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Abstract 
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)( ivV = , )( ibb = can be solved very accurately regardless of condition number using 
Björck-Pereyra-type methods. We explain this phenomenon by the following facts. First, 
the Björck-Pereyra methods, written in matrix form, are essentially an accurate and 
efficient bidiagonal decomposition of the inverse of the matrix, as obtained by Neville 
Elimination with no pivoting. Second, each nontrivial entry of this bidiagonal 
decomposition is a product of two quotients of (initial) minors. We use this method to 
derive and implement a new method of accurately and efficiently solving totally positive 
Cauchy linear systems in time complexity O(n2). 
 
 
 
 
 
 
 
 
 
Keywords: Accuracy, Björck-Pereyra-type methods, Cauchy linear systems, floating 
point architectures, generalized Vandermonde linear systems, Neville elimination, totally 
positive, LDU decomposition.  

 
Note: In this paper we assume that the nodes xi and yj are pair wise distinct and C is totally positive



 1 

1 Background 
 
 
Definition 1.1 
 
A Cauchy matrix is defined as: 

njifor
yx

yxC
ji

,...,2,1,,
1

),( =
�
�

�

�

�
�

�

�

−
=      (1.1) 

where the nodes xi and yj are assumed pair wise distinct. C(x,y) is totally positive (TP) if  
nnnn xxxxyyyy <<<<<<<<<< −− 1211210 �� .  

A matrix �(x,y) = (�ij) n
ji 1, = is said to be of Cauchy-type if its entries are of the form 

�ij = 
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ji

yx

fh

−
,  njifor ,...,2,1, =       (1.2)  

where the nodes satisfy the same conditions as in (1.1), and hi, fi are no vanishing scalars. 
For U = diag(h1, h2,…, hn) and V = diag(f1, f2, …, fn), �(x,y) can be factored according to  
             �(x,y) = UC(x,y)V                                                                                         (1.3) 
where C(x,y) is defined as in  (1.1). 
 
 
Proposition 1.1 
 
If fl(x) is the representable floating point number adjacent to x then for all real number x, 
fl(x) = x(1 + δ)    (1.4) 
where |δ| < ε and ε is the unit round off, called machine precision. 
 
A proof of this proposition is available in [7] p.38 
 
 
1-1 The analysis of errors 
 
A forward error analysis is the error analysis in which one keeps track of the errors as 
they are introduced. On the other hand a backward error analysis is the error analysis in 
which one takes the point of view that the computed solution to the problem must be the 
exact solution of a perturbed problem. To be more explicit, suppose that an 
approximation � to y = f(x) is computed in an arithmetic of precision �, where f is a real 
scalar function of a real scalar variable. How should we measure the “quality” of �? In 
most computations we would be happy with a tiny relative error, Erel(�) ≈  �, but this 
cannot always be achieved. Instead, by focusing on the relative error of � we can ask, “for 
what set of data have we actually solved our problem?” That is, for what ∆x do we have � 
= f(x + ∆x)? In general, there may be many such ∆x, so we should ask for the smallest 
one. The value |∆x| (or min |∆x|), possibly divided by |x|, is called the backward error. 
The absolute and relative errors of � are called forward errors, to distinguish them from 
the backward errors. 
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To illustrate backward error analysis, suppose we are solving the set of linear algebraic 
equations  
                      Ay = b                                                                                            (1.5) 
Suppose we obtain the computed solution � and let h be the error vector  
                      h = � – y                                                                                         
If we take the point of view that � = y + h is the exact solution of a perturbation of the 
system (1.5) where the perturbation is in b then we may write 
                     A(y + h) = b + k,                                                                            (1.6) 
where k is the perturbation vector. 
Wilkinson (1963) gives the following bound (we assume that the vector matrix norms 
used in this treatise are consistent, i.e. ||Ay|| � ||A||⋅||y||) on the relative error in y as a 
function of the relative error in b. 
                  ||h|| / ||y|| � N ||k|| / ||b||                                                                       (1.7)                   
where        N = ||A||⋅||A-1||                                                                                    
is called the condition number for the system (1.5). 
 
 
1-2 Cancellation 
 
Cancellation is what happens when two nearly equal numbers are subtracted. It is often, 
but not always, a bad thing. [7]  
 
Consider the function f(x) = (1 – cos x)/x2. With x =1.2 x 10-5 the value of cos x rounded 
to 10 significant figures is c = 0.9999 9999 99, so that 1 – c = 0. 0000 0000 01. Then (1 – 
c)/x2 = 10-10/(1.44 x 10-10) = 0.6944…, which is clearly wrong given the fact that 0 � f(x) 
� ½ for all x ≠ 0. A 10-significant-figure approximation to cos x is therefore not sufficient 
to yield a value of f(x) with even one correct figure. The problem is that 1 – c has only 1 
significant figure. The subtraction 1 – c is exact, but this subtraction produces a result of 
the same size as the error in c. In the other words, subtraction elevates the importance of 
the earlier error. In this particular example it is easy to rewrite f(x) to avoid the 
cancellation. Since cos x = 1 – 2sin2(x/2), 
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Evaluating this second formula for f(x) with a 10-significant-figure approximation to 
sin(x/2) yields f(x) = 0.5, which is correct to 10 significant figures. 
 
It is important to realize that cancellation is not always a bad thing. There are several 
reasons. First, the numbers being subtracted may be error free, as when they are from 
initial data that is known exactly. Second, the effect of cancellation depends on the role 
that the result plays in the remaining computation. For example, if x » y ≈ z > 0 then the 
cancellation in the evaluation of x + (y – z) is harmless.  
 
 
1-3 Ill conditioned problems 
 
Let consider a mapping of the form  
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              f: D ⊂ Rp →  Rq                                                                              
where R is the set of real numbers. The p components of a vector d ∈ D are the data that 
determine the problem, and the q components of the vector f(d) constitute the solution to 
the problem. An interesting mathematical question to ask about any problem is how 
sensitive is the solution f(d) to small perturbations in d? 
Let δ be a small perturbation in d. The sensitivity question now becomes how much does 
f(d + δ) differ from f(d)? To put it in more mathematical terms, suppose ||⋅|| is a vector 
norm and suppose ||δ || is a small positive number. Can we assume that || f(d + δ) – f(d) ||     
is also a small positive number? When the answer is yes, the solution is not sensitive to 
small perturbations in the data. Such a problem is called well conditioned. However, for 
some problems the answer is no, in which case the solution is sensitive to small 
perturbations in the data. Such a problem is called ill conditioned.  
 
A system of equations (Ay = b) is said to be ill-conditioned if a relatively small change in 
the coefficients of matrix A causes a relatively large change in the solution. Conversely a 
system of equations (Ay = b) is said to be well-conditioned if a relatively small change in 
the coefficients of matrix A causes a relatively small change in the solution. 

 
In addition to its interpretation as the perturbation vector in (1.6), the vector k can be 
interpreted as the residual vector 
            k = A� – b                                                            
However, � can be a poor approximation to y even with a relatively small residual vector 
k. This illustrates the well-known fact that for ill-conditioned problems, a poor 
approximate solution � can give a small residual vector k. Consequently, the size of the 
residual vector is not always a good test of how good a computed solution might be. It is 
inequality (1.7) which provides the clue for understanding what is happening here. If the 
condition number N is small, then a small perturbation vector k guarantees that h is small 
resulting in � being a good approximation to the true solution y. However, if N is large, 
we cannot be certain. Certainly if � is a poor approximation to x, that is, if h is large, than 
N will have to be large; but if N is large, it does not necessary follow that h is large nor 
that � is a poor approximation to y. 
 
 
1-4 Model of arithmetic used 
 
We will use a standard model of floating point arithmetic. We assume that the basic 
arithmetic operations op = +, -, *, / satisfy  

fl(x op y) = (x op y)(1 + δ)  |δ| < ε                                                             (1.8) 
that is, we assume the relative error of any arithmetic operation is small. Here, ε is the 
unit round off, called machine precision, which is typically of order 10-8 or 10-16 in single 
and double precision computer arithmetic, respectively. In IEEE standard floating point 
arithmetic, ε=2-53≅ 1.1x10-16 in double precision. In addition, we will assume that neither 
overflow nor underflow occur, since both can destroy the relative accuracy of the result. 
This floating point model implies that products, quotients, and sums of like-signed 
quantities can be computed accurately (i.e. with low relative error) but expressions 
involving cancellation may not be.  



 4 

 
It should be noted that with this floating point model, the determinant of any standard 
Vandermonde matrix can be evaluated accurately for any floating point data xi, since it 
only involves differences of input data and products. In other words we have a way to 
accurately evaluate any minor of TP standard Vandermonde matrix.  
 
 
2 Cauchy Method 
 
The problem of solving a Cauchy linear system with the special case of the right-hand 
side being [1 1 … 1]t was considered in the year 1837 by Binet [2]. Four years later 
Cauchy solved the problem for a general right-hand side, arriving at his well-known 
formula [2]: 
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During Cauchy’s time determinants were the main tool to express the solution of a linear 
system. Formula (2.1) provides an explicit expression for the entries of the solution 
V=[v1 v2 … vn]t for a Cauchy linear system with right-hand side W=[w1 w2 … wn]t : 
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So a reformulation of (2.2) yields the formula: 
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Since there is no subtractive cancellation in (2.3), the relative accuracy will be preserved 
and an accurate solution of the linear system CV=W can be computed in O(n3) by 
forming V = C-1W using the following algorithm in MATLAB syntax and semantics. 
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Algorithm 2.1 (Solving Cauchy Systems using Cauchy method) If C is a Cauchy 
matrix determined by the vectors x = (x1, x2, …, xn) and y = (y1, y2, …, yn), the following 
algorithm computes the solution to Cv = w 
 
10 function cauchy([x1, x2, …, xn], [y1, y2, …, yn],  [b1, b2, …, bn]) 
20 for i = 1 : n 
30       for j = 1 : n 
40            p = 1 
50            q = 1 
60            t = 1 
70            for k = 1 : n 
80                   p = p⋅ (xk – yi) ⋅ (xj – yk) 
90                   if k ≠ i 
100                           q = q ⋅ (yk – yi) 
110                  if k ≠ j 
120                          t = t ⋅ (xj – xk)   
130                  sij = p/(q⋅t⋅(xj – yi)) 
140 for i = 1 : n 
150        sum = 0 
160        for j = 1 : n 
170               sum = sum + sij ⋅ wj 
180        vi = sum 
190 return v   
 
 
3 Bidiagonal decomposition of inverses of TP matrices 
 
 
3-1 Neville elimination 
 
Neville elimination is similar to the process of Gaussian elimination except that the zeros 
in columns are created by subtraction of a multiple of row i from row i+1 instead of 
subtracting a multiple of a fixed row from all the other rows below it. For a nonsingular 
matrix A of order n, the Neville elimination procedure consists of n-1 successive steps, 
resulting in a sequence of matrices as follows:  
A = Ã(1) → A(1) → Ã(2) → A(2) →… → Ã(n) = A(n) = U where U is an upper triangular 
matrix. For each k, 1 � k � n, the matrix A(k) = (a )(k

ij ) nji ≤≤ ,1
  has zeros below its main 

diagonal in the first k-1 columns, and one also has the property that  
If a )(k

ik  = 0, for some i ≥ k, then a )(k
hk  = 0 for all h ≥ i                                        (3.1) 

A(k) is obtained from the matrix  Ã(k) by moving the rows with a zero entry in the column k 
to the bottom, if necessary. In order to get (3.1) the rows are moved and placed with the 
same relative order as they appear in A(k). To get A(k+1) we produce zeros in the column k 
below the main diagonal by subtracting a multiple of row i from row i+1 for i = n-1, n-2, 
…, k, according to the following formula:     
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When A is a nonsingular TP matrix, no row exchanges are needed so Ã(k) = A(k) for all k. 
 
 
3-2 Accurate and Efficient Computation of TP generalized    
      Vandermonde matrices using a Schur function 
 
Most of the results in this section are from Koev’s dissertation [9].  
 
Definition 3.1   
 
Let consider G = [x ja

i ] nji ≤≤ ,1 be a TP generalized Vandermonde matrix where 0 � a1 < a2 

< … < an are integers and V = [x 1−j
i ] n

ji 1, =  is a standard Vandermonde matrix. We define 

the partition λ associated with G as the nonincreasing sequence of nonnegative integers λ 
= (λ1, λ2, …, λn), where λi = an+1-i – (n-i). A Schur function corresponding to a partition λ 
is defined as:   
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This Schur function is the ratio of the determinant of a generalized Vandermonde matrix 
corresponding to a partition  λ and the determinant of a standard Vandermonde matrix. In 
his paper Koev describes a new approach to compute the Schur function to high relative 
accuracy [9]. In fact we need to compute the function accurately because we cannot 
compute det(G) accurately using traditional algorithms. The need for the Schur function 
is to accurately compute all the needed minors of G needed to obtain an accurate 
bidiagonal decomposition of G-1 and needed by the new Bjröck-Pereyra-type algorithm 
for the accurate solution of TP generalized Vandermonde linear systems. 
 
 
3-2-1 Bidiagonal decomposition of inverses of TP matrices 
 
The following result is due to Gasca and Pena [4].  
 
 
Proposition 3.1 
 
If A is TP, then A-1 = U(1)U(2)…U(n-1)D-1L(n-1)L(n-2)…L(1), where L(k) and U(k), k=1,2,…,n 
are unit lower and upper bidiagonal matrices respectively with the property that L )(

,1
k

ii+ = 0 
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and U )(
,1

k
ii+ = 0 for i � k-1, and D-1 is a diagonal matrix. Each entry of L(k) and U(k) is a 

negated product of two quotients of minors of A. Each entry of D is a quotient of minors 
of A. 
The proof of this proposition is based on the process of Neville elimination and the 
general form of the LDU decomposition of A, where L and U are unit lower and unit 
upper triangular respectively. More details can be found in [9]. However the following 
notation will be convenient. For �1, �1, �2, �2 natural numbers such as 1� �1� �2�n,     1� 
�1� �2�n and m – 1 = �1 - �2 = �1 - �2, we denote by A(�1:�2, �1: �2) the m x m submatrix 
of A where A is an n x n real matrix.  We have the following results from the proof of 
proposition 3.1; for k = 1,2,…,n and i � k 
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For the TP Vandermonde matrices, the decomposition yields the Björck-Pereyra 
algorithms.  
 
 
3-2-2 Björck-Pereyra-Type algorithm for TP generalized Vandermonde Matrices 
 
In this section we describe an accurate bidiagonal decomposition of the inverse of a 
generalized Vandermonde matrix.  
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standard Vandermonde matrix. For any i � j, k � l ∈{1,2,…,n} such that j-i = l-k we have 

from (3.3) that det(Gi:j,k:l) = det(Vi:j,1:l-k+1).s(λ 1+−ln , λ 2+−ln ,…, λ 1+−kn )( xi, xi+1, …, xj).∏
=

−
j

is

k
sx 1 . 

Now for the bidiagonal decomposition of G-1, we have from (3.4), (3.5), (3.6) for k = 
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This bidiagonal decomposition of G-1 leads the solution of the TP generalized 
Vandermonde system Gy = b. The accuracy of this method takes place in the following 
proposition.  
 
 
Proposition 3.2 
 
If the relative error in every entry of L(i), U(i), D-1 is small (i.e. does not exceed a value     
η = h(n)ε where h(n) is a polynomial in n), �  is the computed solution of Gy = b and � 
is such that �� = b, then the following error bounds are valid: 
1. |y – �| � O(nh(n))ε|G-1||b| 
2. If  b has alternating sign pattern (i.e. (-1)ifi have the same sign for all i = 1,2,…,n)   
            then solution is computed with a small componentwise relative forward error 
                                |y – �| � O(nh(n))ε|y|; 
3. The componentwise relative backward error is small 
                     |G – � | � O(n2h(n))ε|G| + O(ε2) 
4. The componentwise residual error is also small 
                     |b – G�| � O(n2h(n))ε|G||�| + O(ε2) 
 
A proof of this proposition is available in [1, 8].  

 
 

4 Accurate solution of TP Cauchy linear system 
 
For a TP matrix, the decomposition from Proposition 3.1 yields the well known Björck-
Pereyra algorithm. As long as we can compute quotients of minor accurately and 
efficiently, the algorithms from Proposition 3.1 for solving Ax = b are applicable to any 
TP matrix and the computed solutions will satisfy the same error bounds as the solutions 
for the Björck-Pereyra methods [9]. We propose a new fast O(n2) algorithm for 
accurately and efficiently solving TP Cauchy linear systems. In fact, Cauchy linear 
systems can be solved very accurately using a Björck-Pereyra algorithm this exemplifies 
how the exploitation of the structure allows not only for the speed-up of computation, but 
also for more accuracy in the computed solution than when using standard numerically 
methods.  In section 3, we presented Koev’s method [9] to obtain an accurate solution of 
TP generalized Vandermonde systems. The results indicate a close similarity between the 
numerical proprieties of Cauchy matrices and Vandermonde matrices. We exploit Koev’s 
algorithm to derive a new algorithm for accurately solving, linear systems of equations 
with TP Cauchy matrices where the time of computation should be bounded by a 
polynomial function of the matrix dimension n; O(n2).  
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4-1 Theorem of V. Olshevsky [5] 
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V(y) and V(x)  are polynomial Vandermonde matrices. 
 
 
4-2 Partition and Schur function with standard Vandermonde matrix 
 
In definition 3.1, to label the generalized Vandermonde matrix, we used the partition λ = 
(λi) n

i 1= instead of (ai) n
i 1=  where λi = an+1-i – (n-i). For the standard Vandermonde matrix,     

ai = i-1. Therefore λi = 0 ∀i; in other words λ = (0) for the standard Vandermonde 
matrix. Also if ∀i λi = 0 then ai = i-1. Therefore, S(0)( x1, x2, …, xn) = 1  ∀(x1, x2, …, xn). 
Consequently the expressions (3.7), (3.8), (3.9) yield immediately the following results: 
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From (4.1), (4.2) and (4.3), we deduce the following algorithm. 
 
Algorithm 4.1 (Solving TP standard Vandermonde system) If V is a TP standard 
Vandermonde matrix determined by a vector x = (x1, x2,…, xn) the following algorithm 
computes the solution of Vy = b. 
 
10 function z=vand([x1, x2,…, xn], [b1, b2,…, bn]) 
20 d = ones(n) 
30 for i = 2:n 
40    for j = i-1:-1:1 
50 dij = di,j+1.(xi – xj) 
60 for k = 1: n-1 
70 for i = n-1:-1:k 

80   L )(
,1

k
ii+ = 

1,

2,1

+−

+−+

kii

kii

d

d
 

90        bi+1 = bi+1 - bi.L
)(
,1

k
ii+  

100 for i = 1:n 
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110   Dii
-1 = 

1,

1

id
 

120   bi = bi. Dii
-1 

130 for k = n-1: -1:1 
140      for i = k:n-1 

150          U )(
1,

k
ii + = xk  

160          bi = bi – bi+1. U
)(
1,

k
ii +  

170 return b 
 
The following proposition is a restriction of proposition 3.2 to the standard Vandermonde 
systems 
 
Corollary 4.1 
 
If the relative error in every entry of L(i), U(i), D-1 is small (i.e. does not exceed a value     
η = h(n)ε where h(n) is a polynomial in n), �  is the computed solution of TP 
Vandermonde system Vy = b and 
 is such that 
� = b, then the following error bounds 
are valid: 
1. |y – �| � O(nh(n))ε|V-1||b| 
2. If  b has alternating sign pattern (i.e. (-1)ifi have the same sign for all i = 1,2,…,n)   
            then solution is computed with a small componentwise relative forward error 
                                |y – �| � O(nh(n))ε|y|; 
3.  The componentwise relative backward error is small 
                     |V – � | � O(n2h(n))ε|V| + O(ε2) 
4.  The componentwise residual error is also small 
                     |b – V�| � O(n2h(n))ε|V||�| + O(ε2) 
 
The cost of the Algorithm 4.1 is O(n2) and the accuracy of the computed solution is 
justified by the Corollary 4.1. Indeed, when 0 < x1 < x2 < … < xn,V(x) is TP. The totally 
positive of the coefficients of V(x) implies that the entries )(

,1
k

iiL + and D 1−
ii can be evaluated 

accurately in floating point model (1.8) since they involve only products and quotients of 
positive quantities. Also, it was observed in [2, 10] that if the components of the right-
hand side are sign-alternating, i.e. (-1)i ⋅bi have the same sign (1 �  i �  n), then the 
solution will be computed with no subtractive cancellation with Algorithm 4.1. 
 
 
4-3 Our new approach 
 
Consider a Cauchy linear system C(x,y)X = b where C(x,y) is a TP Cauchy matrix.  

Define (hi) n
i 1=  and (fi) n

i 1=  by hi = )(
1

j

n

j
i yx −∏

=
and fi

-1 = )(
,1

j

n

ijj
i yy −∏

≠=
.   
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We then have �(x,y) = 
n

jiji

ji

yx

fh

1, =
�
�

�

�

�
�

�

�

−
= HC(x,y)F where H = diag( h1, h2, …, hn) and    

F = diag(f1, f2, …, fn).  
 
Letting X’ = F-1X and b’ = Hb, the system C(x,y)X = b is therefore equivalent to the 
system �(x,y)X’ = b’.  Therefore we solve the latter system.  
By using the Theorem of V. Olshevsky [5], we have V(x) = � (x,y).V(y) where V(x) and 
V(y) are polynomial Vandermonde matrices. Consequently the system �(x,y)X’=b’ can 
be solved in the following steps: 

1. Solve V(x)Z = b’ for Z 
2. Compute the matrix-vector product V(y)Z = X’ 
3. Compute the matrix-vector product FX’ = X  

 
 
Algorithm 4.2 (Solving TP Cauchy system) If C is a TP Cauchy matrix determined by 
the vectors x = (x1, x2,…, xn) and y = (y1, y2,…, yn)  the following algorithm computes the 
solution to CX = b. 
 
10 function newcauchy([x1, x2, …, xn], [y1, y2, …, yn],  [b1, b2, …, bn]) 
20 for i = 1 : n 
30      p=1 
40      for j = 1 : n 
50            p=p⋅ ( xi - yj) 
60   bi = bi ⋅ p     
70 z = vand([x1, x2, …, xn], [b1, b2, …, bn]) 
80 v=vander([x1, x2, …, xn]) 
90 for i=1 : n 
100     s=0 
110     for j=1 : n 
120          s = s + vij⋅ zj 
130     Xi

’=s; 
140 for i = 1 : n 
150        p=1 
160      for j = 1 : n 
170           if  j≠ i 
180            p=p⋅ (yi - yj) 
190    Xi = Xi

’/p 
200 return X 
 
 
10 function v= vander([x1, x2, …, xn]) 
20  f=[]; 
30  for i=1:n 
40      for j=1:n 
50          fij=(xi)^(j-1) 
60  v=f 
 
The accuracy of the Algorithm 4.2 is addressed in the Corollary 4.1 and the following 
two propositions from Nicholas (more details can be found in [7], 62-73). 
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Proposition 4.1 
 
Consider the inner product xty, where x, y ∈ Rn, we will assume that the evaluation is 
from left to right. The following error bound is valid. 
| xty – fl(xty) | � nε| xt || y | + O(ε2)                                   (4.5) 
Proposition 4.2 
 
Let A ∈ Rnxn, x ∈ Rn, and y = Ax. The vector y can be formed as n inner products, yi = 
ai

tx, for i = 1,2,…, n, where ai
t is the ith row of A. From (4.5) we have 

�i = (ai + ∆ai)tx,      | ∆ai | � γn| ai | where γn = nε/(1 - nε). 
This gives the backward error result 
 � = (A + ∆A)x,       | ∆A| � γn| A|,                                    (4.6) 
which implies the forward error bound 
| y – � | � γn| A|| x |  
 
 
4-4 Numerical Experiments 
 
Our challenge is to test the accuracy of a routine that we claim is more accurate than 
some other methods. We performed some numerical experiments and confirmed the 
correctness of our algorithms. We solved the TP Cauchy linear system using the 
MATLAB routine for solving linear systems of equations with a very high precision 
arithmetic. We compared the MATLAB results to the results when using our new 
algorithm (implemented in MATLAB and C++ on an INTEL processor, running IEEE 
double precision arithmetic with ε = 2-53 ≈ 10-16). We chose random nodes xi and yi, 
which are sorted in order to preserve the totally positive property of the matrices. Also we 
selected a right-hand side b = (-1, 1, -1, 1, -1, 1, -1, 1, -1, 1)t with alternating signs in 
order to avoid a subtraction cancellation.  
 
We computed the solution to Cz = b using Algorithm 4.1 and Algorithm 2.1, and also 
using the MATLAB routine of solving linear systems of equations with 15 decimals. We 
generated the random numbers in MATLAB, output them to a file, read them into 
MATLAB and C++, and then formed the explicit matrices (Cauchy and Vandermonde) . 
Then we solved the related systems to those matrices. 
 
Clearly, we require a measure of the condition of the system of equations. We know that 
a system of equations without a solution – the very worst condition possible – has a 
coefficient matrix with determinant of zero. It is therefore tempting to think that the size 
of the determinant of A can be used as a measure of condition. However, if Ax = b and A 
is an n x n diagonal matrix with each element on the leading diagonal equal to s (s ≠ 0) 
then A is perfectly conditioned, irrespective of the value of s. But the determinant of A in 
this case is sn. Thus, the size of the determinant of A is not a suitable measure of 
condition because in this example, it changes with s even though the condition of the 
system is constant. Two of the functions MATLAB provides to estimate condition of a 
matrix are cond( ) and rcond( ). Note that rcond(A) returns an estimate for the reciprocal 
of the condition of A in 1-norm using the LAPACK condition estimator. If A is well 
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conditioned, rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is near 0.0. For a 
perfect condition, cond( ) is unity but gives a large value for a matrix which is ill-
conditioned.  Compared to cond, rcond is a more efficient, but less reliable, method of 
estimating the condition of a matrix. We observed that when cond is larger than 8.2e15 
MATLAB estimates the system close to singular or badly scaled and may end up with an 
inaccurate solution. In order to have a “well conditioned” Cauchy matrix for the 
experiment, we kept track the condition of the explicit Cauchy matrix obtained from the 
random numbers xi and yi. For our experiment we only used a Cauchy matrix that was 
“well conditioned”.  
The results in table 4.1 and table 4.2 confirmed our claims that the problem is well-
conditioned, even though cond(C) = 4.6⋅1011 and that the MATLAB routine and Cauchy 
method computed a solution that was only good in the first digits. 
 

 
Node xi Node yi MATLAB routine Cauchy  NewCauchy  

98.4509759201955 6.56495308392387 282043865261.052 282043695587.749 282043695587.749 
100.053150319458 19.9982456896986 -916600568139.946 -916600016328.87 -916600016328.87 
103.223225800457 30.6277256267298 847425607126.141 847425096631.954 847425096631.959 
103.532590502816 51.5368171010196 -357927962745.76 -357927746828.442 -357927746828.576 
111.784120506889 63.8562731455501 203875420964.974 203875297895.372 203875297896.338 
119.469975362746 74.2147972831518 -94238488880.275 -94238431996.1953 -94238432008.0202 
128.399551803366 78.3526125396556 36826167160.0719 36826144941.9119 36826144944.4418 
129.771803821511 87.0529484972559 -1149427777.48736 -1149427086.53091 -1149427089.74589 
133.12448404099 91.2927736207461 90485511.0790638 90485456.971817 90485468.2329705 
142.227334657284 95.7299997399511 -613512.516887339 -613512.155255823 -613512.904359188 

 
Table 4.1: Solving a 10 x 10 TP Cauchy linear system in MATLAB 

 
 

Cauchy  NewCauchy  
282043695587.7490200000 282043695587.7490200000 
-916600016328.8701200000 -916600016328.8707300000 
847425096631.9538600000 847425096631.9587400000 
-357927746828.4415300000 -357927746828.5543200000 
203875297895.3720100000 203875297896.3378300000 
-94238431996.1952970000 -94238432005.5710140000 
36826144941.9119420000 36826144951.3231740000 
-1149427086.5309062000 -1149427098.3944476000 

90485456.9718170020 90485459.1769653410 
-613512.1552558227 -613513.6984067048 

 
Table 4.2: Solving a 10 x 10 TP Cauchy linear system in C++ 

 
 
Conclusions 
 
We have presented the Björck-Pereyra-type methods for TP matrices whose initial 
minors are accurately and efficiently computable.  We presented Koev’s algorithm for 
accurately and efficiently solving the TP generalized Vandermonde linear system along 
with his new method for computing the Schur function. This in turn allowed us to derive 
a Björck-Pereyra-type method for the standard Vandermonde linear system. We used the 
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theorem of V. Olshevsky along with the Björck-Pereyra-type method for solving the 
standard Vandermonde linear system to present a new method for solving accurately and 
efficiently solving the TP Cauchy linear systems that is faster than the Cauchy method. 
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