
File Manager: an efficient solution
for managing mobile storage

Erik Abels, James Erin, Jason Swarts,
Arielle Wilson, Piper Rainen, Denis Popel

Computer Science Department,
Baker University

Baldwin City, KS 66006

denis.popel@bakeru.edu

Abstract

This paper outlines research and development done to create an efficient management
tool to manipulate files on mobile devices such as Pocket PCs, Smartphones, etc. The
outcome of this software engineering project is an application, namedFile Manager, which
is capable of secure file transfer between a mobile device and a server through an FTP (File
Transfer Protocol) connection. The application has an intuitive user-friendly interface and
numerous options to enable multiple user profiles. Application testing has been performed
for various networking settings including wireless (e.g., Wi-Fi) and wired connections.

1 Introduction

Overview of the program

The File Manager program has been created to address an increasing demand for a flexible
storage and management solution for mobile devices. The application allows for files
to be shared between a handheld device and a server through a variety of networking
connections including wireless. The main limitation of mobile devices is the amount of
available memory (ranging from 16Mb to 512Mb) to store applications and data. Currently
this limitation is addressed (a) by adding external memory slots with limited capacity,
or (b) by designing applications for installing/uninstalling/moving programs and files in
and out of mobile devices. The vast majority of applications for the latter solution make
use of synchronization software connecting a mobile device with a selected stationary
workstation. In order to avoid a specific linkage to a dedicated workstation, File Manager
uses a configurable network storage and standard protocols for file transmission lifting
the storage constraints. With the increasing number of handheld devices equipped with
wireless technology, such a solution enables mobility and flexibility in file storage and
management.

File Manager users

Corporate environments Entire businesses can host a file transfer server and allow their
employees to access it through their mobile devices with the use of File Manager.

Professional usersBacking up important data is a valuable mitigation plan and with File
Manager users have a way to save vital information in case of a device failure or lack
of memory.

Home users Everyday use at home is another way the File Manager can be valuable.
This includes storing digital media like pictures and music, to being able to share
information between family members.

Design

The Use Cases involved in the development of the File Manager can be seen in the Use
Case Diagram (Figure1) The different Use Cases include:

Pocket PC

• Authorization

• Set parameters

• FTP connection

1

Pocket PC
Work Station
PC/ FTP Site

Wireless or
Wireline

Alter Location
of Storage

Change Directory
Development

Team

Authorization

Access Directory

Set Parameters

Licensed
Administrator

Licensed User

FTP Connection

FTP Connection

Figure 1:Use Case diagram

Workstation PC/FTP site

• Access directory

• Change directory

• FTP connection

Each Use Case is discussed in greater detail next.

Authentication and authorization

Authentication and authorization is the first step when accessing the File Manager System.
This Use Case depicted in Figure 2 gives the step by step process followed during the
authentication and authorization. Conceptually this process validates the user as well as
the parameters each user requires for the use of the File Manager.

Set parameters

Within the Set parameters Use Case, there are steps identified to create, edit, or delete a
variety of settings on the File Manager System. Figure 3 gives the visual representation of
the use case as it is conceptually intended. Both the users and administrators are able to
update settings through the Set parameter Use Case with therein authorization level being
the decision criteria for permission.

2

Authorization Begin

Authorization End

User Turns on
Personal Device

System Verifies
User

System Verifies
FTP Connection

System Prompts User of
Authorization Failure

System Prompts User of
Failed FTP Connection

System Verifies
External Connection

System Prompts User of
Lack of Connection

System Acknowledges
Correct Parameters

Not Authorized

Is Authorized

No Connection

Connection Found

FTP Inaccessible

FTP Found

 Figure 2: Authorization process

Set Parameters Begin

Set Parameters End

User Selects File
Transfer Program

User Selects
Settings Function

User Selects
Different Function

System Verifies
Authorization

System Displays
User Settings

User Changes
Settings

System Saves
Settings Change

System Makes
Desired Changes

System Displays
Administator Settings

Administrator
Changes Settings

 Figure 3: Set parameters process

FTP connection

The FTP connection Use Case is associated with both the Pocket PC as well as the FTP
site. The diagram shown in Figure 4 gives both approaches to the use case and shows
the different alternatives for the use case’s path. Within the FTP connection lies the main
functionality of the File Manager System. This Use Case illustrates the process identified
to transfer to and from an FTP site.

Access directory

The Access directory Use Case takes place on the Workstation PC side of the Use Case
Diagram. The user is able to access the location of their stored files through the FTP
protocol and their personal computer. Accessing the storage site through the Pocket PC is
possible by following the FTP Connection Use Case (Figure 5).

Change directory

The Change directory Use Case, seen in Figure 6, gives the process that is to be followed
in order to change settings related to the FTP directory. This use case is to be accessed by
the system administrator because of the control implications this edit can have on the data
storage, as well as the performance of the File Manager system.

3

FTP Connection Begin

FTP Connection End

User Selects File
Transfer Program

User Selects
File Upload

User Selects
File Download

List of Files on Server
Displayed

File Browser
Displayed

User Selects Files to
Download

User Selects
Files to Upload

Files Added to
Download List

User Verifies to
Download

System Verifies
Hard Drive Space

System Prompts User of
Not Enough Memory

Memory Conflict

System Downloads
Files to Mobile Device

Transfer Possible

System Prompts User of Successful
Download and Other Info

Files Added to
Upload List

User Verifies to
Upload

System Verifies
Space on Server

 System Prompts
User of Server Error

Memory Conflict

System Uploads
Files to Server

Transfer Possible

System Prompts User of
Successful Upload and Other Info

User Selects
Different Function

Download Form

Upload Form

Alternate Path

 Figure 4: FTP connection process

Directory Access Begin

Licensed User Turns on
Workstation PC

Licensed User Logs
Into Network

Correct Login

Licensed User Opens File Folder
Containing Transfered Files

Licensed User
Accesses Files

Directory Access End

Licensed User Enters
Station Login

Licensed User Not
Logged into Network

Wrong Login

 Figure 5: Access directory process

Directory Change Begin

Directory Change End

Licensed Administrator
Turns on Workstation PC

Licensed Administrator
Enters Station Login

Licensed Administrator
Logs Into Network

User Authorized as
Administrator

Licensed Administrator Acceses
Change Directory Interface

User Not Logged
into Network

Licensed Administrator
Changes Directory

Wrong Login

Correct Login

 Figure 6: Change directory process

4

Application architecture

User Class This class handles the username and passwords for the File Manager system
(Figure 7).

ProfilePreferences ClassThis class handles the FTP configurations and the preferences
for that profile (Figure 7).

ProfileSelect ClassThis class handles the file reading and writing and works with the
Security Class for the encryption (Figure 7).

Security Class This class handles all of the encryption and conversion from characters to
the hexadecimal equivalent (Figure 8).

ErrorHandling Class This class handles the error codes and the error box display
(Figure 9).

CompactFileList Class This is an abstract class to handle children (Figure 10).

CompactPPCFileList Class This class controls the list view of the files on the Pocket PC
(Figure 10).

CompactFTPFileList Class This class controls the list vies of the files on the FTP Server
(Figure 10).

User

m_szUserUsername
m_szUserPassword

SelectUser()
getUserName()
LoadProfilesFromFile()
WriteProfilesToFile()
ValidateProfileChange()
LoadProfile()
CreateConfiguration()
CopyPreviousConfigurationToNew()

ProfileSelect

Secure
extens ion

ReadString()
WriteString()
WriteSection()
getProfileNumber()
getUserPassword()
WriteProfile()
RecreateUser()
ProfilePreferences()
ReadAllProfiles()
UsenameToFilename()

ProfilePreferences

m_strThemeName
m_strProfileName
m_strIPAddress
m_strIFTPUsername
m_strFTPPassword
m_bDefault

getIPAddress()
getFTPUsername()
getFTPPassword()
getProfileName()
getColorTheme()
getDefault()
setFTPUsername()
setFTPPassword()
setIPAddress()
setColorTheme()
setProfileName()
setDefault()

 Figure 7: User, ProfilePreferences
and ProfileSelect classes

Security

Key

Decrypt String()
Decrypt()
FormatKey()
EncryptPassword()
DecryptPassword()

Figure 8: Security class

ErrorHandling

m_lErrorNumber
m_szErrorDescription

DisplayErrorBox()
FindErrorDescription()

Figure 9: Error handling class

5

CompactPPCFileList

MemoryForOutsideObjects

InitializeComponent()
PopulateFiles()
GetArrayOfDirsToPopulate()
GetArrayOfFilesToPopulate()
ChangeDirectory()
GetDirectories()
GetFiles()
FileOKToTransfer()

CompactFTPFileList

FileArray
StrFileListing
m_FTPConnection
MemoryForOutsideObjects
PopulateFiles

InitializeComponent()
PopulateFiles()
GetArrayOfDirsToPopulate()
GetArrayOfFilesToPopulate()
ChangeDirectory()
GetDirectories()
GetFiles()
FileOKToTransfer()

CompactFileList

m_cmbDirectoryPicker
m_lvFileList
m_strFilter
m_strUnformattedPath
m_strUnformattedInitialPath
m_PathDelimiter
m_strInitialPath
m_strPath
m_aFileArray
FileArray

MemoryForOutsideObjects()
AssignOutsideObjects()
InitializeComponent()
GetShortFilename()
PopulateFiles()
PopulateListView()
GetArrrayOfFilesToPopulate()
GetArrayOfDirsToPopulate()
PopulateDirectoryCombo()
CheckForAnyElementOfPathChecked()
CheckForExactElementChecked()
ConvertFileSizeUnits()
ChangeDirectory()
RemoveChildrenElements()
NumNonEmptyElementsInArray()
SlideUpArray()
KeyInitializeArray()
KeyPathFromFullPath()
FileNameFromFullPath()
GetDirectories()
GetFiles()
RecursiveAddDirectoryToArray()
m_lvFileList_ItemCheck()
AddFileToArray()
RecoverMemoryArray()
SelectAll()
m_lvFileList_ItemActivate()
m_cmbDirectoryPicker_SelectedIndexChanged()
FileOKToTransfer()

Figure 10: File list classes

Implementation

The major part of the implementation was to design visual interfaces to create user profiles.
This was accomplished by C# modules for user authorization and authentication, user
profiling, file browsing, password encryption, and the FTP client. Some screenshots are
given in Figure 11.

6

Figure 11: File Manager screenshots: user authentication (upper left), user profiling (upper
right), menu choices (lower left), and remote connection (lower right)

Concluding remarks

This paper outlines the idea of a flexible and efficient tool for managing file storage on
mobile devices enabling file transfer through various networking connections including
wireless. An application named File Manager has been developed with a user-friendly
interface and some comprehensive choices for user profiling and FTP connection. Both
corporate and home use environments can benefit from integrating File Manager in order
to synchronize file structure, move and/or update files. The application can be adopted to
other networking and file management solutions.

7

