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Abstract

Accurate estimation of network characteristics based on endpoint measurements is a chal-
lenging and important problem. In this paper we consider a simple problem that has ap-
plication to network discovery: given a FIFO queue with finite buffer size and constant
service rate, estimate the buffer size and service rate given two sources of data: 1) traffic
arriving at the queue; and 2) traffic lost due to buffer overflow. We describe an estimation
method to solve this problem based on searching for particular events in the evolution of
the queueing system. The events we look for are those in whichthe queue starts empty,
and fills to overflow without ever decreasing. In this case queue properties can be inferred
easily. Our central observation is that these events are most likely at a particular timescale,
and our method is based on searching the traffic arrival and loss patterns at the critical
timescale. Under the assumption that arriving traffic is fractional Gaussian noise, we show
that the method is likely to work well. Using both open loop and closed (ns) simulations,
we show that the method appears to be accurate and efficient.

Jun Liu
Computer Science Department

University of North Dakota
Grand Forks, ND 58202

jliu@cs.und.edu



1 Introduction

Methods for discovering network-internal characteristics using measurements taken at end-
points are increasingly valuable as applications and services seek to adapt to network prop-
erties. In this paper, we consider a basic problem that has application to the discovery of
network properties. We are concerned with the following estimation problem concerning a
FIFO queue with finite buffer sizeB and constant service rateC: assume that it is possible
to observe the traffic arriving to the queue as well as the traffic lost due to buffer overflow;
how can one then estimateB andC?
This simple model is interesting because in some networkingsettings it may be possible to
observe (or estimate) traffic arriving at a link; furthermore, loss information may be avail-
able due to feedback mechanisms in a reliable transport likeTCP. A particular motivating
example is a very busy server (like a Web server) that is generating all or most of the traf-
fic flowing over some network link; in this case (approximate)knowledge of both offered
traffic and lost traffic may be available to the server.
The approach we take in this paper is to observe the traffic andloss streams over time,
hoping to encounter a time interval in whichB andC can be estimated accurately. We note
thatB andC can be estimated accurately when the following event occurs: at the begin-
ning of some interval(s, t) the queue is empty, and some loss occurs during the interval;
furthermore queue occupancy is non-decreasing in the interval. Assuming we can identify
two such intervals (of different length), than it is straightforward to estimateB andC from
the values of the arrival and loss streams over the intervals.
Of course, the difficulty is in knowing during which intervals(s, t) this queueing event has
occurred. A starting point is to realize that for any interval of length l = t − s, a simple
maximization procedure will identify the right interval ifone exists (i.e.,of lengthl). The
next step is the key observation in our method: we note that there is a particular interval of
lengthl = t∗ (called thecritical timescaleof the queueing system) at which such an event
is most likelyto occur. The critical timescale is well-studied for the case in which arriving
traffic is fractional Gaussian noise, and our theoretical results focus on that case as well.
Thus, our estimation method consists of looking for rare events in the evolution of the
queueing system. Our central observation is that although these events are rare, they are
most likely to occur at the critical timescale. We treat the question of how to estimate the
critical timescale from arrival and loss data as a separate issue; we have developed solution
methods for that problem and describe them in a companion paper [14]. In this paper we
show how to use knowledge of critical timescale to constructan estimation procedure for
C andB.
Our estimation procedure must necessarily examine the traffic and loss data at multiple
timescales and at multiple locations (points in time). To make this efficient we sample the
data on the dyadic grid, which is a exponentially-spaced setof points in the frequency-time
domain. This is the same method used in the discrete wavelet transform to simultaneously
analyze datasets in frequency and location.
This paper describes the theoretical foundation for our approach, as well as results of ap-
plying in both open-loop and closed-loop simulations. In summary, we find that:

• Our estimation procedure is computationally efficient;
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• The actual estimation results are accurate; and

• Our estimation procedure is provably effective assuming the arrival traffic to the
queue can be modeled as afractional Gaussian noiseprocess.

The reminder of this paper is organized as follows: Section?? describes background and
the notation; Section 2 more formally motivates our estimation procedure; Section 3 de-
scribes our main theoretical results on which our analysis and estimation procedure build;
Section 4 describes the whole procedure; Section 5 describes the simulation used for test-
ing our estimation procedure and results, suggesting certain limitations of our estimation
procedure; Section 6 describes related work; and Section 7 concludes and summarizes our
contribution.

2 Motivation

Our estimation approach relies on knowledge of traffic dropped due to limited buffer space.
We assume that the only traffic dropped is the excess traffic that arrives when the buffer is
full. The dropped traffic forms another stochastic process{Lt : t ≥ 0} whereLt denotes
theaggregatedtraffic dropped by the queue in time interval[0, t) andL(s, t) = Lt − Ls.
We assume thatL0 = 0.
The starting point for our method is the observation that there is a lower bound onL(s, t)
as follows:

Proposition 2.1 For any interval[s, t) (0 ≤ s < t), we have

L(s, t) ≥ [A(s, t) − C · (t − s) − B]+

�

This can be seen as follows. Consider the case in which the queue is empty at times, is full
at timet, and arriving traffic exceeds the service rate throughout(s, t] (i.e., X(u, u′) > 0
for s ≤ u < u′ ≤ t)). Then the queue absorbsC · (t − s) + B traffic and the rest is
lost; this is the equality situation. Now, if the queue is notempty ats, the amount of lost
traffic increases; if the queue occupancy decreases at any time, the amount of lost traffic
decreases; and if the queue does not reachB then both sides of the inquality must be zero.
As a concrete example to show this inequality, in Figure 1 we plot the aggregated amount
of traffic loss (samples ofL(s, t)) versus the aggregated amount of arrival traffic (samples
of A(s, t)) for a simple queue simulation fed by a standard trace of WAN TCP traffic. On
the left we show plots ofL vs. A for samples of duration 1.28 s (i.e., t − s = 1.28 s); on
the right we show plots for samples of duration 40.96 seconds. In addition to illustrating
the inequality, the plots show that the lower bound is more frequently attained at the longer
timescale; in other words, the likelihood of attaining the lower bound in practice is sensitive
to the timescale of study.
We can make use of this lower bound to solve forB andC if we know that the lower bound
on traffic loss is attained for two differently sized time intervals[s1, t1) and[s2, t2).
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Figure 1: Plots of aggregated traffic vs. aggregated loss fordifferent time scales in a simu-
lated queue withB = 100,000 bytes andC = 5000 bytes/sec. The trace used islbl-tcp-4
from the Internet Traffic Archives,http://ita.ee.lbl.gov.

We denotea(k)
[s,t) as one of the sample paths of processA(s, t) wherek is the index of this

sample path; as well we denotel
(k)
[s,t) as the amount of traffic loss when this sample path is

fed to the queueing system. Suppose that the lower bound on traffic loss is attained on two
differently sized time intervals[s1, t1) and[s2, t2) (t1 − s1 6= t2 − s2), i.e.,

l
(k1)
[s1,t1)

= a
(k1)
[s1,t1)

− C · (t1 − s1) − B (1)

l
(k2)
[s2,t2)

= a
(k2)
[s2,t2)

− C · (t2 − s2) − B. (2)

In this case we can solve forC andB using (1) and (2) as






C =
[a

(k1)

[s1,t1)
−l

(k1)

[s1,t1)
]−[a

(k2)

[s2,t2)
−l

(k2)

[s2,t2)
]

(t1−s1)−(t2−s2)

B =
(t2−s2)·[a

(k1)

[s1,t1)
−l

(k1)

[s1,t1)
]−(t1−s1)·[a

(k2)

[s2,t2)
−l

(k2)

[s2,t2)
]

(t1−s1)−(t2−s2)

(3)

3 Theoretical Results

Equations (3) show that we can get an accurate estimation ofB andC when it happens
that the lower bound on traffic loss is attained (for two different intervals). This focuses the
estimation problem on the question of how to identify intervals over which Equations (1)
and (2) hold.
In order for (one of) Equations (1) or (2) to hold for a particular interval, the following
conditions must be met:
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1. The queue must be empty at the start of the interval;

2. Queue occupancy must be non-decreasing throughout the interval; and

3. Traffic loss must occur within the interval.

Note that conditions 2 and 3 together imply that traffic loss must be in progress at the end
of the interval.
Our estimation method is intended to discover time intervals during which the queueing
system meets these three conditions. To do this, we make the assumption that arriving
traffic can be described as fractional Gaussian noise. Then,we address these conditions as
follows: we show in this section that these three conditionsare most likely to occur at the
critical timescale,i.e., the timescale that maximizesPr{At > B + C · t}. As described
in Section??, the critical timescale is a function ofB, C, and traffic properties. The key
observation is that time intervals meeting these three conditions are relatively rare events;
but, they are most probable at the critical timescale. For this reason we use multiscale sam-
pling on the dyadic grid (explained in the next section) to efficiently search for candidate
intervals at the critical timescale.
In the remainder of this section we show why it is reasonable to expect that queue occu-
pancy during a period of queue formation is non-decreasing whenB is large, and why this
means that the three conditions are most likely to be met at the critical timescale. In the
next section we describe how we search at the critical timescale for intervals that meet the
three conditions.
Our theoretical results are derived for the unbounded queue. In the unbounded queue, there
is no traffic loss; instead we denoteU(t) = [Q(t) − B]+ as the “excess” queue occupancy
exceeding the thresholdB. Our main analytical result in this section is that the two events
{U(t) = At − C · t − B} and{At − C · t − B > 0} arealmost surelyequivalent when
B goes to infinity. To prove this result, we first note the following basic fact about queue
occupancy in the unbounded queue:

Q(t) = sup
0≤s≤t

[A(s, t) − C · (t − s)] (4)

This supremum formula for queue occupancy is used extensively and proved,e.g.,in [3, 6,
8].
To prove our main results, we first need to propose the following lemma:

Lemma 3.1 (Nondecreasing queue occupancy.) In an interval[0, v), let A be a fractional
Brownian traffic process, and let

u = arg
w

sup
0≤w<v

[A(w, v) − C · (v − w)]

Then∀s, t (0 < u ≤ s < t ≤ v), we have

lim
B→∞

Pr{X(s, t) > 0|Q(v) > B} = 1

�
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(The proofs of the lemma and theorem appear in the extended version of this paper.)
Using Lemma 3.1, we can develop the following theorem (usingthe sameu and v as
before):

Theorem 3.2 If U(v) > 0, we have

lim
B→∞

Pr{U(v) = A(u, v) − C · (v − u) − B|

A(u, v) − C · (v − u) − B > 0} = 1

�

Thus we see that whenB is large, we can maximize the probability thatU(v) = A(u, v)−
C ·(v−u)−B whereU(v) > 0 by instead maximizing the probability thatA(u, v)−C ·(v−
u)−B > 0. Noting thatQ(u) = 0, this is equivalent to maximizingPr{At−C ·t−B > 0}.
As shown in [8], this probability is maximized att∗ when{At} is a fractional Brownian
traffic process.
Inspired by the fact that arrival traffic rate is consistently bigger than the service rate, we
can get an corollary of 3.2 as follows, when the queue is a bounded one,

Corollary 3.3 In an interval[u, v), if ∀s, t : 0 ≤ u ≤ s < t ≤ v, X(s, t) > 0 and
L(u, v) > 0, then

Pr{L(u, v) = A(u, v) − C · (v − u) − B}

Pr{A(u, v) − C · (v − u) − B > 0}
= 1

�

4 Estimation Procedure

Our estimation procedure must process the traffic and loss measurements at multiple timescales;
mainly this is because the procedure for estimatingt∗ (not part of this paper; described in
[14]) works by inspecting multiple timescales. In addition, the measurements must be sam-
pled at each timescale so as to search for intervals meeting the three criteria of Section 3.
To do this efficiently, we analyze measurement data in the style of aMulti-Resolution Anal-
ysis (MRA)[15]. Like an MRA, our estimation procedure works on the dyadic grid. The
dyadic grid is a set of time scales with sizes growing exponentially: 20 ·τ, 21 ·τ, · · · , 2i ·τ, ...
(i ∈ N) whereτ is the smallest time interval used in the procedure and the largest value of
i is determined by the length of the trace. In all the results wepresent here, we setτ to be
10 millisecond.
The actual measurements of the aggregated traffic process{At} and of the aggregated
traffic loss process{Lt} are discrete time series, rather than continuous time processes.
These discrete time series are converted into counting series of different counting intervals
in the dyadic grid. To obtain the counting series for a counting intervalµ = 2j · τ , we
divide the whole series into intervals of sizeµ in time, then in each interval, the values of
all items are aggregated into one value. We denote{ai(k) : k ≥ 0} and{li(k) : k ≥ 0}
as the counting series of{At} and{Lt} with counting interval2i · τ , respectively. For any
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Figure 2:Relative error in estimation results for different settings of true buffer sizes and service
rates in the open system simulation using thelbl-tcp-4 trace.

i, both{ai(k) : k ≥ 0} and{li(k) : k ≥ 0} have exactly the same number of items and
there is a 1-to-1 mapping between the two counting series based onk. Thus each item in
the traffic counting series of intervalµ (or traffic loss series) represents the total amount
of arrival traffic in different time intervalµ’s (or total amount of traffic loss). The entire
summary of{At} and{Lt} on these different counting intervals in the dyadic grid arefed
as input to the estimation procedure. We denoteB̂ andĈ as the resulting estimations ofB
andC.
The advantage of sampling on the dyadic grid is that it can be conceptually implemented as
a set of filter banks. If it is desired to search atm levels (wherem is bounded by the binary
logarithm of the trace length), thenm filter banks can implement the sampling process.
The banks are arranged in a linear array and each bank adds successive pairs of inputs and
sends the sum to the next bank in line. This organization leads to an efficient algorithm that
allows values at all levels to be computed in one pass over thetrace (for any fixedm).
As described in Section 2, the accuracy of our estimation procedure depends on encoun-
tering an interval that obtains the lower bound on traffic loss. As described in the previous
section, we are most likely to encounter such an event at the critical timescale. Suppos-
ing that the lower bound on traffic loss is most likely attained at the dyadic time scalej,
then we form our estimates ofB andC using the two pairs of counting series{a(j−1)(k)},
{l(j−1)(k)} and{aj(k)}, {lj(k)} by the following equations:

{

C = M(j)−M(j−1)

2(j−1)·τ

B = 2(j−1)·M(j)−2j ·M(j−1)

2(j−1)

(5)

where
M(j − 1) = max

k
{a(j−1)(k) − l(j−1)(k)}
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Figure 3: Estimation results for buffer size using all time scales. Estimation based on critical
timescalet∗ is marked with a ‘×’.

and
M(j) = max

k
{aj(k) − lj(k)}.

Note the role of themaxk operation in this procedure. This operation has the effect of
searching all intervals at the given level and selecting theinterval with the largest difference
between arriving traffic and lost traffic. By the arguments presented for Proposition 2.1, this
method is certain to find an interval of interest (one that attains the lower bound)if such an
interval exists among those at this level. If it happens thatsuch an interval does not exist, it
will find the interval in which the lower bound is closest to being attained.
So, to put our method in a nutshell, it is: choose the most likely timescale for the lower
bound to be attained; and find the interval within that timescale that comes closest to attain-
ing the lower bound. To illustrate this concept, in Figure 3 we have plotted the estimates
produced by our method for various timescales. (This figure is based on ourns simula-
tions described in the next section.) Along thex-axis we have varied the true buffer size
and along they-axis we plot the estimated buffer size obtained by applyingour algorithm
to different timescales. For each buffer size, there is a single timescale (or a small set of
timescales) at which the estimation is accurate. This illustrates the importance of using the
critical timescale as the principal basis for our method.

5 Evaluation

To test the accuracy of our estimation procedure, we tested it in two settings. First, we
fed commonly-used traffic traces into a simulated queue; these were ouropensystem sim-
ulations. These simulations allowed us to observe the effects of changingB andC for
a fixed, known traffic input that reflects actual traffic captured from a operating network.
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The trace we used was thelbl-tcp-4 traces, available at the Internet Traffic Archive
(ita.ee.lbl.gov). This is a trace of TCP connections flowing over a link to a wide
area network. (We also tested our estimator on other traces from the same archive; results
were essentially the same as forlbl-tcp-4.)
In the open system simulation, we fed the trace to a simple queue simulation to obtain the
corresponding traffic loss trace. We then used the traffic trace and the corresponding traffic
loss trace in our estimation procedure to form estimates forC andB. The relative errors
in the estimation results are shown in Figure 2. In almost allcases, the resulting relative
errors in buffer size estimation are less than 5%.
In the case of service rate estimation, relative error is also ususally small (less than 10%),
but it is also clear from the Figure that the quality of the estimate declines as the ratio of
buffer size to service rate increases. This effect can be understood as follows. AsB/C
increases, the critical timescale of the system (t∗) increases as well. This means that the
aggregation levelj used by the estimator increases; in any fixed length trace this means that
there are fewer opportunities to search for intervals of interest. This is because the com-
putational efficiency of the dyadic grid derives from its useof non-overlapping intervals
at any particular level. This evidence suggests that the accuracy of the estimator could be
improved at a certain performance price by searching the critical timescale in overlapping
intervals.
Although the open system simulation controls the nature of the traffic arriving at the queue
across different values ofB andC, it may not be very representative of the behavior of a
real network. This is because traffic loss in a network using TCP feeds back to the sources
and affects the sources’ sending rates. In effect, TCP sources always are attempting to
fill without exceeding the capacity of their network paths. This means that an estimation
procedure may have a very different sort of loss pattern to work with in the closed system as
compared to the open system. For this second, closed system we used theNS-2 simulator,
available atwww.isi.edu/nsnam/ns.
In this simulation, the network was configured in a dumb-bellconfiguration; there were
1000 pairs of TCP “clients” and “servers” which all used one bottleneck link as illustrated
in Figure 4.
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Figure 4:Dumb-bell configuration in NS simulator.E andF are routers, the end-points areFtp
server/client pairs that go through the bottle-neck link.

Each client alternates between making requests and lying idle for some period of time.
Request sizes (in bytes) are drawn from a heavy-tailed distribution, as are the lengths of
idle times. This method has been shown to be sufficient to generate self-similar traffic
[16]. The queueing method is drop-tail, which agrees with our assumptions about how loss
occurs. The bottleneck link rate and the outgoing buffer size of the bottleneck link are
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varied to study the effectiveness of the estimation method.
Each simulation runs for 20,000 seconds. The output of the simulation is a trace file which
records the queueing activities of one direction at the router of the bottleneck link, say the
direction is fromE to F at routerE. From this trace file, we can extract the actual arrival
traffic series to routerE and the traffic loss series by selecting the dropped bytes by router
E. We compute the counting series of the arrival traffic seriesand the traffic loss series
for counting intervals2j · τ with j = 0 to 18. The smallest counting interval isτ = 0.01
second. (Thus the range ofj is governed by the simulation duration.) The actual estimation
is then performed on the two sets of counting series.
Figure 5 shows the relative error in the estimations. For a wide range ofB andC, we can
see from Figure that the estimation results are reasonably accurate (less than 20% relative
error). Buffer size estimation is less accurate than in the open system, but service rate
estimation is more so. As in the open simulation, the qualityof service rate estimation
declines whent∗ is large and therefore the number of samples available for estimation get
smaller.
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Figure 5:Estimation results on buffer size and service rate for different settings of buffer sizes and
service rates whenH = 0.75 in the closed loop simulation byNS-2 simulator. The increments on
buffer size is150000 bytes and1000 bytes/s on service rate.

A further effect is visible in Figure 5. As the ratio ofB/C gets smaller (so thatt∗ get
smaller) the accurate of buffer size estimation declines. This can be understood because
there is a lower limit (τ ) on the scale at which our method examines data. Ast∗ gets closer
to the lower limit, the potential inaccuracy due to insufficient resolution increases.
Thus, our method has certain limitations:

• The estimation whent∗ is large uses the low frequency part of the arrival traffic, so
the duration of the collected arrival traffic should be long enough for accuracy.
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• In our estimation, we make use of the traffic loss series with respect to the arrival
traffic series. The traffic loss series should contain some items that are bigger than
zero,i.e.,buffer overflow should happen and should not be too rare.

• The duration of the simulation is related to both buffer sizeB andC due to equation
(??). That means that the duration of the simulation restricts the range ofB andC
that can be accurately discovered.

Nonetheless, the results in this section are encouraging, and thens simulations in particular
suggest that our method may be effective in situations wheretraffic is generated by multiple
TCP flows travelling over a common bottleneck link.

6 Related Work

There are a number of papers are devoted to study the loss behavior in the Internet and
that have proposed various methods to characterize features of Internet load or to measure
statistics in the Internet.
Bolot [11] proposed a “packet-pair” method to study end-to-end packet delay and loss
behavior in the Internet; this method allows discovery of bottleneck bandwidth but not
buffer capacity.
R. Cáceres, et. al., [12, 13], worked out an estimator basedon MLE method to estimate
traffic loss probability in multicasting environment and further estimate the topology of the
multicast tree based on traffic loss probability.
I. Norros [3] proposed thefractional Brownian trafficmodel to model the aggregated traffic
generated by sufficiently large number of ON/OFF sources whose ON- and OFF- periods
follow heavy-tailed distributions.
J. Choe and N.B. Shroff [6] studied the supremum distribution of a Gaussian process having
stationary increments. They also studied the queueing impact with such Gaussian process
as input to the queue. They extensively studied the propertyof the queue tail distribution.
Arnold L. Neidhardt and Jonathan L. Wang [8] studied the queueing performance onfrac-
tional Brownian trafficprocess. They explicitly claimed that the time scale is crucial to
queueing performance study.
The concept of ”most relevant” time scale is discussed in both [6] and [8].

7 Conclusion

In this paper, we have described a method for estimating the link capacityC and buffer size
B in a single server queueing system. We assume that the arriving traffic and lost traffic are
observable; our approach is to observe the system over time watching for particular queue-
ing events to occur. While these events are rare, our centralobservation is that they are
most likely at a particular timescale. As a result we examinethe traffic and loss processes
at that timescale, using a method that is certain to find such an event should it occur at that
timescale. We support our approach with analysis suggesting why the approach is likely to
be effective. We evaluate the method in both open-system andclosed-system settings and
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we characterize the situations in which it is likely to be less accurate, while finding that it
is reasonably accurate in general.
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