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Abstract 
 

Bioinformatics — the application of computer technology to the management of 
biological information — is essential to deciphering the genetic code of life.  Novel 
approaches to genome sequencing, such as microarray technology, high-performance 
supercomputing and computational simulations in high-throughput DNA analysis have 
led to an explosion of genomic data available.  Accurate genomic assembly of this data 
using computational methods has been one of the biggest challenges in bioinformatics. 
The reason for this is that different algorithms and different parameter settings in the 
software give inconsistent results for the same dataset. The objective of the following 
paper is an analysis of the performance of the PaCE (Parallel Clustering of ESTs) 
algorithm, implemented as genomic assembly software via Expressed Sequence Tag 
(EST) clustering.  For comparison purposes, the PaCE software performance is compared 
with different algorithms implemented in Glimmer2.12 and GeneMark genomic 
assemblers.  
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1 Introduction 
 
Experimental techniques used to identify gene positions in the genome are the most 
accurate methods of defining gene structures.  These experimental techniques usually 
employ microarray technology and are used as validation tools for most computational 
predictions.  However, due to the high cost, manpower, and duration of experimental 
genome annotation, emphasis is being placed on finding more accurate algorithms for 
computational analysis of genome data. 
 
Expressed Sequence Tags, or ESTs, are complementary DNA (cDNA) sequences, usually 
200 to 500 nucleotides in length that represent the expressed portions of genes.  
Therefore, ESTs can be used in gene identification, expression profiling and 
polymorphism analysis [7].  By computationally clustering sequenced ESTs, sets of 
unique genes, characterizing the transcription products of an organism, can be identified.  
 
The EST clustering problem, partitioning the ESTs into clusters, such that ESTs from the 
same gene only are grouped together in a distinct cluster, is complicated by several 
factors.  These include: poor average sequence quality, incomplete sampling, 
polymorphism, alternative transcript isoforms, cloning artifacts, as well as the fact that 
ESTs are sequenced from multiple cDNAs. [7] 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:   EST Evaluation and Profiling [6] 

 
There are several clustering algorithms with three implemented in PaCE, Phrap, CAP3, 
and TIGR assembler software [7].  However, different clustering algorithms and different 
parameter settings in the software give inconsistent results for the same EST dataset.  
PlantGDB, an EST database, uses the PaCE software for clustering of EST from various 
plant species, such as Triticum aestivum, commonly known as wheat. There is interest in 
optimizing parameter settings for such genomic assemblers in order to get biologically 
meaningful clustering results.  
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The EST clustering experiment described in this paper is based on comparing the 
performance of the PaCE2.3 program with Glimmer2.12 and GeneMark genomic 
assemblers. While the algorithm behind PaCE uses a string data structure and exact 
alignment, both the Glimmer and GeneMark assemblers are based on mathematical 
predictions models or Markov models, to identify gene structures. Each assembler allows 
for a set of parameters and constraints to be manually set by the user in order to fine tune 
clustering results to the specific dataset.  The input dataset for this experiment are 
bacterial EST sequences from the Genbank database. The genome for this organism has 
been assembled experimentally and thus allows for the clustering results from each 
program to be checked against the experimentally assembled genome.  
 
2 Previous Research 
 
Iowa State University is one of the nine universities in the country to offer an NIH-NSF 
funded Bioinformatics and Computational Biology Summer Internship. As an intern at 
Iowa State last summer, I participated in a formal workshop, met with leading 
bioinformatics scientists, such as the developer of Biology Workbench, Dr. Shankar 
Subramaniam, and I worked on a research project.  I focused my research in the direction 
of genomic assembly methodology and nucleotide sequence analysis of plant genomes.  
In particular, I evaluated Expressed Sequence Tag (EST) clustering results using the 
PaCE (Parallel Clustering of ESTs) software developed at Iowa State University.    
 
2.1 Internship Project Description 
 
The goal of my summer research project was to evaluate the PaCE algorithm using the 
Triticum aestivum, or wheat, test dataset. The evaluation of the clustering results 
consisted of multiple test runs of the T. aestivum dataset and optimization of the PaCE 
clustering program parameters.  The evaluation procedure involved the following steps: 
 

� The T. aestivum dataset consisted of 554,859 sequences downloaded from Genbank.   
� The dataset was matched against a vector database from NCBI and a repeat database 

from TIGR to remove any repeats and contaminants. 
� The clean T. aestivum dataset of 529,320 sequences was run through the PaCE 

program preprocessing to remove poly-A tails from the sequences. 
� A perl script removed any empty sequences (PaCE preprocessing side-effect) from 

the dataset. 
� The T. aestivum dataset was run through the PaCE software to group ESTs that share 

similarity into distinct clusters. 
� Test runs were performed on the ISU Rocks machine, a Linux parallel cluster 

consisting of 32 nodes, 2 processors per node, 2G of memory per node, and a Gigabit 
interconnect. 

� Test runs were also performed on the ISU Gateway machine, a Linux parallel  cluster 
consisting of 16 nodes, 2 processors per node, processor hyper-threading, 2G of 
memory per node, and a Gigabit interconnect. 
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2.2 Internship Project Results 
 
Following several test runs, the PaCE 2.3 program did not successfully process the T. 
aestivum dataset on either the Gateway or Rocks parallel machines. The dataset was 
further analyzed by partitioning it into smaller sequential subsets. A 2,500 sequence 
subset, which failed clustering attempts, was identified.  As characteristic of most plant 
genomes, the repetitive nature of the T. aestivum sequences is suspected to be the cause 
of observed program overload and preemptive termination. 
 
These results have launched the next phase in the PaCE algorithm optimization, namely 
the isolation of highly repetitive sequences for independent assembly.  This step will 
involve fine tuning the algorithm at a specific phase, which will be discussed later in the 
paper. Further evaluation of the algorithm will also focus on optimization of the program 
parameters and constraint settings. 
 
3 Current Research Project 

 
As a central theme of my undergraduate research, I have continued to investigate 
computational methods and algorithms in bioinformatics.  The objective of my 
undergraduate research project was further research into EST clustering methodology by 
comparing the performance of the PaCE2.3 program with Glimmer2.12 and GeneMark 
genomic assemblers.  The fundamental concept behind this project is the global 
application of the PaCE assembler.  While GeneMark and Glimmer are based upon 
Markov Models to predict the genomes of bacteria and archaea, the PaCE program uses a 
string data structure, a Generalized Suffix Tree, and has been primarily used for the 
assembly of plant genomes.  For that reason, I was interested in determining whether the 
PaCE assembler could successfully assemble a bacterial genome, or if the PaCE 
algorithm was limited to plant genomes.   
 
3.1 Design of the PaCE Algorithm Evaluation Experiment 
 
In order to evaluate the global application potential of the PaCE algorithm, I designed an 
experiment comparing the performance of the PaCE algorithm to other algorithms 
implemented in genomic assembly programs.  Thus far, the PaCE program has been 
primarily used for the assembly of plant genomes, such as wheat, rice and corn.  
However, the underlying methodology of the PaCE algorithm is a string data structure, 
the nature of which is not dataset specific.  More specifically, the algorithm makes no 
assumptions about the input dataset and is not dependent on training datasets or other 
genomic models.  Therefore, the focus of this experiment was a new input dataset for the 
PaCE genomic assembler.  Instead of eukaryote EST sequences, e.g. T. aestivum in the 
summer project, test runs of the PaCE program were performed using a much smaller 
prokaryote microbial genome. In addition, test runs on GeneMark and Glimmer, genomic 
assemblers that specifically predict the genomes of bacteria and archaea, were performed 
using the identical dataset.   The GeneMark and Glimmer test run results were used as a 
comparison standard to ascertain the efficacy of the PaCE results. 
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3.1.1 Genomic Assembly Programs in Brief 

Glimmer is the primary microbial gene finder at The Institute for Genomic Research 
(TIGR). Glimmer, short for Gene Locator and Interpolated Markov Modeler, is a system 
for finding genes in microbial DNA, especially the genomes of bacteria and archaea. It 
uses interpolated Markov models (IMMs) to identify the coding regions and distinguish 
them from non-coding DNA. [1] 

PaCE, Parallel Clustering of ESTs, is a parallel clustering program developed at Iowa 
State University. The program is based on parallel construction of a generalized suffix 
tree (GST) and performance of dynamic pairwise alignments on EST pairs. EST pairs are 
produced on-demand, in decreasing order of quality, while the quality of overlap equals 
the maximal common substring length in the GST. Clusters corresponding to each EST 
are found through successful alignment, and clusters are merged if sufficient overlap 
exists. [2] 

GeneMark for Prokaryotes and Low Eukaryotes (Version 2.1) is a program that predicts 
genes of microbes with a different methodology. The algorithm in GeneMark improves 
the gene prediction quality by finding exact gene boundaries. A Markov model 
framework is the underlying foundation of the GeneMark models, where transitions 
between hidden states in Markov chains model gene boundaries in GeneMark. [5] 

3.1.2  Input Dataset 

The input dataset are 2,079 Neisseria meningitidis strain MC58 (serogroup B) EST 
sequences from the Genbank database. The genome for this microbe has been assembled 
and as such allows for the clustering results from each program to be mapped back 
against the genome. General information, as well as a schematic representation of the 
Neisseria meningitidis MC58 chromosome, is available at http://www.tigr.org/tigr-
scripts/CMR2/GenomePage3.spl?database=gnm. 

3.2 The PaCE algorithm 

The PaCE algorithm is implemented in two stages: the memory intensive parallel 
construction of the GST and the run-time intensive dynamic programming on the 
promising EST pairs [2]. The promising EST pairs term refers to member EST sequences 
that may result in the merging of two clusters upon their successful pairwise alignment.  
 
The first phase of the algorithm involves the parallel construction of the GST.  A GST is 
a string data structure built by finding the longest common substrings of the input 
sequences.  A given string of length l has l leaves, each corresponding to a unique suffix, 
and the string contains at most l internal nodes.  The main idea is that shared paths in the 
GST represent common substrings. Two or more common prefixes will share a common 
path from the root of the GST, or any path representing more than one string ends in a 
node or leaf containing the common substring position of the strings that path covers. [4] 
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In PaCE, the edge-labels of nodes in the GST are the common substrings of input EST 
sequences. The GST generates promising EST pairs based on the maximal common 
substring length of two ESTs, which are found rapidly in linear time by traversing the 
nodes of the GST.  Moreover, the promising pairs are created on demand, in decreasing 
order of quality, or the maximal order of substring length in this algorithm. [3] 
 
PaCE Algorithm  
 

�  Phase One:  Identification of pairs with significant overlap potential 
�  Parallel construction of generalized suffix tree (GST) 
�  Quality of overlap equals the maximal common substring length 
�  Production of pairs on-demand, in decreasing order of quality 
�  Memory intensive 

 
� Phase Two:   Perform dynamic programming on the promising pairs 

�  Perform pairwise alignment on the promising pair 
�  Find clusters corresponding to each EST 
�  Merge clusters if sufficient overlap 
�  Run-time intensive 

 
http://www.bioinformatics.iastate.edu/BBSI/course/ISU-BBSI-04-D4.ppt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Organization of PaCE software [2] 
 

Phase two of the PaCE algorithm is run-time intensive; it is the pairwise alignment phase.  
At the start of the second phase, each EST input sequence is a cluster by itself. If an EST 
sequence from one cluster is successfully aligned with an EST in another cluster, the two 
clusters are merged. The pairwise alignment continues until all possible clusters are 
merged. When a pair of ESTs is chosen for alignment and the resulting alignment does 
not yield sufficient overlap, the time and effort in generating the alignment is wasted.  
Unsuccessful alignment does not mean that the two clusters cannot be merged; there may 
exist another pair of member ESTs from these clusters that will produce sufficient 
overlap upon alignment. [2] 

Parallel Clustering PhaseConstruction/
Preprocessing 

Phase
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An optimal run time in the second phase can be achieved through early identification of 
pairs with significant overlap potential, that is, member ESTs resulting in the merging of 
clusters. The promising EST pairs are identified amongst those pairs with a common 
substring of at least twenty characters in length, as these EST pairs have the greatest 
chance of a successful alignment. Early generation of cluster-merging promising pairs 
would prevent unnecessary extra pairwise alignments. The clusters with sufficient EST 
overlap would be merged early on in this phase, reducing the number of unsuccessful 
alignments and wasted run time [3].  Figure 3 relates the increase in aligned and rejected 
EST promising pairs with the growth of the input dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: PaCE pair generation [3] 
 
Clearly, as the number of EST sequences in the input dataset grows in size, the number of 
promising pairs generated for pairwise alignment also rises.  However, just as the number 
of successful alignments increases, there is a quite noticeable rise in the number of 
unsuccessful alignments.  This is caused by generation of EST promising pairs that meet 
the common substring criteria, yet do not produce a favorable alignment.   
 
The pairwise alignment algorithm seeks to extend the EST pair match from the common 
substring region.  Dynamic programming limits the effort in alignment computation 
through the use of mismatches and gaps to the left and right of the common substring 
region [3]. Frequently though, such an extension is not feasible and the promising pair 
fails the alignment test.  In such cases the number of unsuccessful alignments and wasted 
run time reduce the efficiency of the algorithm.   
 
The next phase of the PaCE algorithm optimization undertaken by PaCE developers 
focuses on this phenomena and aims to reduce the number of aligned and rejected 
promising pairs in the second phase of the PaCE program. 
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4 Experiment Results 
 
The input dataset Neisseria meningitidis strain MC58 contains 2079 sequences. 
Experimentally, the genome has been found to contain ~2160 genes.  Computational tests 
in this experiment included the N. meningitidis EST sequence dataset assembly by 
GeneMark.hmm, Glimmer2.12, and PaCE2.3 genomic assemblers.  
 
In addition to performance comparison testing, additional test runs were performed to 
find the optimal parameter and constraint settings of the programs that yield the closest 
EST clustering as compared to the actual completed N.  meningitidis genome.  
  

� GeneMark.hmm PROKARYOTIC (Version 2.1), using the pseudonative model, 
predicted 1984 genes, or 91.9% of the genome. 

� GeneMark.hmm PROKARYOTIC (Version 2.1), using the heuristic model based 
on E. coli model organism, predicted 1914 genes, or 88.6% of the genome. 

 
� Glimmer2.12, with the following optimal parameters, predicted 2157 genes, or 

99.7% of the genome. 
� Minimum gene length = 300 
� Minimum overlap length = 30 
� Minimum overlap percent = 60.0% 
� Threshold score = 90 

  
� PaCE2.3, with the following optimal (default) parameters, predicted 1974 genes, 

or 91.4% of the genome. 
� Minimum length of exact match for cluster merge  30 
� EndToEndScoreRatioThreshold (global alignment match %)  15  
� EndToEndAlignLenThreshold (length of aligned region)  100 
� MaxScoreRatioThreshold (local alignment match %)  5 

Detailed information and publications about each of the genomic assemblers described in 
this paper along with relevant links and actual output files generated by the programs can 
be found at http://neamh.cns.uni.edu/~cisekk01/cgi-bin/folders/. 
 
5 Conclusions 
  
From the raw results, the methodology behind Glimmer2.12 yields the best results, 
predicting 99.7% of the Neisseria meningitidis strain MC58 genome.  
  
However, a few factors influencing these results have to be noted.  GeneMark.hmm and 
Glimmer2.12 are programs developed for the assembly of bacterial (circular plasmid) 
genomes, and the algorithm takes into account the circular structure of the bacterial 
genome assembled.  PaCE2.3 has been mostly used to assemble linear plant genomes, 
where the suffix tree data structure takes advantage of large datasets with lots of coverage 
and duplication.  
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The PaCE2.3 program seems to be much more data sensitive, because of the exact string 
matching. The program needs a larger dataset with distributed coverage, whereas the N. 
meningitidis dataset contains many sequences that are contained within other larger 
sequences, which decreases coverage.  
  
There is no standard of comparison of parameters between PaCE and the other programs. 
GeneMark.hmm does not have adjustable specific parameters; instead it has the model 
option. Glimmer2.12 has a gene length and overlap options, while PaCE2.3 has 
alignment match scores. With the high percentage of gene overlap in this dataset, ~30% 
on average, it is possible that PaCE2.3 is missing mostly overlap genes. 
  
Bacterial vectors are used as masking vectors in eukaryote genome assembly and 
frequently become part of the EST sequence dataset of the eukaryote. The bacterial EST 
sequences present in a eukaryote input dataset may skew genomic assembly results, but 
eukaryote input datasets are matched against vector databases to remove any repeats and 
contaminants. However, in this case, a bacterial genome is assembled. It's unclear what or 
if any vector sequence is present in the dataset.   
 
6 Future Directions 
 
The evaluation of EST clustering results in this experiment proved challenging because 
the experiment lacked a uniform standard of comparison with respect to assembler 
parameters and settings that could be quantitatively measured.  Upon completion, several 
issues arose in the evaluation of the EST clustering results, as mentioned in the 
conclusions section of the paper.  For this reason, the experiment could be expanded in 
the following areas:  

• Build a program to compare output from the assemblers with the experimental 
genome data, e.g. gene lengths, gene positions.  

• Develop a standard of comparison for the program parameters.  
• Test a wider range of datasets, ranging from prokaryotic to eukaryotic.  
• Research the mathematical models and training sets underlying GeneMark and 

Glimmer. 
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