FormStream a Workflow Prototyping
Tool for Classroom Use

Paul Juell
and Benjamin Dischinger
Department of Computer Science
North Dakota State University
Computer Science
NDSU
Fargo, ND 58105
paul.juell @ndsu.edu

Abstract

FormStream is a tool for easily developing form based workflow systems. This tool
allows students studying such systems and designers to concentrate on the overall system
rather than details. It is easy to take an example form and a diagram of the states of
processing the form and convert these into a working system. The tool is web based and
produces web based form processing systems with a database backend. After building a
system it can be directly run.

Introduction

This paper presents FormStream, a tool intended to aid students in learning about
designing and building workflow systems. A typical workflow system tracks a form's
process through many steps of processing. An example of a workflow system is an
insurance claim processing center. A claim comes into the center and is sent through a
number of standard steps to determine if the claim is to be honored. In the older paper
versions of this process, a paper form would come into the center and would be handed
from person to person to be processed. Each person processing the form would add
information to the form and then send it to its next processing step. The current
workflow systems support more complex options than the original paper system, but still
have much in common with the original paper based systems.

There are systems available to build computer based workflow systems [Aalst 2002] but
these are large scale systems designed to build a production system. The commercial
versions are costly. Both the commercial and public domain systems have large sets of
features and options to address fielding production systems. These tools were built to aid
in producing high quality final systems. While this is an important goal, in general the
same features interfered with rapid prototyping and seeing the overall properties of the
system. That is, there were high learning curves and too many details visible making it
hard to see larger issues. At the other end of the spectrum, we found numerous add-ons
to a range of systems to support parts of the document flow process. The add-on systems
typically were missing parts of the workflow model or did not have easy to use building
tools.

Students Need Rapid Prototyping Tools

We wanted to teach students about designing and building workflow systems. While any
one step of processing of a form is simple to show, with say a program, the overall
process can not be seen from the small steps. We felt it was important for the student to
see and understand the overall system. To make this system view possible we designed
and built a rapid prototyping system. It was important that the system had a small
learning curve and allowed building complete working systems.

Analysis and Design of a Workflow System

A typical use of a workflow development tool is to build an electronic version of a
current paper form. In that case a data collection and analysis phase would be required.
This would include going out and collecting copies of the forms used in the process,
determining who processes the forms, the stages the processing goes through and what
processing is done at each stage. At the end of this initial analysis stage you normally
would have a flow diagram indicating the order of processing the forms and the various
routes the form can take through the organization. The branches in the diagram show

various decision processes made by the organization. In addition, the procedure of
interviewing the individuals performing the processing will give you the data entered into
the form and the processing done at each stage of the process. After collecting all of this
data, the analyst will evaluate the real needs and may restructure each form and the form's
flow through the system.

After this analyses process, we have a diagram showing the flow of the forms through the
system. Each node in the diagram specifies the current state of the form. The node then
represents the processing to be done if the form is in that particular state. Included in the
diagram are the branches identifying the routing to be done after the processing. The
processing at a node is normally done by a particular individual or class of agents. For
each state there will be a description of the processing to be done. This processing will
normally be for a person to read certain fields and then write a value into another field.
We will refer to the user group that does this processing as having a particular role in the
process.

Nomenclature

In FormStream a complete package to process a form is called a system. When you
create the system, you specify an attribute for each field in the form. You also specify
the roles of the people processing the form. Each node in the diagram describes a state.
The state describes the condition of the form before the processing. Each state has a
default next state. If normal processing is not followed, a different next state can be
specified. Each state can have a view specified. The view specifies the roles which can
perform actions on the form and form presentation information. Once a system has been
built you can execute it, by simply selecting the system and the desired role/view you
want to process. A queue of forms waiting to be processed will be displayed. You can
select a form, process it, and have the new values and state saved.

Specifying a System (Building the Data Base for a System)

You start the process of building a system in FormStream by selecting the action ‘create
system’. You can then enter the fields found on your form. These are recorded as
attributes in the system. For each attribute, you specify its name. All attributes are
considered to be character, but you can specify the number of columns and rows for the
display/entry box for the string. The attributes are basically the database description for
each instance of a form. Figure 1 shows FormStream being used to create a Drop/Add
form data base.

Choose
System

Edit System
Manual
Logout

Create System

FormStreain
Drop/Add Form ...,

-
[AttributesiFoles | States | Wiews]

Add Attribute

Attribute |
MName:

Add Attribute |

Add Role
Fole
NameJ
Add Role |

Student MName

Student Classification
Courses to Drop

Lab Instructor's Signiture
Courses to Add

Student Signature

Advisers Approval

*Graduate School
A pproval
Registrar's Office
etification

E N R I E I EEE
i E EEEEEEEE

CropfAdd Form's Width x
A ttributes Height
MAID [delete |

eddit]
[delete |
edit]
[delete |
eclit]
[clelete |
eclit]
[clelete |
ecfit]
[delete |
ecfit]
[clelete |
edfit]
[delete |
edfit]
[delete |
eclit]

[delate |
edit]

Drop/Add Form's Roles
Student

Advisor

Employee

[delete | edi
[celete | edi
[delete | edi

Figure 1: Edit attributes screen

Views and States of the System

After you have described the contents of the form, specify the states the form can be in.
These states will be the names of nodes on your system flow diagram.

For each state specify the normal next state in the system. A special state is marked as
the initial state, this is basically the starting blank form. We now have the normal flow
lines of processing specified. Figure 2 shows the edit states screen. For each state, we
expect an individual performing a particular role will process the form. So for each state,
a view is specified. In the view is the state name, the role of the individual doing the
processing, formatting information and information about data to be saved.

FormStreain v
. Drop/Add Form ...

I [Attributes/Roles | States | Wiews |

Add State
State Name:|
Create System |§ add
Edit System
Manual =
Logout | Drop/Add Form's States Initial State Next State
E Creation [delete [ecit | views] & [Bpproval v
Approva| [delete | ecit | views] I Processing j
Frocessing [elste |edt | views] [Review |
Review [delete | edit | views] ¢ | Review =|

Figure 2: Edit states

Each attribute can be selected to be displayed or not for a view. If selected, you then
choose if you are adding the data, editing the data or only displaying the values. Editable
data will be displayed in a web form entry field. Not editable data will just be displayed.
These choices allow simple but powerful tailoring of the display for the view. The
choices can be used to give the effect of a related set of forms. In addition, detailed
formatting control can be supplied. Each view has an entry box area where data
formatted code can be specified and post processing code also can be specified. The base
programming language is php and the code supplied in the view must also be in php. The
formatting and post processing code, for that view is called by the page processing
routine. These controls have been too used to control formatting, add text and
instructions. The code is basically a subroutine with known variables for passing
information in and out. A close analogue would be each of these units of code is plug-in
for that view. Figure 3 shows the edit view screen with code supplied.

'Drop/Add Form w..,

[Attributes/Roles | States | Wiews]
Edit View 'Form Creation’

State: Creation

Fole: Student ¥|

iew Name: Farm Creation
Stemplate = "<table class=form_table»<tr class=form_titler<td align=center>Northla
Makota State University<bri<hl>Request for Change of
Registrationd/hlx</tds</try"; E
Stemplate .= "<trrctdsostudentinfo/e</td»</tre";
Stemplate .= "<trr<tdr<urInstructions: </ur<hbrrl. <brOhserver deadlines:</h»

Fra Exec (Formatting) (Code:[Refer to the current Registration Schedule for all deadlines and the refund
schedule. ";
Stemplate .= "<p»2. <hrBoquire appropriate signatures. </hr</fpe";
Stemplate .= "<p:3. Present completed form to Ceres 110</br</pr</tdrc/trs";
Stemplate .= “"<trx<tds<hdrCourses to DROP</h3s<DROP/></tds</tr";
Stemplate .= "<trr<tdrchisCourses to ADD/MIs<BOD/»</tdseitre"; k|

sstate_1d = $states['spproval']['id'];
Snext_state_id = $state_id;

srole_id = $roles['adwisor']['id'];
Sview id = '

Fost Exec Code:

E

Edit Form Creation's Froperties

Form Creation's Attributes
Remove NAID [Write Required v Fre-TestiFost-Text Validation Code
Remoye Stuckent Name | Write Requited | Pre-TextiPost-Taxt Valiation Cacle
Remoye Stuent Chssification | Write Required | Fre-TextfPost-Text Validation Corle
Remove Courses to Drop lm Fre-Text/Fost-Text Validation Code
Remove Lab Instructor's Signiture lm Fre-Text/Fost-Text Validation Code
Remove Courses to Add IW Fre-Text/Fost-Text Validation Code
Remove Student Sighature lm Fre-Text/Fost-Text Validation Code
Remave Advizer's Approval lm Pre-TextrPost-Text Walidation Code
Remave *Graduate School Approval lm Pre-TextrPost-Text Walidation Code
Remove | Registrar's Office Werification lm Pre-TextrPost-Text Walidation Code

Add All

HEH

Figure 3: Edit view screen

Running the System or the User's view of Processing the Form

FormStream is designed to allow incomplete and rapidly developed systems to evolve
into a mature system. Once parts of the data are entered, the system provides a working
web based interface to the existing data. Initially, relatively simple default interfaces are
provided. As the development process continues, the designer can augment the data base,
the states and refine the views to be more attractive.

It was important to us to be able to quickly prototype systems and to be able to evaluate
the overall system based on partial data.

Once the database has been described and some views are entered, you can run the
system. All work starts by the user selecting the role and state for the initial blank form.
This initial state allows the user to enter information and instantiates a copy of the form
to be processed. Let us refer to all of the processing to be done on this copy of the form

as a job. The full job will take the copy of the form and send it through a number of
states. Each state has a queue of pending jobs. For all states other than the initial state,
after the user selects the role and state, he will be presented with the current list of jobs
pending in that state. When a job is selected, that instantiation of the form will be
displayed according to the current view. Figure 4 shows the initial state of a Drop/Add
process with formatting provided by the code specified in the view.

FormStream

Morth Dakota State University

Choose | Request for Change of Registration

System

Create System Sl RS |

E‘dit Syistem Student Name [
anual S

Logout Student Classification |

Instructions:

1. Observer deadlines: Refer to the current Registration Schedule for all deadlines and the refund schedule.

2. Acquire appropriate signatures.

3. Present completed form to Ceres 110
Courses to DROP

Courses to Drop ’

Lab Instructor's 8igniture|
Courses to ADD

Courses to Add

| accept all consequences resulting from the above changes(s):

Student Signature []
Adviser's Approval

*Graduate School Approval

Registrars Office YWerification

. Subimit |
Figure 4: Formatted initial state of a Drop/Add system

The simplest form of a view specifies which fields are to be displayed and which can be
edited. The current copy of the form is pulled from the database and displayed. The
selected items are displayed as text, on separate lines. The editable material is displayed
in html editable form on the web page. When the user presses submit, the form fields are
written back to the database with its new state indication. As the design process
proceeds, more formatting and processing may be added to the view. Figure 5 shows a
basic interface without additional formatting. It also shows the job queue for that state.

FormStreain

Select System-=Advisor-=DropfAdd Form-=Approval=Advisors Approval
MNAID:
Student Name:

Student Classification:
el Courses to Drop:
Create System | . D
Edit System Lab Instructor's Signiture:
Manual Courses to Add:
Logout | Student Signature:
Adviser's Approval:
*Graduate School Approval:
Registrar's Office Verification:

Choose

Mext State; Processing (Default) =|
Subrit |
Creator Time Created or Processed
EW Chinlua. 10/29/2003 16:43
e Chinlua. 10/28/2003 16:40
B Malakhow 0912/2003 14:28 processed
e Daninelson 09/11/2003 0328
=2 Dannelson 08/11/2003 0322
B Chinlua. 0910/2003 21:49 processec
=2 Chinlua 0910/2003 21:41 processed
W Chinlua. 09/10/2003 2140
B Chinlua. 0810/2003 21:17
e Chinlua, 09/40/2003 21:11 processed
B Chinlua. 0910/2003 20:25 processed
=23 Chinlua. 09/10/2003 10:24 processed
e Chinlua 09/10/2003 09:12 processecd
B Chinlua. 08910/2003 09:10 processect
= Chinlua, 09/10/2003 09:07 processed
e Chinlua 09/10/2003 09:05 processed
=2 Amalperera 09/09/2003 19:59 processed
B Admin 08418/2003 13:26 processed
B Adrin 0818/2003 11:56 processed

Figure 5: Another state of Drop/Add with with no formatting specified

The Internal Architecture

The tool was built in php and runs under the Apache server. The php program uses three
sets of MySQL tables to store information. These sets of tables are for information about
systems, the registered users and the jobs being processed for each system.

All of the information about the individual systems is stored in the database. This
information includes the entries in the form, the states, and the views. The view
description includes fields to display and edit. In addition, the view can have code to be
run before the page is displayed and code to be run after the user submits the page for
processing. This code is stored in the database.

The tool is intended to be used in an educational setting and by developers working
together. It has a data base table of users and passwords. However, the tool has a
philosophy of open enrollment. That is, you can easily enroll to the system. Once
enrolled, you can act in any role handling jobs and editing the systems. This is
reasonable for a limited access development environment. However, this would have to
be restructured if the final versions of systems are to be used in a production setting.

There is a third set of tables for the queues of running jobs. Each system can be run. If
you run the system, each instantiation of a form will create a data base record. This
record includes all fields for the form, the current values and the instance's current state.
The user interface will pull up job queues for requested states from the database. When
an individual job is selected, that record is displayed by the view. When the user submits

the record, the optional additional processing is done and the data base entry is updated
with the new values and the next state.

This basically means that after entering a limited description of the system, users can try
the system. This allows early evaluation of look and feel and of functionality.

Strengths and Limitations

We used this system for a graduate level course. The course was NDSU's CS730, Office
Information Systems, taught in the Fall of 2003. The students developed systems to
mimic existing paper form systems in various areas. They worked in teams. All of the
groups were successful in developing a working system, and had systems that looked like
they would be useful in the problem domain.

Initially we had some stability problems, but over time, most or all of those were
resolved. We think, that overall, we meet our goals of allowing the student learn about
the system issues without spending extensive amounts of time on details.

A major limitation of the tool is that it does not deliver standalone systems. The students
would have been happier and we would have better tools for developers if web pages for
the job queues and views could be accessed through a system not including the
development environment. This will not require much work on our part, because this
always was the intent of the system. But it was not an issue we addressed in this first
version.

Another limitation was the state engine. It would have been nice to have diagram
interface to the state diagram. However, the lack of that did not seem to be real limiting
factor on usability. The real problem was that we needed a better way to get from one
state to another. As a first step, we should have had a restricted list of recommended next
states. We had hoped that the ability to call code after user submitting a form would
allow building a state engine. Unfortunately, we found the code somewhat hard to write
based on the way we invoked the code. The system does work, but we want to look at
better solutions addressing that part of the design. We think we can address the next state
issues by adding another code section to directly select the next state from the restricted
state list.

Overall, many things worked well. It was easy and quick to incrementally build up a
system. The learning curve was very quick. Students could build complex systems and
realistic formatting and control was provided. In addition, much of the system
description was moved into a database. This allows clear description of the system and
should allow reuse of the data in other contexts.

Summary

We have presented FormStream, a tool to allow students to rapidly develop prototypes of
workflow processing of an electronic version of a form. The tools allow the student to
easily evolve the prototypes into full systems with web interfaces and a backend
database.

An important property is that the workflow system can be run in production mode at any
time. This allows the student to alternate between design and evaluation.

References

van der Aalst, Will and Kiss van He,
Workflow Management:

models, methods and systems,
MIT press, 2002.

