
A Study in the Analysis, Design and Implementation of
an Air Traffic Control Simulation System Using UML

Scott Johnson, Kristopher Zarns, Ritu Banerjee, Robert Ellingson, Travis
Dazell, Ryan Langseth, and Tyler Mathwich

Department of Computer Science

University of North Dakota
Grand Forks, ND 58202

contact

Dr. Emanuel S. Grant, Ph.D.1
grante@cs.und.edu

701.777.4133

Student Submission

Abstract

In today’s ever-changing world, Software Engineering is a term often used to indicate a
focus on the process of designing software, rather than only the actual writing of code. In
order to attain time and cost constraints, software design teams tend to focus on learning
a process of building software. To simulate this process development, a study was done
on the design and implementation of an Air Traffic Control Simulation System. The
system was modeled in the Unified Modeling Language, with a focus on the design being
platform-independent. The software product was implemented using a combination of
programming languages. In order to complete the project by the required deadline,
several revisions of the design of the project.

1 Portions of this work was partially funded with a grant from the Rockwell-Collins Corporation

 2

1. INTRODUCTION

The Department of Computer Science at the University of North Dakota offers a senior-
level Software Engineering course, designed to teach a structured approach to problem
analysis and software design, analysis, and implementation. The course is designed to
teach the software development lifecycle, through a Model-Driven, Object-Oriented
approach. The course is project-centric, i.e. software engineering topics are presented to
support the development of an Air Traffic Control Simulation system. The goals of the
project were the learning of high-level software development techniques, development of
management skills when supervising/working on software projects, development of
communication skills between members of a team, and the construction of several levels
of documentation to accompany the developed software application. After completing
the required course of study in the course, it is expected that participants would have
developed an understanding of the use of the Unified Modeling Language in defining
system models, the benefits of modeling in software development, the dynamics of
teamwork in software development, and the application of a well-defined methodology in
building software in an object-oriented manner.

This paper is a report of the research accomplished in the aforementioned course.
Following this introduction, the project is described in detail. This includes the
development methodology used to construct the project, as well as insight into what
expectations were in place for the final software. The paper then discusses how the
project was implemented, from a high-level design through the writing of the computer
programming code. Finally, a conclusion summarizing what was learned from this
project, as well as areas for future work.

2. PROJECT DESCRIPTION

The course instructor provided an initial set of requirements for the project. Due to the
ambiguity of the textual specification, some clarification was required. The requirements
focused on a user who was utilizing the program for learning/training or entertainment
purposes. Since the software was an air-traffic control simulation, the user’s actions
would mimic that of an air traffic controller’s, but the system did not have the real-time
requirements usually inherent in software on which human lives depend.

2.1 Problem Definition

The project required the developers to create a program that simulated an Air Traffic
Control system, in which an Air Traffic Controller (ATC) could control planes within a
50-mile radius of the airport. The system graphically represents: the runway, a 50-mile
radius airspace, enter/exit gates into/from the airspace, flights within the airspace and
flights within 10 miles of entering the airspace. The displayed radar itself had to update
every 5 seconds, redrawing flights for their current positions on the screen.

 3

In addition to these requirements, each flight had three constraints: speed, heading, and
altitude, that are used to carry out the ATC’s instructions. The heading constraint was
given in degrees, and represented the current compass direction in which the flight was
moving. Speed was a constraint given in knots, and represented a knot, as defined by the
Merriam-Webster Online Dictionary [2], as a measurement of speed indicating one
nautical mile per hour, which is equivalent to 1.15 miles per hour. Each flight’s altitude
was a measurement of the height of the plane above sea-level, in feet. In addition to
representing these values for each flight, the specifications indicated that the user must be
able to change each of the values for flights within the controlled airspace. The heading
value would be updated immediately, while the altitude and speed values would be
updated over a period of time, effectively simulating the climb or descent of a flight, and
the deceleration or acceleration of the aircraft.

Finally, the specifications called for two types of flights: arrivals and departures.
Arrivals were created with the intent to land on the runway at this airport. The Flight
Logic Sub-system would then remove such flights from the radar screen, after they
landed. Departures, on the other hand, were flights created on the runway, bound for
some other airport as a destination. The flights created as departures were to be under the
control of the ATC until they exited the airspace.

All flights within the airspace were checked routinely for collisions. If two flights
approached within three miles of each other, and the two flights’ altitudes were within
1000 feet, the ATC had to be warned that a collision could occur between those two
flights. If two flights collided, they were to be removed from the screen, and replaced
with a different single icon, representing the collision.

2.2 Development Methodology

Most of the major work that went into the project was in designing the overall system. In
order to design a system, a development methodology was used. A development
methodology prescribed set of activities to be taken in the development of software. It is
referred to as a “development process.”

2.2.1 Classical Development Methodologies

Typically, the process the developers take when designing and constructing a software
system is divided into stages, or phases. Ghezzi, et. al. [1] distinguishes between several
different classical methods for defining these phases. One of the most popular
methodologies is entitled the “Waterfall Model,” [1] in which each successive phase
depends on the completion of the previous phase before work can proceed. Other
methodologies, such as the “Iterative” and “Spiral” methodologies, are also described by
Ghezzi, et. al. [1]. The development for this project conformed to a modified waterfall
model, where the standard methodology was applied in such a manner that from any
given phase work could flow backward to a previous phase, if revisions were required.

 4

2.2.2 Model-Driven Development

Development of a major software product, especially by teams, requires the coordination
of personnel and resources. Object-oriented Design and Programming [3] in software
development focuses on specific structures, or objects, within a system to create a
structured software product. The use of object-oriented design and programming in
software engineering development facilities eases coordination in team development.
Commonly involved in this design process are graphical models, depicting the use of the
system as a whole, as well as how individual parts of the system work together [3].

2.2.3 UML

To model how the system’s components worked together as a whole, the Unified
Modeling Language, or UML [4], was used. The UML is the Object Management
Group’s [4a] standardized notation for the graphical modeling of object-oriented (OO)
software systems and applications. It has evolved into the de facto standard for
modeling notation in OO software development, and has been applied in a number of
areas outside of OO software development. The UML was designed to provide
developers with a clear and concise visual representation of how the inner components of
a particular software product work [4].

2.2.4 Case Tool (Rational Rose)

Representation of the graphical models can be done in a simple drawing program;
however, using a specific software design tool has several advantages over these general-
purpose drawing tools. One of the major advantages of software design tools have is that
once the models have been designed, some programming code can be generated
automatically. In addition to this, some software design tools allow the user to generate
new models from ones they have already been created in the tool.

For the research done in this project, the tool Rational Rose® was used. Rational Rose is
a tool that has become the de-facto standard for diagramming software using the UML.
Rational Rose is a complex development tool, and proved to be difficult to learn. Tools
similar to Rational Rose become essential in software development, once one overcomes
the initial learning curve.

2.3 Project Workplan

The first phase of development involved analyzing the requirements of the project, and
producing a set of analysis-level models. The goal at this phase of the design process
was to identify the users of the system, how these users interacted with the system, and
begin to assess the objects involved in the system, at a high level of abstraction.

 5

Upon completion of the analysis-level models, the development moved into the design
phase, which involved the creation of more complex and descriptive models. In this
phase, the main goal was to take the models derived from the previous stage, and enhance
them to be more descriptive of the system as a whole. This phase also introduced more
in-depth types of models, as well as construction of several necessary system-level
functional algorithms.

After proceeding through the design phase, the work moved into the implementation
phase, where the actual code was written and tested. Modules were constructed by
individual team members then integrated to form the complete system.

Testing followed after completion of the module development. This stage was
augmented in our modified waterfall methodology. There were several instances where
modules worked individually, but did not work with the system as a whole. In such an
instance, the module was re-implemented, which involved reverting to the previous
phases in the software construction cycle.

Finally, the product was delivered. Normally, this phase would correspond to the
delivery and maintenance phase of the software lifecycle, but since the system was a
semester course project, very little maintenance was actually carried out.

2.3.1 Gantt Chart

In this project, teamwork was essential to getting the job done on time. In order to make
sure that the work was clearly managed between the team members, a Gantt Chart [6]
was used. A Gantt Chart is a visual graph depicting each team member, along with the
parts of the project they are expected to accomplish. It was correlated with a time axis, to
demonstrate the successful completion of the phase of the project.

2.3.2 Team Cooperation

The Gantt Chart allowed the team members to break the seemingly massive project into a
series of smaller sub-projects, each of which was handled by a single group member.
Communication among group members was essential, as many of the modules in the
software product were heavily dependant upon each another.

Once a team member had their particular task finished, they may or may not have been
able to move forward with the next task on the chart. If they could not move forward
(due to a prerequisite that may not have been met yet), that team member would assist in
other tasks that were not yet completed.

 6

3. PROJECT IMPLEMENTATION

3.1 Requirements Analysis

Requirements analysis for the project was broken into three parts. First, a document was
provided that listed the initial project requirements. Specifics included items such as the
size of the airspace, the behavior of planes, and some basic information about the user
interface.

The second part of the requirements analysis occurred in the form of a demonstration of
an existing product by an air traffic control expert2. In some areas, the demonstrated
product contradicted the original requirements. This brought about the third and final
stage of the requirements analysis, to clarify and refine the original specifications.

At this point, the development team contacted the contractor of the project, which, in this
case, was the instructor of the course, to clarify ambiguities between the initial textual
requirements and the expert’s demonstration. This aspect of requirements analysis and
refinement continued throughout the remainder of the project. At each stage where some
requirement was found to be ambiguous, the contractor was contacted, and the ambiguity
was clarified.

3.2 Analysis Models

The analysis and design stage of the software development process included three design
sessions. These three phases of the development were the creation of analysis level,
design level, and detailed design level UML models of the system. At each stage in the
design process, the team discussed the models developed, problems encountered, and
solutions that were implemented in response to the problems. The team also discussed
any significant events or activities that were experienced during this stage of the software
development process.

3.2.1 Analysis Level Diagrams

The first set of models developed were the analysis level models, which included a use
case diagram and an analysis level class diagram. The goals at this stage in the design
process were identification of the users of the system, determination of how these users
interacted with the system as a whole, and assessment of the system’s classes and
attributes.

The first model developed was the use case diagram. The purpose of this model was to
identify the users of the system and the functionalities that the system would provide for
these users. Typically, a use case diagram is composed mainly of actors, which represent

2 We thank Harsh Mathur of the UND Aviation Department who provided us with invaluable assistance.

 7

DepartArri ve

Exi t Entry

Heavy
weight : Integer

Small
weight : Integer

Light
weight : Integer

HoldingPattern
altitude : Integer
location : String

Ai rgate

name : String

FlightPlan
origin : String
destination : String
altitude : Integer
speed : Integer
arrivalTime : Date
depTime : Date
distance : Double
heading : Integer
duration : Date

GroundGate
gateNo : String
availability : Boolean

Airport
id : String
city : String
timeZone : Double
distanceScale : Integer

0..*

1..*

0..*

1..*

1..*

1

1..*

1

ATC
id : String
name : String

request_clearance()
depart_AC()

Runway
id : String
length : Double
availability : Boolean
last_tookoff_time : Date
ils : Boolean

1..*
1

1..*
1

Airspace
id : String
radius : Integer

2..*

0..*

2..*

0..*
Flight

id : String
cargo : String
clearance : Boolean
status : String
priority : Integer

create_FP()

1

0..*

1

+arrivalFlight

0..*

1

0..*

1

+depFlight

0..*

0..1
0..*

0..1
0..*

11 110..1 0..*0..1 0..*

ATC Tower
operationHours : String

1 11 1

1

0..*

1

0..*

1
1

1
1

Aircraft
id : String
altitude : Integer
description : String
fuel : Integer
heading : Integer
ils : Boolean
pilot : String
speed : Integer
type : String

1

0..*

1

0..*

controls

0..1

0..1

0..1

0..1

last_tookoff_aircraft

0..*

1

0..*

1

0..*

0..1

0..*

0..1

CollisionAvoidance
Distance : Integer
CAalert : Boolean
LAalert : Boolean

0..*

1

0..*

1

2..*

0..*

2..*

0..*

the users of the system, depicted by stick figures, and use cases, which represent tasks
that the system can perform on behalf of the user, represented by bubbles enclosing a
service name. An example of the use case diagram developed is provided in Figure 1.

The team learned the importance of and the contribution to the understanding of the
overall functionality of the software system developing the use case diagram provided.
Initially, the team struggled with the development of the analysis level diagrams, and had
to seek outside resources for information and tutorials on proper use case construction.
The www.objectmentor.com website provided tutorials on UML design [7] that proved to
be very helpful. The author included a walkthrough on developing proper use case
diagrams, which aided in the modeling at the analysis level. The most prevalent mistake
made was incorporating flow of events into the use case diagram, which is illustrated in
later diagrams. The analysis models also included an analysis-level class diagram, an
example is illustrated in Figure 2. This diagram illustrates the static objects in the
software system, and their relationships. At the analysis level, the classes, their
attributes, and relationships between the classes were defined.

Figure 1: Example of a Use Case Diagram

Figure 2: Example of an Analysis Level Class Diagram

 8

The most challenging aspect of developing the class diagrams was enforcing the software
engineering principle of “separation of concern” [1]. It's natural to design the class
diagram with a particular programming language in mind. Introducing language specific
concepts early in the design process is a mistake that can lead to problems later in the
process. By separating each step of the design process, the team was able to concentrate
on the task at hand and not be influenced by future design issues.

3.3 Design Level Diagrams

The second set of deliverables in the project design was the design level diagrams, which
included use cases, a design level class diagram, a static dictionary, and activity
diagrams. At this stage of the design process, the details of the static elements are
defined and activity diagrams were introduced into our set of UML models.

In the first step of the design phase, the descriptions for each of the use cases in the use
case diagram were specified. Each use case included details such as generalizations,
specializations, and descriptions. Through the construction of the use cases, the purpose
and relationships of our system services became clearer.

A static element dictionary was compiled to provide a clear and concise definition of
each of the classes. Writing the dictionary turned out to be more of a challenge than was
first imagined. This was due to doubts regarding the importance of a static element
dictionary. Most of what was defined was obvious, so there was the need to “step out of
the box” to realize the need for a well-built dictionary.

The last portion of the second set of deliverables was the construction of UML activity
diagrams. For help in designing these diagrams, Martin and Newkirk's “Walking
Through a UML Design” was consulted [8]. This helped in relating the activity diagrams
to the existing set of UML models. A considerable amount of went into defining activity
diagrams, which showed the sequence of events that needed to take place for each use
case. It was surprising what was learned about the system during the development of the
activity diagrams. Questions arose that had never been considered and a better
understanding of the activities and events within the system was gained.

3.4 Detailed Design Level Diagrams

For the third set of project deliverables, a dynamic element dictionary was compiled,
UML sequence diagrams were created, and the initial class diagrams were revised. The
biggest challenge faced at this level was the anticipation of beginning the implementation
phase.

A dynamic element dictionary was easily built, partially because of the team’s previous
experience with the static dictionary. While the static dictionary provided

 9

definitions of the static concepts in the system, the dynamic element dictionary described
the operations and events that exist in the system. This dictionary may prove to be useful
for future reference in maintaining and modifying the system.

In addition to activity diagrams, which provide a flowchart-like description of use cases,
sequence diagrams were constructed to illustrate the order of operations with respect to
time. The sequence diagrams also show the interaction between objects in the system.
This proved to be a useful tool for realization of the purpose and importance of class
operations. An example of a UML sequence diagram is shown in Figure 3.

After constructing the sequence diagrams, operations were added to the existing class
diagrams. This eased the perception of some of the dynamic elements that would exist in
our system. Simple get and set operations for each of the class attributes were the first
operations defined. Later, more system-specific operations were added to each class.
New attributes were also added that were left out of the initial class diagrams. It was
realized that these were necessary attributes as the class operations were developed.

3.5 Implementation

3.5.1 Classes

The software system was developed on the Debian Linux operating system, and the
source code was implemented using C++ and the GNU g++ compiler. Loudon's “C++
Pocket Reference” was used to address any C++ questions [9]. The header and source
files were separated from the rest of the system application code to ensure modularity.
The manner in which the class module was constructed facilitated it being used by any
outside module that has reference to the header files.

Figure 3: Example of a Sequence Diagram

 10

The container attributes were implemented using vector objects in STL [11]. This
allowed the addition and removal of objects when needed. An example of where this is
implemented is in the airspace object, which contains airplanes. As airplanes need to be
added or removed from the airspace, the vector allows the dynamic allocation of space.
To allow outside modules to interact with the class modules, operations were included to
return pointers to objects within the vector.

The class diagram proved successful when it came to coupling the classes. The work of
writing the classes was divided between two project members. After each class was
written, they were put together to complete the associations between classes. By
following the plan outlined in the class diagram, it is possible to know exactly how all of
the classes would be written and how they would depend upon each other. This made the
class construction a much easier task than it would have been without a model to follow.

3.5.2 XML

For graduate credit, additional features were added to the initial requirements for the
system, which included save and load functionalities for creating customized airports.
The data was written out to an XML file and later retrieved and parsed to restore the
saved configuration. A portion of a sample XML scenario file is illustrated in Figure 4.

The save and load functionalities were built into a separate module without consideration
of any front-end interface, based on the principle of “separation of concern.” This makes
the module more flexible and modular. After writing the source code to save and load
airspace information via an XML file, the module was tested to ensure that all created
files were valid XML format, and that the data for loading an airspace would be retrieved
successfully.

3.5.3 GUI

The front-end graphical user interface was written in C/C++ using the OpenGL libraries
and GLUT, user interface construction tool associated with OpenGL. A prototype GUI
was built before the class modules were compiled and ready to be utilized. This provided
an indication of what to expect from the final product and gave a head start on the
production.

<runways num='4'>
<runway>

<runwayID>0</runwayID>
<heading>92</heading>

 <length>0</length>
 <x>180</x>
 <y>275</y>
 </runway>

</runways> Figure 4. A section of an XML scenario file

 11

The graphics intense nature of the system combined with the event-driven environment
made for a challenging undertaking. The interface consists of a main viewport which
displays the airspace. Displayed in the airspace are the entrance and exit gates, runways,
and aircraft. To create an arriving aircraft, the user simply right-clicks outside of the
airspace boundary. The plane will then enter the aircraft through the nearest entrance
gate. By right clicking on a runway, a departing aircraft will be created. The user can then
guide the aircraft to the desired exit gate. To change a plane's flight pattern, the user
clicks on the plane and enter an altitude, speed, and heading, pressing the ENTER key
after each entry. The values entered are displayed in text boxes for the user to see.

In addition to the main viewport, there is a sub-window with buttons that provide the user
with additional functionalities. There is a button for optionally displaying circular
distance markers at five or ten mile intervals to make it easier to see how far planes are
from the center of the airspace. A pause button is included to allow the user to pause the
simulator, as well as an exit button to close the program. There are also two buttons, to
load and save a scenario respectively.

There is a separate GUI that the user can utilize to create a customized airport. This GUI
consists of buttons for displaying concentric circles at five or ten mile intervals, loading a
saved airport, saving a created airport, and exiting the utility. There are also buttons
available to add runways and gates.

To add a runway to the airspace, the user simply clicks on the “Add Runway” button and
then clicks twice on the screen. The first click places the runway on the screen and the
second click positions the runway in the direction of the mouse click. Gates can be added
to the airspace by clicking on the “Add Gate” button and then clicking on the airspace to
place the gate. Clicking inside the airspace boundary will place an entrance gate, while
clicking outside the runway will place an exit gate.

Once the airspace is built, the user can click on the “Save” button, type 'save', and hit the
ENTER key. This will save the newly created airport into a save.xml file. To load this
airport, the user can then open the simulator, click the “Load” button, type 'save', and hit
ENTER. This will load the scenario from the save.xml file and display the airport to the
user. At any time during the simulation, the user can pause the game and save it. This will
save the current positions and settings of all aircraft in the airspace. By loading the file,
the user can resume the scenario.

3.4.1 Coding

Coding was performed in a modular fashion. The project was broken down into several
modules with each module being developed independently. Modules included: data
structures, simulation aspects, xml features, and graphical user interface. After
completion, modules were tested individually. First the data structures and simulation
aspects were integrated into a simulation system. Following that, the simulation was

 12

combined with the interface to allow for further testing. Finally the XML portion was
integrated into the system to allow further testing by running various scenarios.

3.5 Testing

The initial testing occurred at the module level. These were white box tests of the
modules to check for basic functionality. Each coder was responsible for making sure his
module was usable prior to providing it for integration. Further testing occurred at the
user level with black box testing as soon as the simulator was integrated with the GUI.
This helped to reveal ways in which the GUI was improperly implementing the simulator
and problems internal to the simulator. At this point testing for usability, Stress/load, and
robustness occurred. Usability tested for two things; whether the user was able to interact
with the simulation as stated in the requirements document, and if the system would run
properly independent of the development platform. The latter provided valuable
information to the GUI developer. This pointed out problems like varying screen
resolutions, the usability of the color scheme, and problems with the sound system
causing the system to lag. The stress/load tests were performed by running the system in
a multitasking environment, testing it on various computers with different hardware
specifications, finally testing the responsiveness in worst case scenarios. The reliability
testing focused on whether the system would remain stable when the user entered bad
input. For example, if invalid values were entered for the speed of a plane; would the
plane be destroyed, would the plane be updated to the invalid speed, would it continue
with its current speed, or would the system crash.

4. CONCLUSION

The development of the course project gave us hands-on experience in both software
engineering and programming. We were able to apply the principles and techniques
learned in the classroom to an actual real world application. Given the short time frame
for developing the project, it would have been extremely difficult to finish the assignment
without developing system models. By implementing the software engineering process,
we were able to understand our system much easier and have a plan for the
implementation. We feel that the project was very beneficial in helping us tie the
classroom education to the development of a software application.

4.1 Benefits of Modeling

Throughout the development process, it was determined that the software development
would have been much harder using the “think-code-test” procedure normally used by
freshman and sophomore Computer Science students. Modeling the software system
allowed the team to conceptualize it before implementation. In addition, it was possible
to make assumptions about the software, effectively allowing the developers to

 13

rationalize about the system. This created fewer problems, as more problems were
discovered (and thus solved) before the actual implementation.

Modeling the software project also allows the work to be split up into logical modules.
These modules are separate entities, so it was easier to assign particular modules to be
implemented by individual team members.

4.3 Future Work

Unlike most engineering disciplines, when a software product is delivered to the end-
user, this work is not finished. Part of the software lifecycle is to maintain and update the
software product, even after it is released. Some future work could be done to detect and
correct errors that may be present with the software product.

Additionally, modifications to the software could be done to implement features not in
the first version. This supports the software engineering principle of “evolvability” [1].
Such features would be highly dependant on user input, and original models would need
to be modified before the changes were implemented in the software code.

REFERENCES

1. Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli .Fundamentals of Software
Engineering, Prentice Hall 2003.

2. http://www.webster.com/cgi-bin/dictionary
3. H. M. Deitel & P. J. Deitel. C++: How to program, 4/e, Deitel 2003.
4. http://www.omg.org
4a http://www.omg.org/UML
5. Dan Pilone. UML: Pocket Reference, O'Reilly 2003.
6. http://www.ganttchart.com/
7. http://www.objectmentor.com
8. Robert Martin & James Newkirk. Walking through a UML Design,

http://www.objectmentor.com/publications/Walking through A UML Design.pdf
1998.

9. Kyle Loundon. C++ Pocket Reference, O'Reilly 2003.

