
Towards A Better Model Based User Interface Development Environment: A
Comprehensive Survey

Mohammed Gomaa, Akram Salah and Syed Rahman

Computer Science Department
North Dakota State University
258 IACC, Fargo, ND 58105

{mohammed.gomaa, akram.salah, syed.rahman}@ndsu.edu

Abstract

The introduction of user devices with built-in computer programs has introduced a number of
challenges to the design of user interfaces. Automating the management and generation of
interfaces greatly improves their quality and maintainability and significantly reduces the cost of
development. Model-based user interface development environments (MBUIDEs) are tools that
help designers with building interfaces through automating the generation of interfaces using
high-level declarative models.

In this paper, surveyed different interface generation techniques and built a framework to
compare and analyze their suitability to handle the changes imposed by universal usability. The
paper points out limitation with current techniques and proposes the use of a multi-model
conceptual layer that will be used as a management system to control the specification, creation,
and manipulation of the interfaces. We claim this framework will be able to overcome many of
the limitations of today’s techniques in facing the above mentioned challenges.

1

1. Introduction

User interface is a very important part in software development. An average of 48% of the code
of applications is devoted to user interface, and about 50% of the implementation time is devoted
to implementing the user interface portion [46].

Automating user interface improves the quality of developed interfaces and makes the creation of
interfaces more economical and maintainable. Several approaches have been proposed to
automate the creation of user interfaces. User Interface Management Systems (UIMS) were first
proposed with an analogy to Database Managements Systems (DBMS).

Model-based user interface development environments (MBUIDEs) were introduced later to
overcome problems faced with UIMSs. They are tools that support the design and development
of user interfaces through the use of abstract interface models. There are two generations [44] of
MBUIDEs that appeared as improvements to the previous UIMSs. The first generation was
basically aiming at providing a strategy to generate a user interface from the high-level models.
The tools of this generation emphasized the automatic generation of an interface instead of a user
interface design process. The second generation of MBUIDEs stressed the involvement of users
in the development process of interfaces and started MBUIDEs that are user-centered. In second
generation, the interface model was described in better ways. Tools of this generation supported
the incremental interface design.

The last decade has seen the introduction of a large number of appliances and devices that have
built-in computer programs and are used to access several information sources. This has
introduced a number of challenges to the design and creation of user interfaces. The wide range
of users, applications and devices requires interface designers to provide user interfaces that will
be flexible enough to satisfy the wider range of requirements without being redesigned for every
use. The term universal interfaces is used to describe interfaces that run on several platforms and
are multilingual. A number of other terms were coined to describe this like ubiquitous
computing, smart interfaces, universal usability, interface plasticity and universal access.
Universal usability describes products that should be usable by the widest range of people
possible.

In this paper, we survey current and past interface generation techniques to find their suitability
to face the challenges introduced by universal usability. We analyzed the current approaches and
discussed their shortcomings in facing the universal usability problem. The work in this paper is
part of a research project that aims to introduce a framework capable of addressing the challenges
introduced by universal usability.

This paper is structured as follows. Section 2 gives a brief description of the surveyed techniques.
Section 3 provides a framework to compare abstract models in different MBUIDEs and gives an
analysis for the surveyed techniques. Conclusions and future work are provided in Section 4

2

2. Overview of environments

This section provides a brief discussion about the techniques surveyed. Table 1 presents the tools
surveyed, the organizations in which they were developed, and suggested references for that
technique. Follows is a brief discussion about those techniques and tools.

Tool Year Place References
ADEPT 1995 Queen Mary and Westfield College [1,3,4]
HUMANOID 1993 University of Southern California [6, 7]
MASTERMIND 1995 University of Southern California, and

Georgia Institute of Technology
[8, 9]

TADEUS 1995 University of Rostock [10, 11]
MECANO 1995 Stanford University [12, 13]
GENIUS 1993 [14]
TRIDENT 1993 Namur University [15, 16, 17, 18, 20]
UIDE 1991 Georgia Institute of Technology [21, 22, 23, 25, 26]
AME 1996 Fachbereich Informatik, Germany [27]
FUSE 1996 University of Manchester,

Napier University,
University of Glasgow

[28, 29]

MOBI-D 1997 Stanford University [30, 31, 32, 33, 34]
JANUS 1995 Ruhr University [44]
ITS 1989 IBM T.J. Watson Research Center [35]
Teallach 1999 University of Manchester,

Napier University, University of
Glasgow.

[38, 39, 40, 41, 42]

DRIVE 1995 [45]
Markopoulos
approach

2000 Eindhoven University of Technology [43]

UIML 1999 Garvin Innovation Center, Virginia Tech [47, 48]
XUL N/A Mozilla [58]
XIML 1999 RedWhale Software [50,51]
Xforms 2003 W3C [52]
Aurora 2000 IBM Almaden Research Center, NehaNet

Corporation
[53]

Dygimes 2004 Limburgs Universitair Centrum, Belgium [54]
TERESA 2003 Consiglio Nazionale delle Rierche, Italy [55]
Pebbles 2002 Carnegie Mellon University, MAYA

Design Inc
[49, 56]

AIAP N/A INCITS/V2 [57]
“Table 1: Surveyed techniques”

3

2.1. User Interface Management Systems (UIMS)

UIMS seemed a very promising approach in the early 80s. UIMSs were to abstract the details of
input and output device. According to Myers [46], UIMSs failed due to what he called the
moving-target problem; the standardization of the user interface elements in the late 80’s on the
desktop paradigm made the need for abstractions from the input devices unnecessary. We will
give a brief description of ITS, one of the UIMSs.

2.1.1. ITS

ITS (WIECHA, 1989) [35] is a UIMS that offers a frame-based language for specification of
interface in its logical structure. It also allows the specification of style rules, which describe the
mapping between logical user interface (dialogue content) and style. ITS has no graphical
specification technique. It employs different notation for describing dialogue content and
presentation design rules. ITS defines action Layer, Dialog layer, style rule layer, and style
program layer. Action layer implements back-end application functions. It is similar to
application layer in other tools. Dialog layer defines the content of the user interface, independent
of its style. Content specifies the objects included in each frame of the interface, the flow of
control among frames, and what actions are associated with each object. Style rule layer defines
the presentation and behavior of a family of interaction techniques. Style program layer
implements an extensible toolkit of objects that are composed by the rule layer into complete
interaction techniques.

2.2. First generation model based tools

2.2.1. HUMANOID

HUMANOID [6, 7] aimed to help maintaining a balance between having the designer handle a
tremendous number of design details (as in interface builders), or limiting his control over design
decisions (as in automatic interface tools). HUMANOID uses pre-defined presentation templates
to solve layout generation problems. The models are not explicitly defined in HUMANOID.
Rather, they are defined as five dimensions, namely Application Model, Presentation,
Manipulation, Sequencing, and Action side effects.

HUMANOID uses a declarative language to express application semantics, presentation, input
gestures and results, constraints on the ordering of commands and inputs, and side-effects of user
actions. Presentation and gestures are defined using templates, whereas the dialogue constraints
are derived from the application semantics. HUMANOID also provides a run-time system to
control the designed interface. HUMANOID provides specialized editors to construct

4

presentation templates and to specify all their attributes. For specifying layout, HUMANOID
has a library of templates of commonly use layout methods such as rows, columns, tables and
graphs. HUMANOID has a behavior model, based on Myers' Interactor, model that is used to
specify behavior in the presentation. HUMANOID uses manipulation, sequencing, and action
side effects models for what is called dialogue models in other tools.

2.2.2. UIDE

UIDE (Sukaviriya, 1992) [21, 22, 23, 24, 25, 26] was one of the early MBUIDEs in which the
designer had to specify application actions, interface actions, and interactions techniques.
Parameters, pre and post conditions were then assigned to each action. Pre and post conditions
are used to control the interface. An extension to UIDE introduced at 1995 added some more
features. The research on UIDE and HUMANOID was joint in the MASTERMIND project.

2.3. Second generation model-based tools

2.3.1. ADEPT

ADEPT (Johnson, 1995) [1, 3, 4] stands for "Advanced design environment for prototyping with
tasks”. It is a task-based [2], user-centered (user task-based) design environment that emphasizes
the involvement of users. In design, task model is transformed into the specifications of logical
interface components. Based on the design rules in a user model, a concrete interface is derived
from the logical interface. The dialogue structure is included in the Abstract Presentation Model.
Objects are modeled in Concrete Interface Model by the set of events it can recognize, the
sequencing of events, and the behavior of the objects. ADEPT has tools namely Task, User, and
Interface model editors for capturing and editing the task, user and interface models respectively.

2.3.2. MASTERMIND

MASTERMIND (Szekely, 1996) [8, 9] stands for Models Allowing Shared Tools and Explicit
Representations Making Interfaces Natural to Develop. It is a continuation of the work on
HUMANOID and UIDE and aims at inheriting the strengths of both environments.
HUMANOID’s strength lied in the presentation model, modeling tools and performance, where
as UIDE’s strength lied in the dialogue model, the design critics, and the help generation tools.

Models in MASTERMIND are shared via the model server. Whenever a model element in the
model server is modified (by request of any tool), all tools that depend on the modified element
are informed so that they can update their state. MASTERMIND’s presentation model is similar
to that of HUMANOID and ITS. MASTERMIND’s main contribution is that its presentation
model is designed to support graphical specification of presentations similar to that of interface
builders.

5

2.3.3. TADEUS

TADEUS (Elwert, Schlungbaum 1995) [10, 11] stands for Task based development of user
interface software. In TADEUS, the development process is divided into the phases:
Requirements Analysis, Dialogue Design, and Realization. In the Requirements Analysis phase,
hierarchy of goals, a class hierarchy, and the user models are specified. In Dialogue Design
phase, static and dynamic aspects of the interface are described in terms of views and dialogue
graphs (an extension of dialogue nets of GENIUS). In Realization phase, the logical user
interface is transformed into interface description for a UIMS by applying software ergonomic
guidelines specified through decision tables.

2.3.4. MECANO

MECANO [12, 13] was one of the early tools that were improved afterwards to MOBI-D to
include more models to define the interface. A model editor is used to visualize and edit the
domain model. The domain model is then used to generate high and low level dialogue
specifications. High-level dialog defines all interface windows, assigns interface objects to
windows, and specifies the navigation schema among windows in the interface while low-level
dialog defines specific dialog elements (widgets) to each interface object created at the high level
and specifies how the standard behavior of the dialog element is modified for the given domain.

2.3.5. GENIUS

GENIUS (Janssen, Weisbecker, & Ziegler 1993) [14] stands for Generator for user interfaces
using software ergonomic rules. It generates interfaces for database oriented applications. The
problem domain model is represented by an ERA (entity-relationship-attribute) diagram. Based
on this ERA diagram, static aspects of the logical user interface are described in terms of views
(abstract representations of windows). For each view in the logical user interface, the static UI
layout is generated by applying software ergonomic guidelines which are described as decision
tables.

2.3.6. TRIDENT

TRIDENT (Vanderdonckt, 93) [15, 16, 17, 18, 19, 20] stands for Tools for an interactive
development environment. It is a tool for developing interfaces for business-oriented
applications. Development in TRIDENT starts with task analysis which results in a hierarchical
decomposition of the application into tasks and sub-tasks, goals, actions, objects of tasks,
relationship between tasks, prerequisite of tasks, user stereotypes, and a description of the
workplace. An extended version of entity-relationship-attribute (ERA) model is then built to
describe the object structure and relations to be manipulated by the user. An activity chaining
graph (ACG), which is a graph describing the information flow between the application domain

6

functions which are necessary to perform the task goal is then built. Interaction styles (natural
language, command language, query language, questions/answers, function keys, menu selection,
form filling, multi-windowing, direct manipulation, iconic interaction...) are defined next. Once
the appropriate interaction styles have been selected and the ACG has been completed, we are
ready to start the definition of the presentation.

2.3.7. AME

AME (Martin, 1996) [27] stands for Application Modeling Environment. AME is a prototypical
MBUIDE that is targeted at business applications. AME introduced the idea of concurrent
lifecycles where the development process is divided into activities for the user interface and
activities for the domain functionality of the system. Therefore, AME integrates object-oriented
and knowledge-based tools and is able to model, prototype and generate business applications
with graphical user interfaces.

2.3.8. FUSE

FUSE (Lonczewski, 96) [28, 29] stands for Formal User Interface Specification Environment. It is
a tool for formal specification and automatic generation of UIs. It also emphasizes the automatic
generation of user help modules.

2.3.9. MOBI-D

MOBI-D [30, 31, 32, 33, 34] stands for Model-Based Interface Designer. It is the successor of
MECANO. It aims at solving the mapping problem between different abstraction levels for
objects in models of interfaces e.g. purely abstract units in such as a user tasks and very concrete
units, such as scrollbars and pushbuttons. Developers of MOBI-D believe that the mapping
problem defies automation because of the number of variables that can impact each possible
mapping. Instead of automation, they propose that model-based systems provide tools that allow
developers to interactively set the mappings. The mapping issue is addressed according to three
aspects: mapping of domain objects with interactors according to some priorities; style attributes
controlling some graphical and textual attributes; and strategy preferences indicating the
preferred number of windows, the preferred way to implement sequential constraints, and the
preferred interaction and navigation modalities.

2.3.10. JANUS

JANUS [44] emphasizes the use of object-oriented domain model to generate the interface. The
output is source code for C++.

7

2.3.11. TEALLACH

The goal of the Teallach [38, 39, 40, 41, 42] project was to provide facilities for the systematic
development of interfaces to object databases in a manner which is independent of both a specific
underlying database and operating system. It also allows the creation of interfaces to non
database applications in a platform-independent manner. There is a contradiction in Teallach’s
literature about the models used in the environment. User model is referenced and used in some
of the literature and not in others. Teallach’s interfaces are generated as compiled Java
applications.

2.3.12. DRIVE

DRIVE (Mitchell, 1995) [45] stands for Database Representation Independent Visual
Environment. It was explicitly aimed at producing interfaces to databases rather than applications
in general.

2.3.13. Markopoulos approach.

Markopoulos’ approach [43] considers using UML for modeling due to its popularity within the
software developers. It has a scenario model that is used for envisioning systems at early design
stages.

2.4. Tools for universal computing

Several researchers are currently working to face the challenges imposed by the universal
usability standards. A number of tools are currently under development as a result of the research
made. A brief description of those tools is given below.

User Interface Markup Language (UIML) [47, 48] is an appliance-independent XML meta-
language for describing interfaces. It takes the approach of building applications using a generic
vocabulary that could then be rendered for multiple platforms. A special renderer for each target
device is needed. It could be argued that having multiple renderers is a disadvantage. UIML does
not take into account any of the advances of Model Based User Interface Development
Environment reached in the past decade because it does not allow the abstraction of interaction
functionality.

XML User Interface Language (XUL) [58] is a markup language used for describing user
interfaces. It has its focus on window-based UIs by XML. Its disadvantage is the limitation to
such graphical user interfaces, which makes it unsuitable to interfaces of small mobile devices.

8

Extensible Interface Markup Language (XIML) [50, 51] is an XML based language that is
intended to be a universal user interface specification language. Research is still underway with
XIML but it seems to be promising.

 The W3C consortium has recently delivered a new standard, Xforms [52], that presents a
description of the architecture, concepts, processing model, and terminology underlying the next
generation of web forms based on the separation between the purpose and the presentation of a
form.

Aurora [53] is a model based tool that uses a transaction model to adapt web pages to support
universal usability. Aurora has a limited scope of web pages.

Dygimes [54] exploits Distributed User Interfaces that allow users to share information on their
devices with other people using different devices by allowing mobile users to use the surrounding
devices. It introduces an interaction model that describes the communication between the
generated interface and the application logic for which the interface is rendered.

TERESA [55] is also an XML based language that uses abstract models to generate interfaces for
multiple platforms and devices. Currently they only concentrate on web applications.

Developers of the Pebbles project [49, 56] propose that every user would carry a personal
universal controller device that allows him to interact with all the existing appliances in the
environment. Personal universal controllers will be different depending on the users’ needs. It
could be a regular handheld machine, or one with Braille surface, or one with speech output and
recognition.

The International Committee for Information Technology Standards (INCITS) is currently
developing the Alternative Interface Access Protocol (AIAP [57]), which is a standard to help
disabled people use everyday appliances. It contains a description language for appliances that
can be used by interface generators.

3. Models

One goal of MBUIDEs was to face the limitations of UIMSs. MBUIDEs are suites of software
tools that support designing and developing user interfaces by creating interface models. Puerta
[59, 60] defines an interface model as a computational representation of all the relevant aspects
of a user interface. Szekely [61] defines an interface model as high-level declarative specification
of some single coherent aspect of a user interface, such as its appearance, layout characteristics
and dynamic behavior. By focusing attention on a single aspect of a user interface, a model can
be expressed in a highly specialized notation. Different MBUIDEs define different set of models
to describe the interface.

9

In order to analyze the different techniques, we created a framework where we defined task,
application, user, presentation, and dialogue models. One problem we faced was the conflicts in
the literature in the definitions and scopes of different models used by different environments
where authors were referring to the same models with different meaning and so on. In order to
overcome this problem, we have used our defined models as a basis for comparison. Table 2
below presents the different models. Between square brackets, the name as used by the creator of
the tool will be mentioned to the reader.
• Task model. A task is described by a goal, actions needed to achieve the goal, and a plan of how
to select the actions. The task model describes the tasks that the user can perform with a system
including sub-tasks, their goals, and the procedures used to achieve the goals.
• Application model. Application model specifies the information about an application that is
independent of how the objects are displayed, and how the operations are invoked. It is usually a
hierarchy of classes
• User model. User model describes prospective users of the systems in terms of their abilities,
knowledge and styles of information processing.
• Presentation model. Presentation model describes the visual aspects of the interface. It is
divided into Abstract presentation model and concrete presentation model. Abstract presentation
model provides an abstract view of an interface that is independent from the underlying concrete
model. Concrete Presentation model is the concrete instance of an interface which can be
presented to a user; there may be many concrete instances of an abstract presentation model.
• Dialogue model. Dialogue model defines the procedural characteristics of the human-computer
dialogue in an interface model.

Environment Task

Model
Domain
Model

User
Model

Abstract
Presentation
Model

Concrete
Presentatio
n Model

Dialogu
e Model

ADEPT
[Problem
domain]

[abstract
interface model]

[concrete
interface
model]

HUMANOID
[applicati
on model]

[presentation model]

MASTERMIN
D

[applicati
on model]

TADEUS
[problem
domain]

MECANO
[Interface model]

[Presentati
on Model]

GENIUS
[Data
model]

10

TRIDENT
[data
model]

UIDE
[applicati
on model]

UI model (after 1995)

AME
FUSE

[problem
domain
model]

MOBI-D
[applicati
on model]

[presentation model]

JANUS
[problem
domain
model]

[user
interface
model]

ITS
Teallach
DRIVE

[applicati
on model]

[interface model]

Markopoulos
approach

“Table 2: Different Models in MBUIDEs”

3.1. Analysis of models

• Domain model and application model were used interchangeably in literature. We believe that
these should be considered as two different models. We will adopt the current definition for
application model but add a domain model that describes the characteristics of the domain for
which the application is developed e.g. accounting, engineering …
• Application model is only referenced in HUMANOID, MASTERMIND, UIDE, MOBI-D, and
DRIVE. DRIVE uses this model to describe non database applications. The definition of
application model in UIDE, HUMANOID and MASTERMIND is similar to the definition of
task model in other tools.
• Most MBUIDEs have task, domain models, and presentation models. Some of them divide the
presentation to concrete and logical and some do not.
• All MBUIDEs use either dialogue or presentation models or both.
• User, implementation, and workplace models are referenced in some of the literature but never
actually applied towards the implementation of the interface.

11

• In recent years, research in MBUIDEs to support universal usability has been adopted by
several companies rather than just academic interest.
• Some MBUIDEs define tools that are not used in any other tools. MECANO has a design
model which provides a collection of design mappings that establish design relationships among
interface objects. MOBI-D is an extension to MECANO that adds task, domain, user, dialogue
and presentation models. TRIDENT has an architectural model that is a hierarchical object-
oriented architecture relying on the use of three kinds of objects: application objects, dialog
objects, and interaction objects. Markopoulos’ model has a scenario model that is used for
envisioning systems at early design stages.
• Different notations are used in the different MBUIDEs. Some MBUIDEs use existing modeling
technique and other tools developed their own notations. Some use textual notation while others
use graphical notations. Also, some MBUIDEs use the same notation for describing all the
models e.g. MOBI-D’s MIMIC. ITS uses style rules. Other tools use other notations or
extensions to other notations like CORBA IDL, CTT, UML, UAN, HIT, ACG, and Petri-nets.
Most MBUIDEs tend to use more than one notation. We believe this better fits the different types
of information included in different models.

3.2. Limitations of current modeling techniques

Automated user-interface generation environments have been criticized for their failure to deliver
rich and powerful interactive applications [62]. The main limitations of today’s model-based
tools are:
• The modeling languages of existing model-based tools suffer from a lack of flexibility. They
are not expressive enough to give developers adequate ways to control all the features of the
interface needed for real applications.
• Most model-based tools are experimental, and thus not tuned for performance.
• Most model-based tools are hard to use, especially when compared with interface builders.
Most model-based tools require models to be specified in a specialized modeling language. Thus
modeling becomes a form of programming, which is not a skill many interface developers have
or wish to learn.
• User models are supported in some UIMs (ADEPT, MECANO, and TADEUS). They are a very
challenging aspect of the UI not well addressed in MBUIDEs. In those MBUIDEs that have a
user model, it appears that the user model can be replaced by design guidelines.
• No standard framework and notation are used in the second generation of MBUIDE
• Editing generated interfaces after the generation process is usually not possibly. The generated
interfaces are rigid and un-editable because they are compiled into the application. There is no
management system to control the specification, creation, and manipulation of the interfaces.
• Mapping between models of different abstract levels represents a common problem in
MBUIDEs.

12

4. Conclusions & Future work

We performed a comprehensive survey for interface generation tools. We analyzed the surveyed
tools to see the extent of their suitability to support universal usability issues and identified
existing limitations.

Most researchers agree that a multi-model tool is required to provide an abstract way to describe
different characteristics of the users and application to which the interfaces are to be developed.

We believe that we need a multi-model conceptual level that uses abstract models to allow the
specification, manipulation, management and configuration of user interfaces. This layer will
separate the interface from underlying applications, users, platforms and devices. We believe that
this architecture will have enough flexibility to solve many of the challenges introduced by
universal interfaces. The work in this paper is part of a research project that aims to introduce a
framework capable of addressing the challenges introduced by universal usability. This
framework will have its architectural basis built upon the conclusions learned from this survey

References

[1] P. Markopoulos, J. Pycock, S. Wilson, and P. Johnson, "Adept - A task based design
environment", In Proceedings of the 25th Hawaii International Conference on System Sciences,
IEEE Computer Society Press, 1992, pp. 587-596.
[2] S. Wilson, and P. Johnson, "Empowering users in a task-based approach to design, Designing
Interactive Systems: Processes, Practices, Methods, & Techniques", In Proceedings of the
conference on Designing interactive systems: processes, practices, methods, & techniques, ACM
Press, New York, 1995, pp. 25-31.
[3] P. Johnson, S. Wilson, P. Markopoulos, J. Pycock, "ADEPT-Advanced Design Environment
for Prototyping with Task Models" , In Proc. of InterCHI'93, Amsterdam, 24-29 April 1993,
ACM Press, New York, pp. 56.
[4] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and P. Markopoulos, “Beyond Hacking: a
Model Based Approach to User Interface Design.” HCI'93, Loughborough, U.K. Cambridge
University Press, 1993, pp. 217-31.
[5] S. Wilson and P. Johnson, "Bridging the Generation Gap: FromWork Tasks to User Interface
Designs", In Computer-Aided Design of User Interfaces, Namur University Press, Namur,
Belgium, 1996, pp. 77-94.
[6] P. Luo, P. Szekely, and R. Neches, "Management of interface design in HUMANOID", In
Proceedings of InterCHI'93, ACM Press, New York , April 1993, pp.107-114.
[7] P. Szekely, P. Luo, and R. Neches, "Facilitating the Exploration of Interface Design
Alternatives: The HUMANOID Model of Interface Design", In Proceedings of SIGCHI'92, ACM
Press, New York, May 1992, pp. 507-515.
[8] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher, "Declarative
Interface Models for User Interface Construction Tools: the MASTERMIND Approach", In

13

Engineering for Human-Computer Interaction, Chapman & Hall, London, UK, 1996, pp. 120-
150.
[9] T. Browne, D. Dávila, S. Rugaber, and K. Stirewalt, Formal Methods in Human-Computer
Interaction, Springer, Verlag, 1997.
[10] E. Schlungbaum, and T. Elwert, "Dialogue Graphs - A Formal and Visual Specification
Technique for Dialogue Modeling", In proc. of the BCS-FACS Workshop on Formal Aspects of
the Human Computer Interface, Springer, London, 1996.
[11] T. Elwert, "Continuous and Explicit Dialogue Modelling", In Proceedings Conference on
Human Factors in Computing Systems, ACM Press, New York, 1996, pp. 265 - 266.
[12] A. Puerta, H. Eriksson, J.H. Gennari, and M.A. Musen, "Model-Based Automated
Generation of User Interfaces", In Proceedings of the National Conference on Artificial
Intelligence, 1994, pp. 471477.
[13] A.R. Puerta, "The Mecano Project: Comprehensive and Integrated Support for Model-Based
Interface Development", In Proc. of the 2nd International Workshop on Computer-Aided Design
of User Interfaces CADUI’96 (Presses Universitaires de Namur, 5-7 June 1996), 1996, pp. 19-36.
[14] C. Janssen, A. Weisbecker, and J. Ziegler, "Generating user interfaces from data models and
dialogue net specifications", In Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM Press, New York, 1993, pp. 418 - 423.
[15] F. Bodart, A.M. Hennebert, J.M. Leheureux, and J. Vanderdonckt, "Computer-Aided
Window Identification in TRIDENT", In Proc. of the 5 IFIP TC13 Conf. on Human Computer
Interaction Interact'95 ,Chapman & Hall, London, 1995, pp. 331-336.
[16] F. Bodart, A.M. Hennebert, J.M. Leheureux, I. Provot, J. Vanderdonckt, and G. Zucchinetti,
Key Activities for a Development Methodology of Interactive Applications , Critical Issues in
User Interface System Engineering, Springer Verlag, Berlin, 1995.
[17] F. Bodart, A.M. Hennebert, J.M. Leheureux, I. Provot, and J. Vanderdonckt, "A Model
Based Approach to Presentation: A Continuum from Task Analysis to Prototype." In proc. of 1st
Eurographics Workshop on Design Specification and Verification of Interactive System (DSVIS
'94), Eurographics, Carrara, Italy, 1994, pp. 25-39.
[18] F. Bodart, J. Vanderdonckt, "On the Problem of Selecting Interaction Objects", In Proc. of
People and Computers IX (HCI`94), Cambridge University Press, Cambridge, 1994, pp. 163-178.
[20] F. Bodart, A.M. Hennebert, J.M. Leheureux, I. Sacre, and J. Vanderdonckt, Architecture
elements for highly-interactive business-oriented applications. Lecture Notes in Computer
Science (volume 753 of LNCS), Springer, Verlag, 1993.
[21] J. Foley, W. Kim, S. Kovacevic, and K. Murray, "Defining Interfaces at a High Level of
Abstraction ", IEEE Software (Vol. 6, No. 1), IEEE, 1989, pp. 25-32.
[22] J. Foley, A van Dam, S. Feiner and J. Hughes, Computer Graphics: Principles and Practice,
Addison-Wesley, 1990.
[23] J. Foley: User Interface Software Tools. Research report GIT-GVU-91-29
[25] J. Foley, C. Gibbs, W. Kim, S. Kovacevic, "A Knowledge-Based User Interface
Management System", In Proceedings of the 1988 Conference on Human Factors in Computer
Systems (CHI'88), ACM, New York, 1988, pp. 67-72.
[26] P. Sukavariya, J.D. Foley, and T. Griffith, "A Second Generation User Interface Design
Environment: The Model and The Runtime Architecture", In Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI '93, ACM Press, Amsterdam, April 1993, pp.
375-382.

14

[27] C. Martin, Software Life Cycle Automation for Interactive Applications: The AME Design
Environment, Computer-Aided Design of User Interfaces, Namur University Press, Namur,
Belgium, 1996.
[28] F. Lonczewski, and S. Schreiber, "The Fuse System: an Integrated User Interface Design
Environment", In Proceedings of 2nd International Workshop on Computer-Aided Design of
User Interfaces CADUI `96, Presses Universitaires de Namur, Namur, 1996, pp. 37-56.
[29] F. Lonczewski, "Providing User Support for Interactive Applications with FUSE", In
Proceedings of the 2nd international conference on Intelligent user interfaces, ACM Press,
Orlando, 1997, pp. 253 - 256.
[30] J. Eisenstein and A. Puerta, "Adaptation in Automated User-Interface Design", In Proc. of
ACM International Conference on Intelligent User Interfaces IUI'2000, ACM Press, New
Orleans, 2000, pp. 74 - 81.
[31] A.R. Puerta, and D. Maulsby, "MOBI-D: A Model-Based Development Environment for
User Centered Design", in proceedings of CHI’97, ACM Press, Atlanta, March 1997, pp. 4-5.
[32] A. Puerta, and J. Eisenstein, "Towards a General Computational Framework for Model-
Based Interface Development", In Proceedings of IUI 1998, ACM Press, San Francisco, 1999,
pp. 171-178.
[33] A.R. Puerta, and D. Maulsby, "Management of interface design knowledge with MOBI-D",
in proc. international conference on intelligent user interfaces, ACM Press, Orlando, 1997, pp.
249-252.
[34] J. Eisenstein, and A. Puerta, "TIMM: Exploring Task-Interface Links in MOBI-D", CHI98
Workshop on From Task to Dialogue: Task-Based User Interface Design, ACM Press, Los
Angeles, April 1998.
[35] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene, "ITS: A Tool for Rapidly
Developing Interactive Applications", ACM Transactions on Information Systems 8, ACM Press,
New York, 1990, pp. 204-236.
[36] F. Paterno, Task Models for Interactive Software Systems in Handbook of Software
Engineering & Knowledge Engineering, World Scientific Publishing Co., 2001.
[37] P. Gray, R. Cooper, J. Kennedy, J. McKirdy, P. Barclay, and T. Griffiths, "A Lightweight
Presentation Model for Database User Interfaces", In Proc. of 4 th ERCIM Int. Workshop on
User Interfaces for All, Stockholm, 19-21 October 1998.
[38] T. Griffiths, P.J. Barclay, J. McKirdy, N.W. Paton, P.D. Gray, J. Kennedy, R. Cooper, C.A.
Goble, A. West, and M. Smyth, "Teallach: A Model-Based User Interface Development
Environment for Object Databases", in Proc. User Interfaces to Data Intensive Systems
(UIDIS99),IEEE Computer Society Publishers, Edinburgh, 5-6 September, 1999, pp. 86-96.
[39] P.J. Barclay, T. Griffiths, J. McKirdy, N.W. Paton, R. Cooper, and J. Kennedy, "The
Teallach Tool: Using Models for Flexible User Interface Design", in pro. 3rd International
Conference on Computer-Aided Design of User Interfaces (CADUI'99), Louvain-la-Neuve
(Belgium), 21-23 October 1999.
[40] P. da Silva, T. Griffiths, N. Paton, "Generating User Interface Code in a Model Based User
Interface Development Environment", in Proceedings of Advanced Visual Interfaces, 2000, pp.
155-160.
[41] P. Barclay, J. Kennedy, "Teallach's Presentation Model", in proc. AVI, Palermo, 23- 26 May
2000, pp. 151-154.

15

[42] T. Griffiths, J. McKirdy, N. Paton, J. Kennedy, R. Cooper, B. Barclay, C. Goble, P. Gray,
M. Smyth, A. West, and A. Dinn, "An Open Model-Based Interface Development System: The
Teallach Approach", in proc. DSV-IS, Eurographics, June 1998, pp. 32-49.
[43] P. Markopoulos, and P. Marijnissen, "UML as a representation for Interaction Designs", in
Proceedings of OZCHI 2000, Academic Press ,Sydney, 2000, pp.240-249.
[44] H. Balzert, "From OOA to GUI - The JANUS-System", in Proceedings of INTERACT'95,
Chapman & Hall, London, June 1995, pp. 319-324.
[45] K. Mitchell, J. Kennedy, and P. Barclay, "Using a Conceptual Data Language to Describe a
Database and it Interface", in Proceedings of British National Conference on Databases 13,
Manchester, 1995, pp. 101-119.
[46] B. Myers et al. Past, Present, and Future of User Interface Software Tools ACM
Transactions on Computer-Human Interaction (TOCHI) 7(2000), no. 1, 3-28.
[47] Abrams, M., Phanouriou, C., Batongbacal, A. Williams, S., and Shuster, J., UIML: An
appliance-independent XML User Interface language, in Proc. Of WWW’8 (Toronto, May 1999)
[48] Mir Farooq Ali, Manuel A. Perez Quinones, Eric Shell, Marc Abrams. Building multi-
platform user interfaces with UIML.
[49] Jeffrey Nichols, Brad Myers, Kevin Litwack, Michal Higgins, Joseph Hughes, Thomas
Harris. Describing Appliance User Interfaces Abstractly with XML.
[50] Angel Puerta and Jacob Eisenstein. XIML: A Common Representation for Interaction Data,
in Proceedings of the 2002 International Conference on Intelligent User Interfaces, January 13-
16, 2002, San Francisco, California, USA. ACM, 2002.
[51] Angel Puerta and Jacob Eisenstein. XIML: A Universal Language for User Interfaces
[52] Xforms 1.0, October 2003, Available at: http://www.w3.org/TR/xforms/.
[53] Anita Huang, Neel Sundaresan. Aurora: A conceptual Model for Web-content Adaptation to
support the Universal Usability of Web-based services, In Proceedings on the 2000 conference
on Universal Usability, Arlington, Virginia, ACM Press, 2000, pp. 124-131
[54] Chris Vandervelpen. Karin Coninx. Towards Model-Based Design Support for Distributed
User Interfaces. NordiChi’ 04. October 2004, Tampere, Finland, ACM.
[55] Giulio Mori, Fabio Paterno, Carmen Santoro. Tool Support for Designing Nomadic
Applications. IUI’03. January 12-15, 2003, Miami, USA. ACM
[56] Jeffrey Nichols, Brad Myers, Thomas Harris, Michal Higgins, Joseph Hughes. Requirements
for Automatically Generating Multi-Modal Interfaces for Complex Appliances, Proceedings of
the 4th IEEE International Conference on Multimodal Interfaces, October 14 - 16, 2002,
Pittsburgh, Pennsylvania , pp. 377, IEEE.
[57] AIAP, www.incits.org/tc_home/v2.htm.
[58] XUL, www.xulplanet.com
[59] AR. PUERTA, A Model-Based Interface Development Environment, IEEE, 97.
[60] AR Puerta, E Cheng, T Ou, J Min. MOBILE: User-Centered Interface Building, Proceedings
of the SIGCHI conference on Human factors in computing systems: the CHI is the limit,
Pittsburgh, Pennsylvania, 1999 pp. 426-433, ACM.
[61] P Szekely, P Sukaviriya, P Castells, J. Declarative interface models for user interface
construction tools: the MASTERMIND approach. Engineering for Human-Computer Interaction,
1996
[62] REK Stirewalt, S Rugaber. The model-composition problem in user-interface generation.
Automated Software Engineering, 2000.

