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Abstract 
 

In order to be able to perform content based equality comparisons of Java/C# objects, 
programmers usually override the equals()/Equals() method defined in the Object 
class. Langer&Kreft [3] [4] showed that the ability of correctly comparing objects of 
different types requires that equals()/Equals() satisfies the reflexivity, symmetry and 
transitivity properties. They provide a sound and consistent equality check for Java class 
hierarchies, which requires each class to implement a recursive navigation method called, 
_navigateClassHierarchy that performs the non-trivial task of navigating up and down 
the inheritance tree in order to make sure that objects on different levels or even on 
different branches of the inheritance tree are compared correctly. In this paper, we show 
how, by using reflection and late-binding, one can develop a navigation method that is 
general, and totally independent, of any particular class. The implementation is provided 
in C#. NET, but a Java implementation is equally conceivable. 
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1 Introduction 
 
C# programmers learn that whenever they define a new class, there are three things to be 
taken care of: override the ToString() method, override the Equals() method, and 
override the GetHashCode() method. All three methods are provided a default 
implementation at the very top level of the object hierarchy, in the definition of the 
Object class. In most cases, this is not what we need for our applications, hence the need 
to implement the overrides. Overriding ToString() is easy, and almost everybody seems 
to be comfortable with this task. Nobody seems to really know what to do with 
GetHashCode() and why it needs to be overridden. This is a long story and there are 
some good articles (most of them in the Java literature where the problems are very 
similar) dealing both with the reasons of implementing GetHashCode() and with various 
ways of doing it [2]. With Equals(), things seem to be simple and straightforward, but 
they are not. Most programmers tend to consider the implementation of Equals() a 
trivial task, overlooking many of the subtle issues that are involved. This results in 
incorrect implementations of the equality comparisons with hard to predict implications 
over the code using them. Errors caused by faulty implementations of Equals() may 
have profound implications and are difficult to trace and fix. Object equality comparison 
is such a basic operation, and it is used in so many places (e.g. collections management), 
that it is no surprise how much damage it can cause if not correctly implemented. 
 
The problem with equality comparisons on objects has been identified for sometime and 
there are many articles dealing with it in various contexts and various ways [1][3][4][6].  
These mostly end up providing recommendations of how to implement the equality test 
in some given limited contexts, rather then giving a comprehensive and “correct” solution. 
The ultimate solution, if there is one, is still not available. In our paper, we deal with the 
equality comparison problem in a more extended context, that is, under the assumption 
that objects of different classes in the same hierarchy can and should be compared for 
equality, providing meaningful and consistent results. Mixed type comparisons of objects 
have been dealt with by Langer&Kreft in [3] and [4], where they provide a correct Java 
solution to the problem. Their solution requires that each class joining the hierarchy of 
comparable objects implements two methods. The first one is called 
_compareFields(Object other), and solves the specific task of comparing the fields 
of this object against the other object given as parameter. The second one is a recursive 
navigation method, which they called _navigateClassHierarchy that performs the 
non-trivial task of navigating up and down the inheritance tree in order to make sure that 
objects on different levels or even on different branches of the inheritance tree are 
compared correctly. Technical constraints, like using the current class name and invoking 
the parent class, forced the implementation of the navigation method in each class of the 
hierarchy to be done in a more or less specific way. However, from a conceptual point of 
view, the navigation method has nothing to do with any particular class. Furthermore, the 
burden of implementing the navigation method each time one wants to add a new class to 
the hierarchy makes this approach less appealing in practice. 
 
We will show how, by using reflection and late-binding, one can develop a navigation 
method that is general and totally independent of any particular class. Thus, one can 
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factor out the navigation method from the classes in the hierarchy and implement it only 
in the root class of the hierarchy. All classes will inherit and use this method without any 
change. The implementation is provided in C#. NET, but a Java implementation is 
equally conceivable. 
 
The remainder of this paper is organized as follows: in section 2, we introduce the equals 
contract, which specifies the correctness criteria for all implementations of equality 
comparisons, and deal with the pitfalls of those implementations that ignore this contract. 
In section 3, we bring arguments that mixed typed comparisons are unavoidable and we 
also give a proper semantics for such kind of comparisons. Section 4 provides the details 
of implementing mixed type comparisons in a class independent way. The key techniques 
for developing a general navigation method are reflection and late binding. Section 5 
contains conclusions and some ideas of further developments. 
 
 
2 The “equals” Problem 
 
All .NET classes inherit the Equals() method from class Object in order to enable them 
to perform equality tests. In its default implementation, Equals() tests for object identity 
and is similar to the == operator. For this reason, it is common for new classes to override 
Equals() in order to provide meaningful and correct semantics to object comparisons, 
usually based on the values of data members in the compared objects. The minimal 
requirements users have to satisfy when overriding Equals() are specified in what is 
known both in the Java and .NET documentations as the equals contract. 
 
 
2.1 The Equals Contract 
 
The equals methods we are expected to implement are supposed to behave like any 
equivalence relation among the objects we compare. First of all this means that Equals() 
should be: 
 1) Reflexive: i.e. x.Equals(x) returns true. 
 2) Symmetric: i.e. x.Equals(y) returns the same value as y.Equals(x). 
 3) Transitive: i.e. (x.Equals(y) && y.Equals(z)) returns true if and only if 
 x.Equals(z) returns true. 
 
In addition to these, the equals contract specifies that successive calls of x.Equals(y) 
return the same value as long as the objects referenced by x and y are not modified, and 
x.Equals(null) always returns false. 
 
The main point of the equals contract is that programmers are free to implement their 
concept of equality in any way they want, as long as the above rules are satisfied for the 
entire set of objects on which the equality test may be applied. Failure to comply with 
any of the rules produces incorrect implementations of Equals(), no matter how “correct” 
they may seem, and results in subtle bugs which are hard to fix. 
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2.2 Pitfalls in Implementing Equals() 
 
In spite of most expectations and in spite of the apparent simplicity of the rules in the 
equals contract, providing correct implementations of Equals() is far from simple. This 
has caused quite a bit of disagreement in the programming community and, triggered a 
fair amount of debate.[1][3][4][6] 
 
Everything is fine and looks simple as long as we deal with objects that belong to the 
same class. Take for example the sample code in Figure 1. The code is straightforward 
and one can check that it correctly compares objects of class A. For simplicity and sake 
of generality, we packaged the work of comparing the specific fields of A objects into the  
CompareFields() method.  

The first problems with the above approach show up in the presence of inheritance. Let 
us assume that class B extends class A and implements its own override for Equals().  
A very common way of doing this is illustrated by the code in Figure 2. 

The Equals() method in class B makes a call to the Equals() method from its base class: 
 
 if(!base.Equals(other)) return false; 

 

public class A 
{ 
 //field definitions 
 bool CompareFields(Object other) 
 { 
  //code to compare specific fields 
 } 
 public override bool Equals(Object other) 
 { 
  if(other==this) return true; //same object 
  if(other==null) return false; //nothing equals null 
  if(!(other is A)) return false; //incompatible types 
  return CompareFields(other); //compare the fields 
 } 
} 

Figure 1: Implementation of Equals() in simple class A 

public class B:A 
{ 
 //field definitions 
 bool CompareFields(Object other) 
 { 
  //code to compare specific fields 
 } 
 public override bool Equals(Object other) 
 { 
  if(!(other is B)) return false;   //incompatible types 
  if(!base.Equals(other)) return false;  //compare base class 
  return CompareFields(other);   //compare the fields 
 } 
} 

Figure 2: Implementation of Equals() in inherited class B 
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thus making sure that all its fields, including those inherited from class A, are properly 
tested. Testing for object identity and null reference are no longer needed here since these 
are going to be done by the base class method. After comparing its inherited fields, the 
method terminates by a call to its own CompareFields() method. 
 
Although it may seem right, the above implementation of Equals() in class B is 
incorrect. Indeed, if a is an instance of class A and b is an instance of class B having all 
common fields set to similar values, then the expression a.Equals(b)evaluates to true, 
while b.Equals(a) evaluates to false. This means that the symmetry rule of the equals 
contract is violated. The reason is that, in the first case we are using the Equals() from 
class A, which succeeds because object b is an instance of its base class A. This is called 
a slice comparison, since only the slice of object b that is inherited from class A gets 
compared. Obviously, the second test will always fail because object a in not an instance 
of class A. In the first case, we compared objects a and b as class A instances and 
succeeded, while in the second case we attempted to compare them as class B instances, 
which is always supposed to fail. 
 
In order to fix this problem, let us agree to compare objects as class A objects whenever 
one of them is an instance of class A. For this we only need to add an additional test as 
the first line of Equals() in class B: 
 
if(other is A) return other.Equals(this); //test after reversing operands 
 
that is, if other is an instance of class A, then call Equals() for that class such that the 
objects are compared as instances of class A, thus ignoring fields defined in class B. With 
this adjustment, now both expressions b.Equals(a) and a.Equals(b) evaluate to true. 
 
With this last modification our implementation of Equals() is symmetric, but is still 
incorrect. As we already mentioned, the equals contract is not easy to comply with and, 
as we are going to show, our implementation still violates the transitivity rule. To 
illustrate this let us take three objects a, b1 and b2 with the following properties: 
 

- a is an instance of class A; 
- b1 and b2 are instances of class B; 
- a, b1 and b2 have the same values for their common fields (fields of class A); 
- there is at least one field defined in class B for which b1 and b2 have different values. 

 
Based on the above properties, it’s easy to see that object b1 and b2 are not equal, and the 
expression b1.Equals(b2) will correctly evaluate to false. On the other hand, the 
expressions b1.Equals(a) and a.Equals(b2) both evaluate to true, and by transitivity 
we should have b1.Equals(b2) evaluate to true as if objects b1 and b2 would be equal, 
which contradicts our previous assertion. 
 
The point of all this discussion is that after several fixes, we still do not have a correct 
implementation of Equals(). Fixing the transitivity problem is not easy, and it involves 
trade-offs on which there is still much disagreement in the programmers’ community. In 
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fact, let us observe that even our solution for the symmetry problem is incomplete. It 
works, indeed, if one of the objects is the ancestor of the other one, but what if they are 
instances of classes located on different branches of the class hierarchy? 
 
 
3 Mixed Type Comparisons 
 
All the problems illustrated in section 2.1 would disappear if we eliminate the possibility 
of comparing objects of type A with objects of type B that is, if we forbid mixed type 
comparisons. By allowing equality comparisons only between objects that are precisely 
of the same type, both the symmetry and transitivity problems disappear, and it becomes 
relatively easy to provide correct implementations of Equals(). The changes in code are 
straightforward, since all we have to do is to replace the tests involving the is operator 
by a much stricter test using the GetType() method. For example, in class A the line: 
 
 if(!(other is A)) return false; //incompatible types 
 

would be replaced by: 
 
if(other.GetType()!=GetType()) return false; //if not the same type then fail 
 

With this kind of modification in Equals(), attempts of comparing objects of different 
types will systematically fail, and one can check that this provides a sound and consistent 
behavior of Equals(), which, as such, is correct by the terms of the equals contract. 
 
 
3.1 Mixed Type Comparisons Should be the Norm 
 
Most of the articles about equality comparisons end up with the above mentioned easy 
way approach of disallowing mixed type comparisons in order to avoid the conceptual 
problems that come with the development of a more general, yet correct, implementation 
of Equals(). Mixed type comparisons would be permitted only in some particular cases, 
while alternative approaches are proposed for some other situations. All these end up in a 
mixture of partial or limited solutions, and/or sets of recommendations of when and how 
to implement equality tests in various circumstances. This is far from any useful and 
comprehensive solution of the problem at hand. 
 
In [4] Langer&Kreft bring a first argument in favor of allowing mixed type comparisons, 
at least in some selected cases when the semantics of the application requires that. They 
still consider same type comparisons as the recommended way of implementing equality 
tests, and advocate for the use of mixed typed comparisons only when needed. The 
decision of which way to compare objects would be based on the semantics of the classes 
they instantiate. According to their examples, it makes sense to use mixed type 
comparison in a hierarchy where Student and Employee are subclasses of Person, since 
it would allow comparing a student to an employee to see if they are the same person. 
On the other hand, it would make little or no sense to compare an apple to a pear in a 
hierarchy in which Apple and Pear are subclasses of Fruit. 
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Clearly, one cannot ignore or totally avoid mixed type comparisons: this is far too 
limiting. On the other hand, using one or other type of comparability (same type or mixed 
type) based on circumstances like the semantics of the class or class hierarchy in an 
application, seems to be causing more problems than it is solving. On what basis would 
someone decide what kind of comparability to use for a given application or a given set 
of classes? Could this change over the development stages of the application? Could we 
use both kinds of comparability types in the same application? If, yes how would these 
interact or coexist? 
 
Given these complications, why wouldn’t we go beyond the hesitant position of using 
both same type and mixed type comparisons? If we adopt mixed typed comparisons as 
the norm, same type comparisons would be just a particular case of it, and the entire issue 
of object comparisons suddenly gets simplified. In fact, it becomes a purely technical 
problem of if and how it can be done right. The semantic argument is always debatable 
and not very productive in this case. After all, why would not we compare apples and 
pears, lets say in terms of the amount of vitamins brought into our body when consumed? 
 
In the rest of our paper, we show that the idea of considering mixed type comparisons as 
the norm is realistic and can be technically supported in a way that is acceptable for 
programmers. Before this, we need to understand what it means to compare objects of 
different types, that is, we need to understand the semantics of mixed type comparisons. 
 
 
3.2 Semantics of Mixed Type Comparisons 
 
In section 2.2, we have seen that by comparing objects of different types, we ran into 
conflict with the equals contract by violating the symmetry and/or transitivity rules. Is 
there a meaningful way of doing such comparisons that would also comply with the 
equals contract? The answer is yes. We only need to carefully observe the rules of the 
equals contract in order to find out how. 
 
First, let us observe that a necessary condition for two objects to be equal is to have all 
their common fields equal. Second, the transitivity rule is violated if we repeatedly 
compare objects of different classes by ignoring their subclass specific fields. In the 
example of section 2.2, we compared object b1 with a and object a with b2 by testing 
only the common fields in these objects, and ignoring the possible differences between 
b1 and b2 coming from fields defined in class B. This caused the violation of the 
transitivity rule. 
 
The problem can be solved if we add the additional requirement that subclass objects 
have default values for all non-common fields. That is, in order to have object b equal 
with object a, they must have equal values for their common fields and object b must 
have default values for all other fields. These default values are the same for all objects 
of a given class. So, if b1.Equals(a) and a.Equals(b2) are true that means b1 and 
b2 have the same values not only for their fields which are common with object a, but 
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they also have the same default values for the rest of their fields, which means that 
b1.Equals(b2) is true, and thus transitivity of Equals() holds. 
 
To summarize, the semantics of mixed type comparison can be formulated as follows: 
 
 Two objects compare equal if and only if: 

1) They have equal values for all their common fields; 
2) Default values for all other fields. 

 
This semantics is consistent with the equals contract and uniformly applies on all objects 
of a class hierarchy. For example, given two objects on different branches of the class 
hierarchy, like student and employee, we would have equality if they have equal values 
for all their Person fields and default values for whatever fields are defined in the 
Student and Employee classes. As a special case, two objects with all their fields set to 
their default values will be equal even if they have no fields in common, that is they have 
totally different descriptions. This result may seem quite counterintuitive, but is perfectly 
consistent with the equals contract. Semantically, this may be interpreted like “if two 
objects contain no relevant information (i.e. all defaults) then they are the same”. 
 
 
4 Implementing Mixed Type Comparisons 
 
Based on the semantics defined above, Langer&Kreft[4] propose an approach that allows 
mixed type comparisons of objects in a well-defined class hierarchy. Their solution relies 
on two methods each class in the hierarchy is required to implement: a method for 
comparing fields, and a navigation method that makes sure that objects on different levels 
or even on different branches of the inheritance tree are compared correctly. They 
provide a Java implementation of the entire solution, which turns out to be compliant 
with the equals contract. Briefly, their approach can be characterized as follows: 
 
 - there is a class called RootClass on top of the hierarchy allowing mixed type 
comparisons, which contains a unique implementation of the equality comparison 
(equals() in Java). No other class implements the equals() method, all classes in the 
hierarchy inherit this method without any change. 
 
 - each class implements a method to compare its fields with the fields of an object 
given as parameter. This is a class specific method, since each class is responsible for 
correctly comparing the fields it defines. 
 
 - each class implements its own navigation method. This is a recursive method 
containing calls to the navigation methods of other classes in the hierarchy as well as 
calls to the fields comparing methods. 
 
One can observe the trade-off Langer&Kreft propose in their approach. User classes are 
no longer required to implement the challenging equality comparison method. This is 
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implemented in the RootClass. Instead, classes joining the hierarchy are required to 
implement the fields comparing method and the navigation method. 
 
The field comparing method is class specific, and its implementation in each class is a 
natural requirement. 
 
The situation is different with the navigation method. Its implementation is not 
straightforward and can be almost as difficult as implementing the equality comparisons. 
Even if Langer&Kreft provide sample implementations of this method, understanding the 
mechanics of how everything works is quite a challenging task. This is hardly something 
that any user would like to deal with whenever defining a new class. Unfortunately, this 
makes the proposed solution quite unappealing, if not impossible to use in practice. 
 
Given the difficulties to deal with the navigation method, we propose a new and more 
general solution which would be more practical from the users’ point of view. The 
general layout of our approach follows the one proposed by Langer&Kreft, except that 
we provide a generalized and class independent implementation of the navigation method. 
We achieve this by using reflection and late binding techniques. Our implementation is in 
C#, but it can be easily translated to Java as well. The result is that the navigation method 
can be factored out to the top of the hierarchy, i.e. the RootClass. There will be only one 
implementation of this method, and it will be inherited by all classes. Consequently, the 
trade-off for the user classes is a much more practical one:  a new class joining the 
hierarchy is required to implement only the CompareFields() method. Both Equals() 
and the navigation method are implemented in the RootClass. 
 
 
4.1 Implementation of Equals() 
 
For a given hierarchy of classes that allows mixed typed comparisons, there is one single 
implementation of the Equals() method, and that is located in the RootClass. Figure 3 
shows the implementation of Equals() in the RootClass. 

The code is quite straightforward and class independent in spite of the fact that it may be 
called from each class in the hierarchy. After a couple of routine tests included for the 
sake of efficiency, the call is made to the navigation method, called 
NavigateClassHierarchy() which will be explained in section 4.3. 

public class RootClass 
{ 
   public override bool Equals(Object other)  
   {  
 if (other == this) return true;  //same object  
 if (other == null) return false;  //nothing equals null 
 if (!(other is Root)) return false; //incompatible types  
 return NavigateClassHierarchy(this.GetType(),(RootClass)other,true);  
   } 
} 

Figure 3: Implementation of Equals() in the RootClass 
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4.2 Implementation of the CompareFields() Method 
 
The CompareFields() method is class specific and it is the only one that needs to be 
implemented in each class. This method is the materialization of the mixed type 
comparison semantics as presented in section 3.2 for the slice of fields defined in the 
current class. Basically, this method compares the fields defined in the current class with 
the corresponding fields of the object, called other, given as parameter. This is possible 
only when the currently defined fields are common with other, which means that other 
needs to be an instance of this class or of one of its subclasses. When this is not the case, 
one would check that the currently defined fields are set to their default values. A sample 
implementation of the CompareFields() method for a class called MySubClass 
extending class MyClass defining two fields, field1 and field2 is shown in Figure 4.  

 
Note how simple and straightforward the structure of this method is. All versions of 
CompareFields() would follow the above pattern; the only variations consist in the 
names and number of fields defined in the current class. 
 
 
4.3 The Navigation Method 
 
Since both Equals() and CompareFields() turn out to be fairly simple, one can expect 
that most of the functionality involved in the mixed type comparison operations is 

public class MySubClass:MyClass 
{ 
   const int field1default=0; 
   const int field2default=0; 
 
   private int field1=field1default; 
   private int field2=field2default; 
 
   public new bool CompareFields(Object other)  
   {  
 if(other is MySubClass) //check fields if other is at least type of this 
  { 
   if(field1!=((MySubClass)other).field1 
    ||field2!=((MySubClass)other).field2) 
    return false; 
  } 
  else //check defaults otherwise 
  { 
   if(field1!=field1default 
    ||field2!=field2default) 
    return false; 
  } 
  return true;  
   } 
. . . 
} 

Figure 4: Sample Implementation of the CompareFields() Method 
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concentrated in the NavigateClassHierarchy() method. As its name may suggest, this 
method will navigate the inheritance tree in order to check all fields of the compared 
objects. Indeed, all versions of the CompareFields() method perform strictly local 
operations that involve only the fields defined by the current class. In order to have the 
inherited fields compared as well, one will need to perform some kind of navigation 
across the inheritance tree in order to call the adequate version of the CompareFields() 
method. This is exactly the task of the NavigateClassHierarchy() method. In order to 
understand how this method works, let us take as an example the sample hierarchy 
depicted in Figure 5. 

The sample class hierarchy is composed of the RootClass on top of the hierarchy and 
classes: ClassA, ClassB, ClassC and ClassD as depicted in the Figure. For simplicity, let 
us assume that each class defines exactly one field of its own: FieldRoot is defined by 
the RootClass, ClassA defines FieldA and so on. As a result, an object b, instance of 
ClassB, will have 3 fields: FieldRoot and FieldA as inherited from RootClass and 
ClassA and, FieldB defined in ClassB. Similarly, an object d instance of ClassD, will 
have fields: FieldRoot, FieldA, FieldC and FieldD. 
 
Based on the semantics defined in section 3.2, two objects will be equal if they have 
equal values for their common fields and all their subclass specific fields are set to 
default values. For example, objects b and d, instances of ClassB and ClassD, are equal 
if and only if their FieldRoot and FieldA are equal (b.FieldRoot==d.FieldRoot|| 
b.FieldA==d.FieldA), and the specific fields: FieldB in b and, FieldC and FieldD in d 
are set to their default values. 
 
Let us observe that the most general case of equality comparison is when the two objects 
are instances of classes located on different branches at different depths in the class 

Figure 5: Sample Class Hierarchy 
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hierarchy. All other are particular cases of this one. So, keeping things simple, let us use 
the example in Figure 5 and analyze what is to be done when comparing objects b and d, 
instances of ClassB and ClassD. This means that one of the calls b.Equals(d) or 
d.Equals(b)  is issued, and one can observe that in both cases, we end up with a call to 
the NavigateClassHierarchy() method. During the navigation across the class 
hierarchy, there are three main tasks that need to be solved: 
 

- check for the default values of the subclass specific fields of object b – this 
requires navigation on the left side branch from ClassB to ClassA. 

- check for the default values of the subclass specific fields of object d – this 
requires navigation on the right side branch from ClassD to ClassA. 

- check for equality of the common fields - this requires navigation on the 
common branch from ClassA to RootClass. 

 
Navigation will be done from the subclass levels to the upper level classes in the 
direction indicated by the arrows in Figure 5, by simply calling the 
NavigateClassHierarchy() method of the base class. At each step of the navigation 
process, the corresponding CompareFields() method is called in order to check the 
fields defined at the current level. 
 
One of the challenges during the navigation process across the left or right side branch is 
to detect where each branch ends. This is the lowest level class that is also common for 
both branches, which in our example is ClassA. This class has the property that both 
objects b and d are instances of ClassA, i.e. b is ClassA and d is ClassA evaluate 
both to true. So, when navigating on the left side branch from ClassB to ClassA, one 
would stop when the other object (d in our example) is an instance of the current class. 
Unfortunately, using class specific tests of the form b is ClassA or d is ClassA 
makes the navigation method itself to be class specific, which means that a specialized 
version of the NavigateClassHierarchy() method would be required for each class. 
This is where reflection comes in providing the functionality needed to generalize the 
navigation method by avoiding direct references to the class names. First, one can use the 
GetType() method in order to get the type of a class or the class type of a given object. 
In our case the Equals() method (see Figure 3) will get the type of the current object, i.e. 
this and pass it as the first parameter of the NavigateClassHierarchy() method: 
 
return NavigateClassHierarchy(this.GetType(),(RootClass)other,true); 
 
while the navigation method is designed to receive as first parameter a Type object which 
will always be set to the type of the current class: 
 
public bool NavigateClassHierarchy(Type typeOfThis,RootClass other, 
         bool reverseOrder) 
 
The second useful functionality is that Type objects come with a method called 
IsInstanceOfType(), which is the counterpart of the is operator. This means that 
given the variable typeOfThis that holds the type of the current class, the expression 
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typeOfThis.IsInstanceOfType(other) will tell us when the other object is an 
instance of the current class that is, when we are at the end of the branch. 
 
Another problem with the navigation method is to make sure that all the required 
branches are processed and that they are processed one single time. The technique 
proposed by Langer&Kreft [4] is to use a flag variable to control the navigation process. 
This is exactly what the third parameter of NavigateClassHierarchy() does. Initially, 
the navigation method is called with parameter reverseOrder set to true. When reaching 
the common class for the first time, the first two parameters are reversed and 
reverseOrder is set to false. In our example, this means that the current class type 
becomes ClassB while parameter other will be object b. This sets the right values for 
navigation along the right side branch. When returning from the right side branch, 
navigation simply continues on the common branch up to the RootClass level. If this 
level is reached, the entire comparison process successfully terminates and the two 
compared objects are equal. 
 
Up to this point the NavigateClassHierarchy() method would look like this: 
 
public bool NavigateClassHierarchy(Type typeOfThis, RootClass other, bool  
          reverseOrder)  
{  
   if (typeOfThis.IsInstanceOfType(other)&& !reverseOrder)   
   //reverse order   
    return NavigateClassHierarchy(other.GetType(),this,true);  
   //compare my fields 
   ...  code for comparing fields to be added here!    
   //succesfully done when at RootClass 
   if(typeOfThis==Type.GetType("EqualsImplementation.RootClass")) return true; 
   //navigate to upper level 
   return NavigateClassHierarchy(typeOfThis.BaseType,other,reverseOrder); 
} 
 
The last challenge in the development of a class independent navigation method is to 
compare the fields defined at the current class level, by issuing a call to the right version 
of the CompareFields() method. One may expect that some kind of cast operation by 
the current level class type may provide the binding to the right method. Unfortunately, 
this is not the case, since cast operations are meant to alter compile time binding. What 
we need here is to dynamically bind our call to the version of the CompareFields() 
method that corresponds to the current class level. That is, at each navigation step a 
different version of the CompareFields() method needs to be called. This kind of 
functionality can be achieved by using late binding techniques. 
 
In C# there are two ways one can use to dynamically invoke a method: by using the 
Invoke() method, or by using the more general InvokeMember() method. 
 
When using the Invoke() method, a required preliminary step is to get the method 
information corresponding to the method we want to call dynamically, that is  
CompareFields(). This kind of information is contained in a MethodInfo object which 
is returned by the GetMethod() method of a type object. In our case, the expression 
typeOfThis.GetMethod("CompareFields") returns a MethodInfo object describing 
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the CompareFields() method for the current level class type represented by the variable 
typeOfThis. The MethodInfo object is the one that provides access to the Invoke() 
method through which the right version of CompareFields() is called. The complete 
code for the dynamic call is as follows: 
 
MethodInfo compareFieldsMethod=typeOfThis.GetMethod("CompareFields"); 
if(!(bool)compareFieldsMethod.Invoke(this,new Object[] {other})) return false; 
 
The first parameter of Invoke() is the object making the dynamic call, while the second 
one is an array of objects representing the list of parameters with which the dynamic 
method is called. 
 
The equivalent dynamic call sequence using InvokeMember() is: 
 
if(!(bool)typeOfThis.InvokeMember("CompareFields", BindingFlags.InvokeMethod | 
 BindingFlags.Default,null,this,new Object[] {other})) return false; 
 
Details about InvokeMember() and its parameters can be found in [5] and [7]. 
 
The complete version of the NavigateClassHierarchy() method using InvokeMember() 
is given in Figure 6. 

 
 
5 Conclusions and Further Developments 
 
Equals() is intended to capture the semantics of content based equality comparisons of 
objects as opposed to object identity implemented by the == operator. This would make 
Equals() a class specific method, and such overriding it is expected to be an every day 
routine. However, correctly implementing Equals() turns out to be a challenging task, 
and everyday routines are not supposed to be challenging. The correctness criteria for 
equality comparisons are given by the equals contract. On the other hand, programmers 
would expect a solution that is both simple and free of artificial limitations. Programmers 
should not find a difficult challenge in implementing such a basic functionality like 
object equality and should not be limited to compare only objects of the same type. We 
provide an approach to the equality comparison problem which is a generalization of the 

public bool NavigateClassHierarchy(Type typeOfThis, RootClass other, 
         bool reverseOrder)  
{  
   if (typeOfThis.IsInstanceOfType(other)&& !reverseOrder)   
   // reverse order   
   return NavigateClassHierarchy(other.GetType(),this,true);  
   // compare my fields 
   if(!(bool)typeOfThis.InvokeMember("CompareFields",BindingFlags.InvokeMethod 
 | BindingFlags.Default,null,this,new Object[] {other})) return false; 
   //succesfully done when at RootClass 
   if(typeOfThis==Type.GetType("EqualsImplementation.RootClass")) return true; 
   //navigate to upper level 
   return NavigateClassHierarchy(typeOfThis.BaseType,other,reverseOrder); 
} 

Figure 6: Complete version of the NavigateClassHierarchy() Method 
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solution provided by Langer&Kreft in [4] and is able to reconcile the requirements of the 
equals contract with the legitimate expectation of programmers. This means that mixed 
type comparisons of object are allowed without limitations, while programmers are 
expected to implement a fairly straightforward CompareFields() method instead of 
having to override Equals(). The key techniques used are based on reflection and late 
binding, which allow class independent navigation of the inheritance tree. 
 
There are several directions for further development of the work presented in this paper. 
First, based on the description in section 4.3, one can easily implement a more efficient 
non-recursive version of the navigation method. Space limitations forbid us from 
including it here. Second, the functionality of mixed type comparisons could be made 
generally available in a user transparent manner. All it would take is to implement both 
Equals() and NavigateClassHierarchy() methods at  the level of the Object class. 
Providing these as standard system level functionality would leave programmers only 
with the requirement of implementing the CompareFields() method as their own local 
concept of object equality. This requirement could be enforced by having classes to 
implement an adequate interface defining the CompareFields() method. Given its 
simple structure, an even more convenient approach could be to automatically generate 
the code of the CompareFields() method based on a list of user designated fields, 
considered as relevant for the equality tests, along with their default values. 
 
As a final thought, we would like to emphasize the idea that it may be beneficial to have 
more elaborate content-based default functionality implemented at system level  both for 
Equals() and GetHashCode(). The two are closely related and a navigation technique 
similar to the one presented here could be used in the computation of objects’ hash codes. 
As with field comparisons, users will only have to designate which fields would be used 
in the generation of the hash code value. 
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