria. In
addition to the Requirements Quality Controller, also the Customer, System
Analyst, System Architects, Tester and Requirements Specifier should be part of
the inspection team.

• Measure Requirements Quality – to quantitatively measure the quality of the
requirements. Sufficient requirements quality metrics and measurement
techniques must be identified.

• Execute Use Cases – to determine the quality of Use Cases from a behavioral
perspective during runtime (e.g. to find deadlocks) by using Petri net analysis.

These activities produce six new artifacts, which include:
• Requirements Quality Criteria Specification – specifies and defines all quality

criteria, which must be fulfilled by all requirements documents.

8

• Requirements Quality Report – describes the approach and the results of the
performed quality assurance activity.

• Requirements Defect List – maintains the list of defects discovered in all checked
requirements documents.

• Formal Requirements Specification – contains the translation of natural language
based requirements in a formal requirements specification language.

• Measurement Statistics – lists the quantitative quality assessment of requirements
document.

• Petri Net – a Petri net, which is created on the basis of a Use Case.

All these new process elements need to be integrated into the process. This is done by a
new Workflow-Detail, which encapsulates the new process elements and enhances the
Requirements Discipline.

To specify and visualize new process elements and their correlation in the process, the
authors of this paper devised a card based visualization technique called Process
Specification and Visualization Cards (PSVC), which were derived from the concept of
CRC cards used by Alistair Cockburn [COCKB-2005] to collect the responsibilities and
collaborations of classes. Figure 5 shows an instance of a PSVC - the Workflow-Detail
Specification and Visualization Card - of the new workflow-detail Verify Requirements.

Figure 5: Workflow-Detail Specification and Visualization Card (WSVC).

9

Figure 6: Integration of improved Requirements Workflow.

Figure 6 depicts the integration of the new Verify Requirements workflow-detail. The
RQA plug-in is on an upper intermediate level of complexity when compared to other
RUP plug-ins. The RQA plug-in is a structural plug-in, which requires the use of Rational
XDE (resp. RUP Modeler) and the RUP Organizer. It adds completely new process
elements to the RUP by linking them to the right elements.

The development of the plug-in took approximately 10 hours for a novice user to create
the process model and around 20 hours to author the p lug-in. Typically the authoring
time is higher than the modeling time. Yet, the Rational’s Process Engineering
Process [PEP] mentions that plug-in developers generally spend more time in RUP
Organizer than in Rational XDE (resp. RUP Modeler). This would lead us to estimate
that probably another 20 hours would be required to provide the practitioners of the
RQA plug-in with examples, templates and a full and detailed description of all
activities, roles and artifacts.

As one can image it takes a lot of time to edit all the images of the diagrams. This
leads to the question of whether it is necessary to keep all diagrams consistent to the
process model. The workflow detail and role diagrams can be easily visualized with
tables, therefore images are not really required. Only the flow within the discipline and
phase diagrams are not be easily visualized with tables due to the high degree of
variability. From the authors’ point of view the discipline and phase diagrams provide a
good overview for inexperienced practitioners of the RUP, but trained and experienced
practitioners know how the RUP works and, therefore, do not really need the diagrams.
From this perspective the diagrams are nice to have but are not really necessary and due

10

to the significant effort associated with keeping them consistent with the process model, the
authors judge the maintenance of the diagrams as infeasible.

5 Process and Discussion of RUP Tailoring
The development of a RUP plug-in is done in three steps: the process modeling to define
the architecture of process elements in a process model, the process authoring to create
process content (html files, images, diagrams) and to link this content to the model, and
finally the process publishing to apply the Plug-In. For a more detailed step-by-step
tutorial on developing a sample RUP plug-in we refer the reader to [BENCOMO-2005a]
and [BENCOMO-2005b].

5.1 Process Modeling

The process model is the principal artifact used while developing a new RUP plug-in. It
combines all other process components together with its individual set of process
elements to define the whole process. Figure 7 shows the modeling result of the new role
Requirements Quality Controller of the Requirements Quality Assurance (RQA) plug-in,
together with its new activities and artifacts.

Figure 7: Role-Activity-Artifact model of the Requirements Quality Assurance plug-in.

In addition to the modeling of the new role, activities and artifacts it is necessary to model
a new process component, which contains these process elements and the dependencies
between the process component and the RUP. It is also possible in the case of the RQA
plug-in to create a new workflow-detail and to link this workflow-detail to phases and
disciplines.

11

5.2 Process Authoring

The process model only defines the structure or architecture of a plug-in, but the final
result after the process publishing is a process website with html pages, images, workflow
diagrams and additional PDF files. This content is mapped to individual process elements
of the process model, during the authoring process. Thus, a plug-in is made out of a
model and content. This mapping can be done by dragging content files and dropping
them on process elements in the RUP Organizer. A process engineer probably generally
spends more time in the preparation of content than in the modeling of the process
elements. Additional tools like image editing tools, word processing tools and html
editors are required to produce the actual content.

5.3 Process Publishing

In this final step the new developed RUP plug-in is loaded into the RUP Builder and
linked to the RUP. After the process website is generated (published) the new process
elements can be observed in the website, see figure below.

Figure 8: Applied Requirements Quality Assurance plug-in in the RUP website.

5.4 Restrictions and Problems while developing a RUP Plug-In

The previously described steps seam to be easy and smooth, but in fact there are some
pitfalls, which need to be carefully considered. It was mentioned above that it is possible
to delete process elements by plug-ins. This is not quite true, it is possible to delete
phases, workflow-details, activities and tool mentors, but it is not possible to directly
delete roles and artifacts. Because of this limitation in RUP’s plug-in technology in
practice a workaround is used. If a role or an artifact needs to be deleted, the whole
process component in which the role or the artifact is defined is deleted in the RUP
Builder. Afterwards a RUP plug-in is applied to the RUP, which redefines the deleted
process component, but without the process elements, which actually needed to be
deleted. This workaround works fine, but it is not sufficient or even safe.

12

Even if the deletion of activities is possible by RUP plug-ins, it is hard to determine
which other process elements may be affected by the deletion. This is due to the fact that
the output of one activity may affect the input of another activity. Let’s assume that
activity_1 produces artifact_A and that activity_2 uses artifact_A as input. In case
activity_1 is deleted, then artifact_A will never be produced and activity_2 can not be
performed because artifact_A is missing. That means that there is a strong dependency
between these two activities, and the deletion of one of them must be considered very
carefully. In addition to this simple example, the dependencies between entire process
components must be examined.

We have investigated the degree of coupling between different process elements. As
figure 9 below indicates, the degree of coupling of RUP’s process components and
consequently the degree of coupling of individual process elements is very high. The
RUP defines 11 core process components with zero or more subcomponents, which sums
up to 32 process components, which in turn define hundreds individual process elements.
The authors have defined a coupling metric as the percentage of the total number of all
other process components to which a process component is dependent, thus 100%
indicates very high coupling (a process component is dependent to all other process
components). The figure below shows, that there is a very high coupling for
approximately one third of all process components. 21 process components have a
coupling less than 25%, 8 process components have a coupling of more than 25% and 3
process components more than 40%. This abnormal high level of coupling leads thereto
that the correct deletion or replacement will result in cascading problems with the
consistency of other process elements and in most cases results in an enormous obstacle
with respect to producing a consistent process.

Figure 9: A dependency diagram of RUP’s process components.

13

6 Conclusions and Future Work
IBM Rational promotes the Rational Unified Process as a highly customizable

framework, which can be adjusted to all specific needs, with a wide range of supporting
customizing tools. This paper investigated the development and integration of a RAQ
plug-in. It was shown that the RUP is customizable, but with significant limitations. The
most significant limitation described is that the removal of roles and artifacts is nearly
impossible due to the many dependencies among process elements.

We plan to extend and evaluate the RAQ plug-in as part of a case study. In addition,
we will consider other requirements processes and compare them with our model. As the
development of RUP plug-ins is not an easy task and the dependencies of RUP process
elements are very high we will develop a helper tool to tackle this problem.

References

[BENCOMO -2005a] Bencomo, Alfredo: Extending the RUP, Part 1: Process Modelling,
www.therationaledge.com, 2005, last visited 14th June 2005.

[BENCOMO-2005b] Bencomo, Alfredo: Extending the RUP, Part 2: Process
Description, www.therationaledge.com, 2005, last visited 14th June 2005

[BERGS-2004] Bergström, Stefan, Råberg, Lotta: Adopting the Rational Unified
Process: Success with the RUP, Addison Wesley, 2004

[COCKB-2005] Cockburn, Alistair: Crystal: A family of software development
methodologies, http://alistair.cockburn.us/crystal/crystal.html, last visited 4th October
2005.

[FGLM-2002] Fantechi A., Gnesi S., Lami G., Maccari A.: Application of Linguistic
Techniques for Use Case Analysis, http://fmt.isti.cnr.it/WEBPAPER/REJfin2.pdf,
2002, last visited 1st August 2005.

[GORDIJN-2002] Jaap Gordijn: Value-based Requirements Engineering - Exploring
Innovative e-Commerce Ideas, SIKS Dissertation, Vrije University, Netherlands,
2002.

[IEEE-1983] IEEE STD 729-1983: IEEE Standard Glossary of Software Engineering
Terminology, http://www.ieee.org/, 1983.

[IESE-2005] Choi, Yunja: Formal and Informal Verification Techniques for High
Quality Requirements, Fraunhofer Institute for Experimental Software Engineering,
http://www.iese.fraunhofer.de, 2005.

14

[LW-2003] Leffingwell, D., Widrig, D.: Managing Software Requirements - A Use Case
Approach, 2nd edition, Addison Wesley, 2003.

[OS-1996] E.Ortner, B. Schienmann: Normative Language Approach - A Framework for
Understanding, Proceedings of the Entity Relationship Approach, ER’96, Addison-
Wesley, 1995.

[PEP] Process Engineering Process: A RUP Adoption Process, Part of the Rational
Process Workbench (RPW), version 2003.06.01.06.

[ROB-1999] Suzanne and James Robertson: Mastering the Requirements Process,
Addison-Wesley, 1999.

[RUP] IBM Rational Unified Process (RUP), The browser-based product, version
2003.06.13, http://www-306.ibm.com/software/awdtools/rup/, last visited 20-January-
2006.

[RUP-TOOLS] IBM Rational Unified Process (RUP), http://www-
306.ibm.com/software/awdtools/resources/rmc.html, last visited 20-January-2006.

[SILVA-2003] Silva, Jose Reinaldo; Santos, Eston Almança dos: Applying Petri Nets for
Requirements Validation, http://www.pmr.poli.usp.br/d-lab/artigos/COB03-1825.pdf,
2003, last visited 4th October 2005.

[TSG-1994] The Standish Group, The CHAOS report,
http://www.standishgroup.com/sample_research/chaos_1994_1.php, 1994, last visited
20-January-2006.

[WRLH- 1996] Wilson, William M., Rosenberg, Linda H., Hyatt, Lawrence E.:
Automated Quality Analysis of natural Language Requirements Specifications,
http://satc.gsfc.nasa.gov/support/, 1996, last visited 1st August 2005.

15

