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Abstract

Accurate estimation of network characteristics based dipeint measurements is a chal-
lenging and important problem. In this paper we considerngka problem that has ap-
plication to network discovery: given a FIFO queue with &niduffer size and constant
service rate, estimate the buffer size and service ratengwe sources of data: 1) traffic
arriving at the queue; and 2) traffic lost due to buffer overfleve describe an estimation
method to solve this problem based on searching for paati@ients in the evolution of
the queueing system. The events we look for are those in vih&lgueue starts empty,
and fills to overflow without ever decreasing. In this caseuguyaroperties can be inferred
easily. Our central observation is that these events ar¢likely at a particular timescale,
and our method is based on searching the traffic arrival assl patterns at the critical
timescale. Under the assumption that arriving traffic istirmal Gaussian noise, we show
that the method is likely to work well. Using both open loomlatosed (is) simulations,
we show that the method appears to be accurate and efficient.
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1 Introduction

Methods for discovering network-internal charactersstising measurements taken at end-
points are increasingly valuable as applications and ses\8eek to adapt to network prop-
erties. In this paper, we consider a basic problem that halcapion to the discovery of
network properties. We are concerned with the followingnestion problem concerning a
FIFO queue with finite buffer siz8 and constant service rafé assume that it is possible
to observe the traffic arriving to the queue as well as thédrafst due to buffer overflow;
how can one then estimateandC?

This simple model is interesting because in some networs@tigngs it may be possible to
observe (or estimate) traffic arriving at a link; furthermaioss information may be avail-
able due to feedback mechanisms in a reliable transporTid4 A particular motivating
example is a very busy server (like a Web server) that is géingrall or most of the traf-
fic flowing over some network link; in this case (approximatedwledge of both offered
traffic and lost traffic may be available to the server.

The approach we take in this paper is to observe the trafficl@slstreams over time,
hoping to encounter a time interval in whi¢handC can be estimated accurately. We note
that B andC' can be estimated accurately when the following event ocairthe begin-
ning of some intervals, t) the queue is empty, and some loss occurs during the interval;
furthermore queue occupancy is non-decreasing in thevaltehssuming we can identify
two such intervals (of different length), than it is strdiginward to estimaté? andC' from

the values of the arrival and loss streams over the intervals

Of course, the difficulty is in knowing during which intergdk, ¢) this queueing event has
occurred. A starting point is to realize that for any intémBlength! = ¢t — s, a simple
maximization procedure will identify the right intervalaohe existsi(e., of length/). The
next step is the key observation in our method: we note tlesietis a particular interval of
length! = ¢* (called thecritical timescaleof the queueing system) at which such an event
is most likelyto occur. The critical timescale is well-studied for theecaswhich arriving
traffic is fractional Gaussian noise, and our theoreticalliits focus on that case as well.
Thus, our estimation method consists of looking for rarenevén the evolution of the
gueueing system. Our central observation is that altholigbet events are rare, they are
most likely to occur at the critical timescale. We treat tliestion of how to estimate the
critical timescale from arrival and loss data as a sepasatesi we have developed solution
methods for that problem and describe them in a companioergag]. In this paper we
show how to use knowledge of critical timescale to constamcestimation procedure for
C andB.

Our estimation procedure must necessarily examine thicteaid loss data at multiple
timescales and at multiple locations (points in time). Tckenthis efficient we sample the
data on the dyadic grid, which is a exponentially-spacedfgabints in the frequency-time
domain. This is the same method used in the discrete wavaletform to simultaneously
analyze datasets in frequency and location.

This paper describes the theoretical foundation for ouraguh, as well as results of ap-
plying in both open-loop and closed-loop simulations. Imsuary, we find that:

e Our estimation procedure is computationally efficient;



e The actual estimation results are accurate; and

e Our estimation procedure is provably effective assumireggdtrival traffic to the
gueue can be modeled afractional Gaussian noisprocess.

The reminder of this paper is organized as follows: Sect®describes background and
the notation; Section 2 more formally motivates our estiomaprocedure; Section 3 de-
scribes our main theoretical results on which our analysisestimation procedure build,;
Section 4 describes the whole procedure; Section 5 desdhileesimulation used for test-
ing our estimation procedure and results, suggestinginditaitations of our estimation
procedure; Section 6 describes related work; and Secti@m@wdes and summarizes our
contribution.

2 Motivation

Our estimation approach relies on knowledge of traffic dempgue to limited buffer space.
We assume that the only traffic dropped is the excess tratiicatives when the buffer is
full. The dropped traffic forms another stochastic prodgss: ¢ > 0} whereL, denotes
the aggregatedraffic dropped by the queue in time interv@l¢) and L(s,t) = L; — L.
We assume that, = 0.

The starting point for our method is the observation thatel® a lower bound ok (s, t)
as follows:

Proposition 2.1 For any intervals,t) (0 < s < t), we have
L(s,t) > [A(s,t) = C - (t —s) — B|*
U

This can be seen as follows. Consider the case in which theegaempty at time, is full

at timet, and arriving traffic exceeds the service rate througheut (i.e., X (u,u’) > 0
for s < u < ' < t)). Then the queue absorlés- (¢t — s) + B traffic and the rest is
lost; this is the equality situation. Now, if the queue is rotpty ats, the amount of lost
traffic increases; if the queue occupancy decreases atrary tine amount of lost traffic
decreases; and if the queue does not réathen both sides of the inquality must be zero.
As a concrete example to show this inequality, in Figure 1 {igéthe aggregated amount
of traffic loss (samples ok (s, t)) versus the aggregated amount of arrival traffic (samples
of A(s,t)) for a simple queue simulation fed by a standard trace of WANP Traffic. On
the left we show plots of. vs. A for samples of duration 1.28 &€.,t — s = 1.28 s); on
the right we show plots for samples of duration 40.96 secotdaddition to illustrating
the inequality, the plots show that the lower bound is maggdiently attained at the longer
timescale; in other words, the likelihood of attaining tberér bound in practice is sensitive
to the timescale of study.

We can make use of this lower bound to solvefandC if we know that the lower bound
on traffic loss is attained for two differently sized timeantals[s;, ¢;) and|ss, ).
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Figure 1: Plots of aggregated traffic vs. aggregated losdifiarent time scales in a simu-
lated queue witls = 100,000 bytes and = 5000 bytes/sec. The trace usellid - t cp- 4
from the Internet Traffic Archivesitt p: //ita. ee. | bl . gov.

We denotenf )t) as one of the sample paths of procegs, ¢) wherek is the index of this

sample path; as well we denol?é> as the amount of traffic loss when this sample path is
fed to the queueing system. Suppose that the lower bounaffic toss is attained on two
differently sized time intervalg, t;) and[ss, t2) (t; — 51 # ta — $2), i.€.,

k
[(811’11) aESl,tl - C (tl - Sl) - B (1)
k
[(822712) aESQ t2 - C (t2 - 82) - B (2)

In this case we can solve féf and B using (1) and (2) as

[a(kl) (kl } [ k2) k2) ]
C = [s1,t1) [51 1)) 7 Vsg,t9) 52 ta)
(o) <(1§2> 2) (h2) (ko)
B = (t2—s2)- [a[sf t1) [811'51)] (tl_sl)'[a[522»t2) [822 i2)]
(t1—s1)—(t2—s2)

3)

3 Theoretical Results

Equations (3) show that we can get an accurate estimatidh aid C' when it happens
that the lower bound on traffic loss is attained (for two ddf& intervals). This focuses the
estimation problem on the question of how to identify inedsvover which Equations (1)
and (2) hold.

In order for (one of) Equations (1) or (2) to hold for a partainterval, the following
conditions must be met:



1. The queue must be empty at the start of the interval;
2. Queue occupancy must be non-decreasing throughouttédreah and
3. Traffic loss must occur within the interval.

Note that conditions 2 and 3 together imply that traffic lossstrbe in progress at the end
of the interval.

Our estimation method is intended to discover time intangalring which the queueing
system meets these three conditions. To do this, we makestwemgtion that arriving
traffic can be described as fractional Gaussian noise. Mreraddress these conditions as
follows: we show in this section that these three conditieesmost likely to occur at the
critical timescalej.e., the timescale that maximizé&y{A, > B + C - t}. As described
in Section??, the critical timescale is a function @, C, and traffic properties. The key
observation is that time intervals meeting these threeitiond are relatively rare events;
but, they are most probable at the critical timescale. Hertason we use multiscale sam-
pling on the dyadic grid (explained in the next section) tiicefntly search for candidate
intervals at the critical timescale.

In the remainder of this section we show why it is reasonablexpect that queue occu-
pancy during a period of queue formation is non-decreasimgnus is large, and why this
means that the three conditions are most likely to be meteattitical timescale. In the
next section we describe how we search at the critical tiledor intervals that meet the
three conditions.

Our theoretical results are derived for the unbounded queauke unbounded queue, there
is no traffic loss; instead we dendtét) = [Q(t) — B|' as the “excess” queue occupancy
exceeding the threshold. Our main analytical result in this section is that the tweres
{U(t)=A,—C-t— B}and{4; — C -t — B > 0} arealmost surelyequivalent when
B goes to infinity. To prove this result, we first note the foliog/basic fact about queue
occupancy in the unbounded queue:

Q(t) = sup[A(s,t) = C-(t = s)] (4)

0<s<t

This supremum formula for queue occupancy is used extdgpsined provede.g.,in [3, 6,
8].
To prove our main results, we first need to propose the foligiemma:

Lemma 3.1 (Nondecreasing queue occupancy.) In an intejval), let A be a fractional
Brownian traffic process, and let

u=arg sup [A(w,v) —C - (v—w)]

w 0<w<w
ThenVs,t (0 <u < s <t <wv), we have

Bli_I)n Pr{X(s,t) > 0|Q(v) > B} =1



(The proofs of the lemma and theorem appear in the extendsbreof this paper.)
Using Lemma 3.1, we can develop the following theorem (ushegsameu andv as
before):

Theorem 3.2 If U(v) > 0, we have
Bli_r)r;()Pr{U(v) = A(u,v) = C - (v —u) — B|
Alu,v) —C-(v—u)— B >0} =1
U

Thus we see that wheB is large, we can maximize the probability thiaty) = A(u,v) —
C-(v—u)— B wherelU(v) > 0 by instead maximizing the probability thdt{u, v)—C-(v—
u)—B > 0. Noting thatQ(«) = 0, this is equivalent to maximizinBr{A;,—C-t—B > 0}.
As shown in [8], this probability is maximized &t when{A,} is a fractional Brownian
traffic process.

Inspired by the fact that arrival traffic rate is consistgiigger than the service rate, we
can get an corollary of 3.2 as follows, when the queue is a iedione,

Corollary 3.3 In an interval[u,v), if ¥Vs,t : 0 < u < s < t < v,X(s,t) > 0 and
L(u,v) > 0, then
Pr{L(u,v) = A(u,v) = C- (v —u) — B} ]
Pr{A(u,v) —C-(v—u)—B >0}

4 Estimation Procedure

Our estimation procedure must process the traffic and loasumnements at multiple timescales;
mainly this is because the procedure for estimatin@ot part of this paper; described in
[14]) works by inspecting multiple timescales. In additittee measurements must be sam-
pled at each timescale so as to search for intervals meétintitee criteria of Section 3.
To do this efficiently, we analyze measurement data in tHe sfyaMulti-Resolution Anal-
ysis (MRA)[15]. Like an MRA, our estimation procedure works on the dgagtid. The
dyadic grid is a set of time scales with sizes growing exptiatyt 2°. 7,21 .7, ... 2.7 .

(i € N) wherer is the smallest time interval used in the procedure and tigesavalue of

1 is determined by the length of the trace. In all the resultpresent here, we setto be

10 millisecond.

The actual measurements of the aggregated traffic prdcégsand of the aggregated
traffic loss proces$L,} are discrete time series, rather than continuous time psese
These discrete time series are converted into countingssefidifferent counting intervals
in the dyadic grid. To obtain the counting series for a conmintervaly, = 27 - 7, we
divide the whole series into intervals of sigzan time, then in each interval, the values of
all items are aggregated into one value. We defeatét) : £ > 0} and{/;(k) : £ > 0}

as the counting series ¢f4,} and{L,} with counting interval’ - 7, respectively. For any

5



Relative Eror —— Relative Error ——
Relative Error Relative Error ‘

03
02 F
01 F

0k
01+
02 +
03+

01

005 -

0 F

005

01 F

450000 450000

1001

Buffer size estimation Service rate estimation

Figure 2:Relative error in estimation results for different settingf true buffer sizes and service
rates in the open system simulation usingltié - t cp- 4 trace.

i, both{a;(k) : & > 0} and{l;(k) : £ > 0} have exactly the same number of items and
there is a 1-to-1 mapping between the two counting seriescbask. Thus each item in
the traffic counting series of interval (or traffic loss series) represents the total amount
of arrival traffic in different time interval.’s (or total amount of traffic loss). The entire
summary of{ A;} and{L,} on these different counting intervals in the dyadic gridfece

as input to the estimation procedure. We der®@ndC' as the resulting estimations &f
andC.

The advantage of sampling on the dyadic grid is that it carobe@ptually implemented as
a set of filter banks. If it is desired to searchratevels (wheren is bounded by the binary
logarithm of the trace length), then filter banks can implement the sampling process.
The banks are arranged in a linear array and each bank admssive pairs of inputs and
sends the sum to the next bank in line. This organizatiorsléadn efficient algorithm that
allows values at all levels to be computed in one pass ovdrdhe (for any fixedn).

As described in Section 2, the accuracy of our estimatiooguiore depends on encoun-
tering an interval that obtains the lower bound on traffislo&s described in the previous
section, we are most likely to encounter such an event atritieat timescale. Suppos-
ing that the lower bound on traffic loss is most likely attairse the dyadic time scalg
then we form our estimates &f andC' using the two pairs of counting seri¢s;_1)(k)},
{lj-1)(k)} and{a;(k)}, {I;(k)} by the following equations:

C = M@G)-M(G—-1)
26D ‘ (5)
B = 29DM@)-2M(-1)
- 2(5—1)

where
M(j = 1) = max{ag (k) = I (k)}
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and
M(j) = maxia;(k) — 1;(k)}.

Note the role of thanax, operation in this procedure. This operation has the efféct o
searching all intervals at the given level and selectingrttexval with the largest difference
between arriving traffic and lost traffic. By the argumentssgnted for Proposition 2.1, this
method is certain to find an interval of interest (one thatiagtthe lower boundj such an
interval exists among those at this level. If it happens $iiah an interval does not exist, it
will find the interval in which the lower bound is closest targpattained.

So, to put our method in a nutshell, it is: choose the mostyikenescale for the lower
bound to be attained; and find the interval within that tinaésthat comes closest to attain-
ing the lower bound. To illustrate this concept, in Figure & mave plotted the estimates
produced by our method for various timescales. (This figaifeaised on ouns simula-
tions described in the next section.) Along thexis we have varied the true buffer size
and along they-axis we plot the estimated buffer size obtained by applpuagalgorithm
to different timescales. For each buffer size, there is glsitimescale (or a small set of
timescales) at which the estimation is accurate. Thistiies the importance of using the
critical timescale as the principal basis for our method.

5 Evaluation

To test the accuracy of our estimation procedure, we testiedtwo settings. First, we
fed commonly-used traffic traces into a simulated queuesetheere oubpensystem sim-
ulations. These simulations allowed us to observe the tsffeicchangingB and C' for

a fixed, known traffic input that reflects actual traffic captifrom a operating network.



The trace we used was thdl - t cp- 4 traces, available at the Internet Traffic Archive
(ita.ee. | bl.gov). Thisis a trace of TCP connections flowing over a link to aevid
area network. (We also tested our estimator on other traoesthe same archive; results
were essentially the same as fdyl -t cp-4.)

In the open system simulation, we fed the trace to a simplesenulation to obtain the
corresponding traffic loss trace. We then used the traffoeteand the corresponding traffic
loss trace in our estimation procedure to form estimates’fand B. The relative errors
in the estimation results are shown in Figure 2. In almostadles, the resulting relative
errors in buffer size estimation are less than 5%.

In the case of service rate estimation, relative error is atisally small (less than 10%),
but it is also clear from the Figure that the quality of tharaate declines as the ratio of
buffer size to service rate increases. This effect can bergitabd as follows. A$/C
increases, the critical timescale of the systéhy ihcreases as well. This means that the
aggregation level used by the estimator increases; in any fixed length trasertbans that
there are fewer opportunities to search for intervals adriggt. This is because the com-
putational efficiency of the dyadic grid derives from its wenon-overlapping intervals
at any particular level. This evidence suggests that theracg of the estimator could be
improved at a certain performance price by searching thieartimescale in overlapping
intervals.

Although the open system simulation controls the naturbetraffic arriving at the queue
across different values @8 andC, it may not be very representative of the behavior of a
real network. This is because traffic loss in a network usi@® Teeds back to the sources
and affects the sources’ sending rates. In effect, TCP sesuatways are attempting to
fill without exceeding the capacity of their network path$iisTmeans that an estimation
procedure may have a very different sort of loss pattern tlwith in the closed system as
compared to the open system. For this second, closed systammed thé\S- 2 simulator,
available atmwv. i si . edu/ nsnani ns.

In this simulation, the network was configured in a dumb-belifiguration; there were
1000 pairs of TCP “clients” and “servers” which all used ogtleneck link as illustrated
in Figure 4.

Figure 4:Dumb-bell configuration in NS simulatof? and F" are routers, the end-points dfep
server/client pairs that go through the bottle-neck link.

Each client alternates between making requests and lyiegfad some period of time.
Request sizes (in bytes) are drawn from a heavy-tailedilliston, as are the lengths of
idle times. This method has been shown to be sufficient torgémeelf-similar traffic
[16]. The queueing method is drop-tail, which agrees withaasumptions about how loss
occurs. The bottleneck link rate and the outgoing buffee si#z the bottleneck link are



varied to study the effectiveness of the estimation method.

Each simulation runs for 20,000 seconds. The output of thelsition is a trace file which
records the queueing activities of one direction at theewoot the bottleneck link, say the
direction is fromFE to F' at routerE. From this trace file, we can extract the actual arrival
traffic series to routef’ and the traffic loss series by selecting the dropped bytesuter
E. We compute the counting series of the arrival traffic seaied the traffic loss series
for counting interval®’ -  with j = 0 to 18. The smallest counting intervalis= 0.01
second. (Thus the range pis governed by the simulation duration.) The actual esionat
is then performed on the two sets of counting series.

Figure 5 shows the relative error in the estimations. Fordewange ofB andC, we can
see from Figure that the estimation results are reasonablyrate (less than 20% relative
error). Buffer size estimation is less accurate than in ghenosystem, but service rate
estimation is more so. As in the open simulation, the qualftgervice rate estimation
declines whert* is large and therefore the number of samples available fanaton get
smaller.

Relative Eror —— Relative error ——

Relative Error Relative Error ‘

450000 450000
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Figure 5:Estimation results on buffer size and service rate for dffie settings of buffer sizes and
service rates whel = 0.75 in the closed loop simulation b)S- 2 simulator. The increments on
buffer size is150000 bytes andl000 bytes/s on service rate.

A further effect is visible in Figure 5. As the ratio @ /C gets smaller (so that get
smaller) the accurate of buffer size estimation declindsis €an be understood because
there is a lower limitf) on the scale at which our method examines data.*Aygts closer
to the lower limit, the potential inaccuracy due to insuéid resolution increases.

Thus, our method has certain limitations:

e The estimation wheri is large uses the low frequency part of the arrival traffic, so
the duration of the collected arrival traffic should be lomgegh for accuracy.



e In our estimation, we make use of the traffic loss series vapect to the arrival
traffic series. The traffic loss series should contain soerastthat are bigger than
zero,i.e., buffer overflow should happen and should not be too rare.

e The duration of the simulation is related to both buffer dkzandC' due to equation
(??). That means that the duration of the simulation restrisésrange ofB andC'
that can be accurately discovered.

Nonetheless, the results in this section are encouragnagh&ns simulations in particular
suggest that our method may be effective in situations winaffec is generated by multiple
TCP flows travelling over a common bottleneck link.

6 Related Work

There are a number of papers are devoted to study the losgibeathe Internet and
that have proposed various methods to characterize feadfitaternet load or to measure
statistics in the Internet.

Bolot [11] proposed a “packet-pair” method to study encetmt packet delay and loss
behavior in the Internet; this method allows discovery oftleoeck bandwidth but not
buffer capacity.

R. Caceres, et. al., [12, 13], worked out an estimator basedILE method to estimate
traffic loss probability in multicasting environment andther estimate the topology of the
multicast tree based on traffic loss probability.

l. Norros [3] proposed thigactional Brownian traffianodel to model the aggregated traffic
generated by sufficiently large number of ON/OFF sourcess&fN- and OFF- periods
follow heavy-tailed distributions.

J. Choe and N.B. Shroff [6] studied the supremum distribbubifoa Gaussian process having
stationary increments. They also studied the queueingdhwaith such Gaussian process
as input to the queue. They extensively studied the propéittye queue tail distribution.
Arnold L. Neidhardt and Jonathan L. Wang [8] studied the @iy performance ofrac-
tional Brownian trafficporocess. They explicitly claimed that the time scale is ieuo
gueueing performance study.

The concept of "most relevant” time scale is discussed ih fgjtand [8].

7 Conclusion

In this paper, we have described a method for estimatingrikeapacityC' and buffer size
B in a single server queueing system. We assume that thengytiaffic and lost traffic are
observable; our approach is to observe the system over tatehimg for particular queue-
ing events to occur. While these events are rare, our cevlts@rvation is that they are
most likely at a particular timescale. As a result we exantlireetraffic and loss processes
at that timescale, using a method that is certain to find sn@vant should it occur at that
timescale. We support our approach with analysis suggestiy the approach is likely to
be effective. We evaluate the method in both open-systentlasdd-system settings and

10



we characterize the situations in which it is likely to beslescurate, while finding that it
is reasonably accurate in general.
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