

A CHALLENGE – FIND ALL SOLUTIONS

Larry Atwood
Computer Science

Minot State University
Minot, ND 58707

unwound@min.midco.net

Abstract

A checkerboard puzzle existed during the 30’s-50 in many forms and with many different
names. Names like: Amus ‘N’ Ande Checkerboard Puzzle, the Great Nut House Puzzle
and the Famous Banzee Island Checkerboard Puzzle. The puzzles usually contain 12 oddly
shaped pieces, sometimes 14 pieces with the goal of putting them together to form a
checkerboard. The total ways of arranging 12 pieces each having 4 rotations, is 12! · 412

and this is equal to 8036313307545600 or 8.0^15 possible solutions. A computer trying a
million arrangements per second would take 254.8 years and a computer trying a billion
arrangements per second would take .25 years to check all possibilities. The 22 correct
solutions for the checkerboard made up of 12 pieces will be found in 45 seconds or less
running on a 1.33 MHz laptop. A detail solution, method and program are presented in the
main section.

 1

Introduction

A checkerboard puzzle existed during the 30’s-50 in many forms and with many different
names. Names like: Wrobbell’s Checkerboard Puzzle, Amus ‘N’ Ande Checkerboard
Puzzle, Bug House Puzzle, Great Nut House Puzzle and Famous Banzee Island
Checkerboard Puzzle. The puzzles usually contain 12 oddly shaped pieces, sometimes 14
pieces with the goal of rearranging them to form a checkerboard. The shape of the 12
pieces is shown in Figure 1. The Banzee Island Puzzle gives the following history: “Chief
Zebas realizing the natives of this little island off, South Africa feared mental torture more
than physical punishment established the law that whenever a crime was committed, the
period of confinement would depend upon how long it took the prisoner to put a
checkerboard together that had been cut into twelve pieces. Occassionally[sic], by sheer
luck, a prisoner would have the board put together within a few hours – often days or
weeks passed before the pieces where fitted together – and many natives had even gone
crazy from the torture without the solution.”

Puzzle Analysis

The magnitude of the checkerboard puzzle can be realized by an analysis as follows: the
checkerboard will be solved by placing a piece in the upper left corner. Then the board
will be analyzed by checking the same row for the next empty location and if no empty
space is found, the rows directly beneath will be searched. The searching of the rows will
always be from left to right. After the second piece is placed, the process will be repeated
until all pieces are placed. Because one of the twelve pieces must be placed in the upper
left corner, there are 12 choices for this location. After this piece is placed, it follows that
there will be 11 choices for the next piece, 10 for the next and finally there will be only one
choice for the last piece. Thus 12! is the total for placing the twelve pieces onto the board.
All of the pieces except one have 4 different rotations. The rotations for piece 10 are
shown in Figure 2. When rotations are added, the total number of possible placements of
the 12 pieces with rotations is 12! · 412. This evaluates to 8036313307545600 or 8.0^15
possible arrangements. A computer trying a million arrangements per second would take
254.8 years and a computer trying a billion arrangements per second would take .25 years.

1 2 3 4 5

6 7 8 9 10 11

0

Figure1: The twelve pieces of the puzzle

 2

Piece 0 which has only 2 rotations will cut these numbers in half. Today’s desktop
computers cannot try a billion arrangements per second, so will cutting the numbers in half
help? These numbers are provided to show the magnitude of the puzzle.

Figure 2: The four rotations of piece #10.

The Challenge

The magnitude of this problem presents a very interesting computer programming
assignment in Computer Science. The solution presented uses brute force. See Appendix A
for the complete program. The program also uses recursion to process the permutation.
Recursion will place a piece, backtracks to remove and rotate the previous piece and tries
all the pieces in the permutation until success or failure is found. To be successful with
brute force the correct permutation generator [1], data structure, optimization and
algorithm have to be chosen. When these correct choices are made, the 22 solutions for the
checkerboard are found in slightly less than 45 seconds running on a 1.33 MHz laptop.
See Figure 3 for one of the 22 solutions. Because piece 4 and 10 are identical in shape, the
number of different solutions can be questioned. Solutions found in Figure 3 and 4 are the
same except pieces 4 and 10 have been interchanged. This paper considers Figure 3 and 4
two different solutions. The method presented in this paper was also used to find a single
solution during the 4 and 8 MHz. machine age.

Figure 3: One of the twenty-two solution.

4 4 4 4 2 2 2 2
4 7 7 7 7 7 2 2
4 7 3 3 3 6 5 5
9 9 3 3 6 6 5 5
1 9 9 8 6 10 0 5
1 1 9 8 6 10 0 5

11 8 8 8 6 10 0 5

11 11 11 11 11 10 10 10

X Y Z W

 3

Figure 4: One of the twenty-two solution.

Permutation Generator

The brute force method generates all the permutations of the numbers 0..11. Figure 5 is an
example of a generated permutation. The numbers in the permutation represent the pieces
in the puzzle and the location in the permutation represents the order in which the pieces
will be placed onto the board. At location 0 in Figure 5 is piece 11 and will be the first
piece placed onto the checkerboard. At location 1 is piece 5 and will be the second piece
placed onto the board. Finally at location 11 is piece 0 and this will be the last piece placed.
Failure of a permutation occurs when a piece cannot be placed and all rotations of the
pieces to the left in permutation have been rotated trying to enable the piece to be
placed. Figure 6 is the permutation that would give the solution in Figure 3.

Perm(n) 11 5 9 6 10 7 8 4 3 2 1 0
Index 0 1 2 3 4 5 6 7 8 9 10 11

Figure 5: A permutation of the twelve pieces.

Perm(n) 4 2 7 3 6 5 9 1 8 10 0 11
Index 0 1 2 3 4 5 6 7 8 9 10 11

 Figure 6: A permutation of the twelve pieces and solution.

Piece Placement and Rotations

The pieces are placed onto the checkerboard so they will fill a selected square and
never fill squares to the left of the selected square or above the selected square. This

10 10 10 10 2 2 2 2
10 7 7 7 7 7 2 2
10 7 3 3 3 6 5 5
9 9 3 3 6 6 5 5
1 9 9 8 6 4 0 5
1 1 9 8 6 4 0 5

11 8 8 8 6 4 0 5

11 11 11 11 11 4 4 4

 4

requirement can be accomplished by choosing an appropriate square in each rotation.
Figure 7 shows the four rotations of piece number 10 and arrows pointing to the key
squares. Observe that these rotations will fill a chosen square on the board and will never
fill above that chosen location. They will also never fill to the left in the same row as the
chosen square. This selection and placement process will fill the board in an orderly
downward process. Each piece and its rotations can be stored with offsets. Figure 7 also
shows the offsets for the rotation of piece 10. The complete list of all pieces and their
corresponding offsets can be found in Table 1. The number preceding each group of 4
rotations in Table 1 is the number of individual squares in each piece. This number aids in
reading the file of offsets.

 Figure 7: Rotations and offsets

Discovery One

The brute force method can now find 1 of the 22 solutions in approximately 1 hour using a
1.33 MHz. computer. Finding a solution is possible because during the placing of the
pieces the permutation fails before all the pieces have to be placed. The number 12! · 412 is
reduced because only a few of the pieces have to be tried before it fails. The actual time to
find the solutions will actually depend on several factors: it depends on the speed of the
computer, how the permutation array is initialized, the speed of the permutation generator
and other factors. Finding all 22 solutions is still time consuming on a 1.33 MHz. machine.

Piece 10 rotation X

 offsets

(0,0), (0,1), (0,2), (1,2), (2,2), (3,2)

Piece 10 rotation Y

Piece 10 rotation Z

Piece 10 rotation W

(0,0), (1,0), (2,0), (2,-1), (2,-2), (2,-3)

(0,0), (1,0), (2,0), (3,0), (3,1), (3,2)

(0,0), (0,1), (0,2), (0,3), (1,0), (2,0)

 5

Discovery Two

As the permutations are generated another observation is discovered that will shorten the
process of finding a solution drastically. The permutations are generated by changing the
numbers on the left end of the list and working towards the right. Table 2 demonstrates this
observation. The numbers at index 11..3 are the same for all 4 permutations. This means
that if the algorithm had started trying to place the pieces onto the board by starting with
index 11, then 10 and working left and if the process fails at say index 8, no permutation
has to be tried until the number in the permutation at 8 changes. This would require the
routine that tries the pieces to remember the lowest location of failure and pass this
information back to the permutation generator. The generator would then not have to call
the solve routine until it generates a permutation with a different number at that failure
point. This cuts the time of finding all the solutions to less than 2 minutes on a 1.33 MHz
computer. Considerable time is saved because the next empty location does not have to
found, the board does not have to be analyzed to see if the piece will fit, the piece doesn’t
have to be placed and removed many times and other auxiliary routines do not have to be
called.

 Table 1: Offsets for all 12 pieces.

Perm(n) 11 5 9 6 10 7 8 4 3 2 1 0
Perm(n+1) 5 11 9 6 10 7 8 4 3 2 1 0
Perm(n+2) 9 11 5 6 10 7 8 4 3 2 1 0
Perm(n+3) 11 9 5 6 10 7 8 4 3 2 1 0
Index 0 1 2 3 4 5 6 7 8 9 10 11

 Table 2: Four selected permutations.

3
1001020
1000102
1001020
1000102
3
0000110
1000111
100101-1
1001011
6
0000110112030
1000102031213
100102-1203-130
1000110111213

5
00001101121
1000111101-1
10010112120
10001021011
6
1000102122232
10010202-12-22-3
0001020303132
1000102031020
7
100011011213141
0000111101-11-21-
000102030404131
000010203041011

6
000101-12-13-14-1
1000102031314
1001020303-14-1
0000111121314
6
0000111213141
000101-11-21-31-4
1001020304041
1000102030410
5
00001021222
00010202-12-2
00010202122
00001021020

6
0000110203040
0000102030414
000102030404-1
1001011121314
5
00001111222
000101-12-12-2
00010112122
10001101-12-1
6
1000102122232
10010202-12-22-3
0001020303132
1000102031020

 6

Conclusions

Finally when the compiler optimization is turned on, the time drops to about 45
seconds to find all 22 solutions. The time can be reduced even more by removing
recursion and moving the auxiliary procedures into the solve routine to save the
creation of activation records. The time has been reduced to less than 9 seconds on a
1.33 MHz machine by storing the board, pieces, and rewriting the procedures using bit
numbers and bit manipulation. The bit manipulation procedures were also moved into
the solve procedure to save creation of activation records. Once the algorithm of
solving the checkerboard puzzle is presented, it seems simple and straight
forward. Prior to presenting the algorithm it seems like an insurmountable
problem to most beginning Computer Science students.

Reference

[1] Robert L. Kruse (1984), Data Structure and Program Design, Prentice Hall, P. 269

 7

Appendix A

C++ Program

#include <fstream.h>
#include <iomanip.h>

class piece {
public:
 int number;
 int rotations[4][15];
};

class ckbd {
public:
 ckbd();
 void placepiece(int row, int column, int loc, int rot);
 void removepiece(int row, int column, int loc, int rot);
 bool checkpiece(int row, int column, int loc, int rot, int & color);
 void locateposition(int & row, int & column);
 void printboard();
 void ReadPieces();
 void generate_permutation(int n);
 void solveit(int & loc, int row, int column, int & color, int & count);
 void printpermute();
 int numberoftimes;
 int list[13];
 int count;
 bool dif;
 int oldlist[13];
 int board[8][8];
 piece pieces[12];
};

ckbd::ckbd() { /* initialized the permutation array and saves a copy*/
 for(int i=0;i<=12;i++) { /* the duplicate array is used to see if the next permutation */
 list[i] = 12-i; /* compares for optimization*/
 oldlist[i] = list[i];
 }
 oldlist[12]=1;
 count=12;
 for (int r=0;r<8;r++)
 for (int c=0;c<8;c++)
 board[r][c]=-1;
 numberoftimes = 1;
 dif = false;

 8

}

void ckbd::placepiece(int row,int column,int loc,int rot){ /* place the piece*/
 for (int i=1; i<2*pieces[list[loc]].number; i=i+2)
 board[row+pieces[list[loc]].rotations[rot][i]][column+pieces[list[loc]].rotations[rot][i+1]]=list[loc];
}

void ckbd::removepiece(int row,int column,int loc,int rot){ /* remove the piece*/
 for (int i=1; i<2*pieces[list[loc]].number; i=i+2)
 board[row+pieces[list[loc]].rotations[rot][i]][column+pieces[list[loc]].rotations[rot][i+1]]=-1;
}

bool ckbd::checkpiece(int row,int column, int loc, int rot, int &color){ /* checks to see if all the */
 if((((row+column)%2==0)&&(pieces[list[loc]].rotations[rot][0]!=0))|| /* squares are available */
 (((row+column)%2==1)&&(pieces[list[loc]].rotations[rot][0]!=1)))
 return false;
 for (int b=1;b<(pieces[list[loc]].number * 2); b= b + 2) {
 int rownumber=pieces[list[loc]].rotations[rot][b];
 int columnnumber=pieces[list[loc]].rotations[rot][b+1];
 if ((rownumber + row < 0) || (rownumber + row > 7)||
 (columnnumber + column < 0) || (columnnumber + column > 7))
 return false;
 if(board[rownumber + row][columnnumber + column]!=-1)
 return false;
 }
 return true;
}

void ckbd::locateposition(int & row,int & column){ /* locates the location for placing the next piece*/
 for (column;column<8;column++)
 if(board[row][column]==-1)
 return;
 for(row;row<8;++row)
 for (column=0;column<8;column++)
 if (board[row][column] == -1)
 return;
}

void ckbd::printboard(){
 for (int r=0;r<8;r++) {
 for (int c=0;c<8;c++)
 cout << setw(3) << board[r][c];
 cout << endl;
 }

 9

 cout << endl<<endl;
}

void ckbd::ReadPieces(){
 char num[80];
 char filename[30]="puzzle.dat";
 fstream infile;
 infile.open(filename, ios::in);
 if (!infile)
 cout << "Cannot open file " << endl;
 else {
 int count=0;
 int size;
 while (!infile.eof()) {
 infile.getline(num,80);
 size = num[0]-48;
 pieces[count].number=size;
 for (int rot=0;rot<=3;rot++) {
 infile.getline(num,80);
 int ct = 0;
 for(int h=0;h<=size*2;h++){
 if(num[ct]=='-') {
 ct++;
 pieces[count].rotations[rot][h]=(num[ct]-48) * -1;
 }
 else
 pieces[count].rotations[rot][h]=(num[ct]-48);
 ct++;
 }
 }
 count++;
 }
 }
 infile.close();
}

void ckbd::generate_permutation(int n){ /*Generates the permutations*/
 int c;
 int t;
 c = 1;
 if(n > 2)
 generate_permutation(n-1);
 else {
 dif = false;
 for (int i = 12; i >= count; i--)
 if (list [i] != oldlist[i])

 10

 dif = true;
 if (dif) {
 for (i = 0; i <= 12; i++)
 oldlist[i] = list[i];
 int loc =12;
 int color=0;
 count = 12;
 solveit(loc, 0, 0, color, count);
 }
 }
 while (c < n) {
 if (n%2==0) {
 t = list[n];
 list[n] = list[c];
 list[c] = t;
 }
 else {
 t = list[n];
 list[n] = list[1];
 list[1] = t;
 }
 c = c+1;
 if (n > 2)
 generate_permutation(n-1);
 else {
 dif = false;
 for (int i = 12; i >= count; i--)
 if (list [i] != oldlist[i])
 dif = true;
 if (dif) {
 for (i = 0; i <= 12; i++)
 oldlist[i] = list[i];
 int loc =12;
 int color=0;
 count = 12;
 solveit(loc, 0, 0, color, count);
 }
 }
 }
}

void ckbd::solveit(int &loc, int row, int column, int &color, int &count){ /* recursive procedure to*/
 int times; /* find solutions*/
 if (loc == 0) {
 printboard();
 cout << numberoftimes << endl;

 11

 numberoftimes++;
 }
 else {
 locateposition(row,column);
 if(list[loc]==0)
 times=2;
 else
 times=4;
 for(int rot=0;rot<times;rot++) {
 if (checkpiece(row, column, loc, rot, color)) {
 placepiece(row,column,loc,rot);
 loc--;
 if (count > loc)
 count = loc;
 solveit(loc,row,column,color,count);
 loc++;
 removepiece(row,column,loc,rot);
 }
 }
 }
}

void ckbd::printpermute() {
 for(int j=1;j<=12;j++)
 cout<<list[j]<<" ";
 cout<<endl;
}

#include <iostream.h>
#include "checker.h"

void main()
{
 ckbd myboard;
 int n=12;
 myboard.ReadPieces();
 myboard.generate_permutation(n);
}

