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Abstract 
 

A binary reflected Gray code (Gray code for short) is a one-to-one function 
G(i) of the integers 0 • i • 2n – 1 (for some pre-selected value of n) to binary 
numbers such that the binary number for G(i) and G(i+1) differ in exactly one 
bit.  For example, with N = 3, the Gray codes (written in binary) are 000, 001, 
011, 010, 110, 111, 101, 100.  In this paper, we describe a dynamic 
programming algorithm and associated storage efficient data structure that 
is capable of generating a complete n-bit binary reflected Gray code sequence 
in provably optimal Θ(2n) time and space.  The algorithm uses the inherent 
redundancy in the elements of a binary reflected Gray code sequence to avoid 
recalculation of repeated subsequences. The resulting method is an optimal, 
convenient, and elegant solution to working with binary reflected Gray codes. 
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1 Introduction 
 
A binary reflected Gray code (Gray code for short) is a one-to-one function 
G(i) of the integers 0 • i • 2n – 1 (for some pre-selected value of n) to binary 
numbers such that the binary number for G(i) and G(i+1) differ in exactly one 
bit.  For example, with n = 3, the Gray codes (written in binary) are 000, 001, 
011, 010, 110, 111, 101, 100.  The inverse Gray code G-1(g) is the one-to-one 
function that computes the integer i for which G(i) = g.  Gray codes are 
named for Frank Gray who patented the use of them in shaft encoders in 
1953 [1]. 
 
Gray codes originated when digital logic circuits were built from vacuum 
tubes and electromechanical relays, at which time counters generated 
enormous power demands and noise spikes when many bits changed at once.  
Using Gray code counters, any increment or decrement in the value changes 
only one bit, regardless of the size of the number, thereby minimizing the 
effect of noise.  Mechanical position sensors use Gray codes to convert the 
angular position of a disk to a digital form [1].  For example, some parts of a 
track on a disk have metal, corresponding to a “1”, and other parts have 
insulator, corresponding to a “0”.  Each sensor has a row of metal fingers, 
radiating out from the center of the disk, with one finger riding on each track.  
As the disk rotates, the metal and insulator regions of the track move under 
each finger, and the combination of 1’s and 0’s read by the fingers indicate 
the angular position of the disk.  Gray codes are used in place of other 
possible binary sequences because the fingers can’t be lined up perfectly, and 
if two bits were to change at the same, one finger would register its bit 
change before the other finger did, causing an undesirable glitch.  Other 
applications of Gray codes involve computing Hamiltonian circuits in 
hypercubes [2], the classification of Venn diagrams [3], the design of 
communication codes [4], and the solution of the famous Towers of Hanoi 
problem [5].  For example, Table 1 (adapted from [6]) illustrates how the 
Towers of Hanoi can be solved using Gray codes. 
 
In Table 1, each bit in the three-bit binary number in the Bitstring column 
corresponds to one of the three discs to be moved, with bit i representing disc 
i.  The convention here is that the smallest disc is disc 1 (the least significant 
bit), and the largest is disc 3 (the most significant bit).  The sequence is 
initialized to 000, and a change in the ith bit from one binary code to the next 
represents a move of disc i.  For example, the flipping of bit 1 from 000 to 001 
implies that disc 1 is to be moved, whereas the flipping of bit 2 from 111 to 
101 implies that disc 2 is to be moved. Hence, the binary reflected Gray code 
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sequence represents a sequence of single disc moves that can be used to solve 
the Towers of Hanoi problem. 
 

 
 

Table 1: Application of Gray Codes to the Towers of Hanoi Problem 
 
In this paper, we present the derivation of a time and space optimal 
algorithm for generating the entire Gray code sequence G(i), 0 • i • 2n – 1, for 
a given number of bits n.  In addition, we also give the corresponding time 
and space optimal algorithm for generating the indices G-1(g) for the sequence 
of Gray codes encoded by g. 
 
 
2 The Recurrence Relations 
 
A sequence of binary reflected Gray codes follow a well-defined pattern.  In 
an n bit system of 2n Gray code values, the kth binary reflected Gray code, 
denoted by G(k,n), can be defined by the recurrence relation: 
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for 0 • k < 2n. In reverse, to compute the index k corresponding to the binary 
reflected Gray code g = gn-1gn-2…g0, where gj ∈ {0,1} for all j, one can compute 
G-1(gn-1gn-2…g0,n) as follows (note that n = �log2(g)�): 
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Both functions, G(k,n) and G-1(g,n), are computed in •(n) time for any fixed k 
or g.  Clearly, if one wanted only one Gray code or the index corresponding to 
just one Gray code value, then the functions above are very efficient (linear 
time in the number of bits is optimal).  But more typically, the entire Gray 
code sequence, or its entire inverse sequence, is desired.  To achieve this, we 
can use a straightforward recursive divide-and-conquer style implementation 
based on the recurrence relations above.  Figure 1 contains the recursive 
implementation that produces the complete binary reflected Gray code 
sequence G(k,n), k=0...2n-1, for n-bits. 
 
public class Recursive { 
 public static String G(int k , int n){ 
  if (n == 1){ 
   return new Integer(k).toString(); 
  } 
  else if (k < (int)Math.pow(2,n-1)){ 
   return "0" + G(k, n - 1); 
  } 
  else { 
   return "1" + G((int)Math.pow(2,n) - 1 - k, n - 1); 
  } 
 } 
 
 public static String[] graycode(int n){ 
  String[] result = new String[(int)Math.pow(2,n)]; 
  for (int k = 0; k < (int)Math.pow(2,n); k++){ 
   result[k] = G(k,n); 
  } 
  return result; 
 } 
 
 public static void main(String[] args) { 
  String[] codes = graycode(4); 
  for (int i = 0; i < codes.length; i++){ 
   System.out.println(codes[i]); 
  } 
 } 
} 

Figure 1: Recursive Divide-and-Conquer Construction to Compute 
G(k,n) for all k. 

 
Is this recursive implementation an efficient way to compute the entire Gray 
code sequence?  Since each computation of G(k,n) requires •(n) steps, and the 
implementation of graycode(n) calls G(k,n) for k=0 to 2n-1, the total running 
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time is on the order of •(n·2n). The same analysis is true for computing the 
entire inverse sequence for G-1(g,n).  
 
Can we do better?  Since any algorithm that generates and stores the entire 
n-bit Gray code sequence must produce and store 2n Gray codes, the 
generation of a complete Gray code sequence is an intractable problem (as it 
must produce a non-polynomial amount of output).  Therefore, the best 
possible time and space complexity is •(2n).  Our two simple recursive divide-
and-conquer algorithms based on the direct implementation of the definitions 
of G(k,n) and G-1(k,n) are therefore suboptimal. 
 
So, what is the source of the inefficiencies in our algorithms, and can those 
inefficiencies be removed?  To explain the inefficiency, we focus on the 
algorithm for producing the Gray codes, since the analysis is similar for the 
inverse problem.  Notice that our algorithm suffers from the fact that the 
recursive sub-problems solved during the algorithm’s execution are not 
independent of one another.  Table 2 illustrates this point.   
 

Index 1-bit Gray 
Codes 

2-bit Gray 
Codes 

3-bit Gray 
Codes 

4-bit Gray 
Codes 

0 0 00 000 0000 
1 1 01 001 0001 
2  11 011 0011 
3  10 010 0010 
4   110 0110 
5   111 0111 
6   101 0101 
7   100 0100 
8    1100 
9    1101 

10    1111 
11    1110 
12    1010 
13    1011 
14    1001 
15    1000 

Table 2: Illustration of Repeated Work during Generation of 4-bit 
Gray Code Sequence 

 
For example, to generate the 6th (index 5) 4-bit Gray code 0111 requires 
generation of the 6th 3-bit Gray code 111, which requires generation of the 3rd 
2-bit Gray code 11, which requires generation of the 2nd 1-bit Gray code 1.  In 
addition, generation of the 11th (index 10) 4-bit Gray code 1111 also requires 
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this exact same set of prerequisite Gray codes to be generated.  This repeated 
work is the source of the inefficiency in our algorithms.  
 
 
3 A Dynamic Programming Algorithm 
 
The dependency between the sub-problems of the divide-and-conquer 
approach immediately suggests the use of a dynamic programming approach.  
In a dynamic programming approach, the sub-problems are ordered, solved, 
and stored so that the solution of a problem solves each sub-problem only 
once.  In our Gray code application, this can be achieved by producing all 1-
bit Gray codes before any 2-bit Gray codes, all 2-bit Gray codes before any 3-
bit Gray codes, and so on.  The Table 3 illustrates this relationship. 
 

Index 1-bit Gray 
Codes 

2-bit Gray 
Codes 

3-bit Gray 
Codes 

4-bit Gray 
Codes 

0 0 00 000 0000 
1 1 01 001 0001 
2  11 011 0011 
3  10 010 0010 
4   110 0110 
5   111 0111 
6   101 0101 
7   100 0100 
8    1100 
9    1101 

10    1111 
11    1110 
12    1010 
13    1011 
14    1001 
15    1000 

Table 3: Illustration of the Reuse of Cached Sub-problem Solutions 
 
This approach requires us to generate and store the entire (n-1)-bit Gray code 
sequence prior to generating any of the codes in the n-bit Gray code sequence, 
and hence, is no longer a recursive approach (although a recursive approach 
using memoization is also possible).  The obvious approach to implementing 
this algorithm is to use a two-dimensional array to store the previously 
generated Gray code sequences so that they can be easily located to produce 
the next "longer" sequence of Gray codes.  Figure 2 contains a Java 
implementation for this approach. 
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public class DynamicProgramming { 
 public static String[] graycode(int n){ 
  int k = (int) Math.pow(2,n); 
  String[][] _G = new String[k][n+1]; 
   
  _G[0][1] = "0"; 
  _G[1][1] = "1"; 
   
  for (int j = 2; j <= n; j++) { 
   int half = (int) Math.pow(2,j-1); 
   int c = (int) Math.pow(2,j) - 1; 
    
   // row index < 2^(n-1) 
   for (int i = 0; i < half; i++) { 
    _G[i][j] = "0" + _G[i][j-1]; 
   } 
    
   // row index >= 2^(n-1) 
   for (int i = half; i < 2*half; i++) { 
    _G[i][j] = "1" + _G[c-i][j-1]; 
   } 
  } 
   
  /* the Gray code sequence for n bits is now found 
     in entries _G[i][n], for i = 0 to k-1 */ 
   
  String[] result = new String[k]; 
  for (int i = 0; i < k; i++) { 
   result[i] = _G[i][n]; 
  } 
   
  return result; 
 } 
 
 public static void main(String[] args) { 
  String[] codes = graycode(4); 
  for (int i = 0; i < codes.length; i++){ 
   System.out.println(codes[i]); 
  } 
 } 
} 

Figure 2: Dynamic Programming Construction of all n-bit Gray 
Codes. 

 
Notice that this algorithm first produces and stores a Gray code sequence of 
length 2 (n=1 bit), then of length 4 (2 bits), then length 8 (n=3 bits), and so on 
until the complete sequence of length 2n for n bits is produced and stored.  
Both the time and space complexity of this algorithm is therefore given by 
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This is within a constant multiple of the optimal time and space of •(2n). 
 
 
4 A Space and Time Optimal Algorithm 
 
A close examination of Table 3 reveals some important information.  First, 
rather than storing each Gray code as a string, we could simply store each 
Gray code as an integer between 0 and 2n – 1 thereby allowing each Gray 
code to be stored as an integer in an n-bit word.  Second, the generation of the 
n-bit Gray code sequence only depends on the storage of the (n-1)-bit Gray 
code sequence and not any of the preceding Gray code sequences.  This 
relieves the algorithm from needing to store anything but the immediately 
previous Gray code sequence.  Third, notice that the first half of each n bit 
Gray code sequence is generated by directly copying the values of the 
previous (n-1)-bit Gray code sequence and prepending a leading “0”.  
However, given our new representation of each Gray code as an n-bit word, 
this simply equates to making explicit the implicit zero in the most-
significant bit!  This means that the entire (n-1)-bit Gray code sequence can 
be retained without modification (given a fixed word size) when generating 
the n-bit Gray code sequence; hence, there is no work required by the 
algorithm to generate the first half of the n-bit sequence.  Finally, notice that 
the generation of the second half of the n-bit Gray code sequence only 
involves prepending a "1" to the most significant bit of each (n-1)-bit Gray 
code, but where the order in which the (n-1)-bit Gray codes are used is the 
reverse order in which they appear in the (n-1)-bit sequence (as illustrated by 
the orange groupings in Table 3).  This allows the algorithm to generate the 
second half of the n-bit Gray code sequence by setting each successive Gray 
code to the corresponding Gray code in the first half of the sequence added to 
the constant value 2n-1 (to "set" the nth bit).  
 
These observations lead to the very compact implementation shown in Figure 
4 for generating the complete n-bit binary reflected Gray code sequence. 
 
public class Optimal { 
 public static int[] graycode(int n){ 
  int count = 0; 
  int twoHatJ = 1; 
  int[] g = new int[(int)Math.pow(2,n)]; 
  g[0] = 0; 
  g[1] = 1; 
  count = 2; 
  for (int j = 1; j < n; j++){ 
   twoHatJ = twoHatJ << 1; 
   for (int i = 1; i <= twoHatJ; i++){ 
    g[count++] = twoHatJ | g[twoHatJ - i]; // HERE 
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   } 
  } 
   
  return g; 
 } 
 
 public static void main(String[] args){ 
  int[] codes = graycode(4); 
  for(int i = 0; i < codes.length; i++){ 
   System.out.println(codes[i]); 
  } 
 } 
} 

Figure 3: Time and Space Optimal Generation of all n-bit Gray 
Codes. 

 
The sequence of bits generated by this algorithm is illustrated in the Table 4.   
 

0000 
0001 
0011 
0010 
0110 
0111 
0101 
0100 
1100 
1101 
1111 
1110 
1010 
1011 
1001 
1000 

Table 4: Incremental Generation of the 4-bit Gray Code Sequence  
 
The black bits represent the bits that are simply made explicit as the 
algorithm unfolds based on the underlying machine representation of each 
Gray code value as an unsigned integer.  The blue bits represent bits 
constructed during the generation of the 1-bit Gray code sequence; the green 
bits represent bits constructed during the generation of the 2-bit Gray code 
sequence; the red bits represent bits constructed during the generation of the 
3-bit Gray code sequence; the purple bits represent the bits constructed 
during the generation of the 4-bit Gray codes. 
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Notice that the algorithm first produces 2 values, then 2 additional values, 
then 4 additional values, then 8 additional values, and so on.  Therefore the 
algorithm produces and stores (for an n-bit Gray code sequence) exactly 
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values.  Thus, the time and space complexity for this method is •(2n), which is 
optimal for the generation of a complete n-bit Gray code sequence.  Further, 
the algorithm, as shown in Figure 3, is extremely concise and easy to 
implement. 
 
While this analysis has focused on the generation of the Gray code sequence 
for any fixed value of n, the same approach can be applied to the inverse 
function, this is to generate the indices G-1(g) for the sequence of Gray codes 
encoded by g.  Interestingly, the code for the inverse function is identical to 
the code for the normal function except for one line.  In particular, the line 
marked by the “// HERE” comment in Figure 3 need only be replaced with 
 

g[count++] = (2*twoHatJ-1) - g[i-1]; 
 
Given that single change, it is clear that that time and space complexity for 
this inverse method is also optimal at •(2n). 
 
In object-oriented design, there is a technique of implementing such a pair of 
functions that differ only in certain predetermined steps.  This technique is 
called the Template Method design pattern.  In the Template Method design 
pattern, the invariant code between the two functions is defined only once, 
using a “hook” for the variant code.  The variant code is then defined in two 
sub-classes so that when invoked by the invariant code, the appropriate 
variant behavior occurs.  The Java implementation of this idea that now 
implements  both the Gray code and inverse Gray code functions is shown in 
Figure 4. 
 
public abstract class TemplateMethod { 
 protected abstract int mapping(int[] g, int twoHatJ, int i); 
 
 public int[] graycode(int n){ 
  int count = 0; 
  int twoHatJ = 1; 
  int[] g = new int[(int)Math.pow(2,n)]; 
  g[0] = 0; 
  g[1] = 1; 
  count = 2; 
  for (int j = 1; j < n; j++){ 
   twoHatJ = twoHatJ << 1; 
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   for (int i = 1; i <= twoHatJ; i++){ 
    g[count++] = mapping(g, twoHatJ, i); 
   } 
  } 
 
  return g; 
 } 
} 
 
public class ForwardVariant extends TemplateMethod { 
 protected int mapping(int[] g, int twoHatJ, int i){ 
  return twoHatJ | g[twoHatJ - i]; 
 } 
} 
 
public class ReverseVariant extends TemplateMethod { 
 protected int mapping(int[] g, int twoHatJ, int i){ 
  return (2*twoHatJ-1) - g[i-1]; 
 } 
} 
 
public class Main { 
 public static void main(String[] args) { 
 
  // list the Gray codes in order 
  ForwardVariant fv = new ForwardVariant(); 
  int[] codes = fv.graycode(4); 
  for (int i = 0; i < codes.length; i++){ 
   System.out.println(codes[i]); 
  } 
 
  // list the indices corresponding to the Gray codes 
  ReverseVariant rv = new ReverseVariant(); 
  int[] indices = rv.graycode(4); 
  for (int i = 0; i < indices.length; i++){ 
   System.out.println(indices[i]); 
  } 
 } 
} 

Figure 4: Template Method Construction of Gray Codes 
 
 
5 Summary and Significance 
 
In this paper, we have presented the derivation and implementation of a time 
and space optimal algorithm for the generation of an n-bit binary reflected 
Gray Code sequence and its inverse (or reverse) function.  The resulting 
algorithm is concise and almost trivial to implement.  Furthermore, the 
reverse algorithm for generating the index of each Gray code is virtually 
identical to the forward algorithm (a single line change), and the resulting 
pair of algorithms can be effectively combined into a single generic function 
via the use of the Template Method design pattern.  The end result is an 
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optimal, convenient, and elegant solution to working with binary reflected 
Gray codes. By way of comparison, one of the most common implementations 
of these methods is also concise, but quite cryptic as shown in Figure 5. 
 

 
Figure 5: Numerical Recipes [7] Version of Gray Code Methods 
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