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Abstract 
 

Some robots have stationary bases and movable arms and grippers, while others 
are mobile.  Some robots’ movements are precisely programmed while others are more 
autonomous.  The robots we are interested in are both mobile and autonomous.  A 
common task for these robots is to go from one known location to another location whose 
coordinates are given.  The hard part is avoiding obstacles on the way.  Another task is 
finding a goal location when its coordinates are unknown.  The robot senses it is at the 
goal only after it arrives there.  This is the problem we have investigated.  We have 
implemented several different algorithms and analyzed them in terms of how long the 
robot takes to get to the goal and return to its starting location. 
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Introduction 
 

A primary problem of robotics is getting a robot to move from one position to 
another without bumping into any obstacles.  This can be seen as either a path planning 
problem or a navigation problem.  The path planning problem[1,2,3] is solved by finding an 
obstacle-free path through space and time from start configuration to goal configuration.  
The obstacles may be stationary or moving.  With sufficient a priori information this 
problem can be solved before the robot starts to move, in fact one need not have a robot 
to solve this problem.  On the other hand, in the robot navigation problem, the robot 
gathers information about the environment while it is moving.  A fair amount of work has 
been done with the robot navigation problem when the goal is known a priori.[4,5,6,7]  Not 
much has been done when the goal is not known a priori.  The problem we address is 
robot navigation in an environment with unknown stationary obstacles where the goal is 
also unknown.  After the robot reaches the goal it returns to its home cell.  The robot 
senses obstacles when it bumps into them and it senses the goal only after it arrives there.  
The purpose is to determine the most efficient algorithm for navigating these unknown 
environments. 

 
The unknown environment is a rectangular room.  This is to simulate the normal 

environment of a robot, which is generally indoors.  The room consists of a number of 
cells.  Between adjacent cells, there is the possibility of a wall.  When a room is created a 
cell is picked at random, that cell is assigned to be the goal cell.  Since the room is 
created with random wall placements, it is possible for parts of the room to be sealed off 
by walls.  The use of cells and walls can approximate any shape in a two-dimensional 
environment.  A closer approximation can be achieved by making the cells sufficiently 
small. 

 
The robot starts in the lower left hand corner facing to the “east” or to the right.  

Its beginning coordinates are (0, 0).  The only information that the robot knows about the 
environment are the boundaries.  It knows that it is contained in a rectangular area.  It 
knows how big the rectangle is and that it cannot leave the limits of the rectangle.  It 
knows that there is a goal inside the rectangle and that it is possible to reach the goal.  
Even though it is possible for parts of the room to be inaccessible, the goal will not be in 
these parts.  The robot will know where the goal is only after it has reached the goal.  It 
cannot see the goal no matter how close it is until it is directly on top of it.  Although the 
robot doesn’t start out with much information about the environment, that doesn’t stop it 
from learning as it goes along. 

 
Learning is a critical step during the search of the room.  Every cell the robot 

visits, it remembers.  Every wall that the robot bumps into gets recorded in a log.  When 
the robot passes from one cell to another without bumping into a wall, this is also 
recorded.  The robot then uses this knowledge to narrow down the places where the goal 
may be.  The path that the robot takes to uncover information about each cell is 
determined by the combination of algorithms it is using. 
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Algorithms 
 

There are many different types of navigation algorithms that a robot may use to 
traverse space.  Often these algorithms have similar processes but differ only slightly in 
different situations.  For example, when a robot hits a dead end, where does it go next?  
Two different algorithms could have gotten the robot there using the exact same path, but 
differ by how they choose the next step.  Another way two algorithms could differ is in 
how they choose the path back to the original start state after it has found the goal. 
 
 We found there to be three specific situations where there is a major difference 
between navigation algorithms when choosing a path.  Because of these situations, we 
chose to split the algorithms into three different steps.  The first step deals with the 
generic situation, how to begin and continue the traversal of unknown space.  This step 
chooses which one of the neighboring cells to visit.  The second situation is used when 
the first situation cannot pick an unvisited cell to visit.  This occurs when either, all the 
adjacent unvisited cells are blocked by walls, or if all the adjacent cells have already been 
visited.  At this point, a decision needs to be made by the robot.  It needs to choose a path 
to continue its search of the unknown environment.  The third step is when the robot has 
found the goal and needs to proceed back to the initial starting point.  There are several 
different ways that the robot may choose to return to the origin. 
 
 There are several algorithms implemented for each of the steps.  For the first step 
there are two different algorithms.  One is called “Follow the Right Wall.”  This consists 
of the robot following a wall similarly to a person walking along a path with their hand 
always touching the wall on that side.  A wall can be substituted with a cell that has 
already been visited.  The second algorithm implemented for the first step is called 
“Right Left Sweep.”  This algorithm is similar to “Follow the Right Wall” except when 
the robot enters a cell that is adjacent to a boundary wall, the direction switches.  For 
example, if the robot is currently following the right wall and enters a cell with a 
boundary wall the robot would start following the left wall.  This would continue until it 
enters another cell that is bordered by a boundary wall.  
 
 The implemented algorithms for the second step are as follows.  The first 
implementation is called “Find Closest Unvisited Cell.”  This algorithm will consider the 
cells the robot has not yet been in, and pick the one that is closest to the robot.  The 
second algorithm is “Find Closest Unvisited Cell to Start.”  This is similar to the first 
algorithm except that the base reference point is the start instead of the robot’s current 
position. 
 
 The third algorithmic step, returning to the start after finding the goal, also has 
multiple implementations.  The first implementation is “Assume No Walls.”  This is an 
optimistic path finding algorithm that will plot a path back to the start assuming that all 
unknown potential walls will not have walls.  If a wall is found along the return path, a 
new path needs to be calculated.  The second is “Assume Walls.”  This is a pessimistic 
algorithm that will plot a path back to the start using only the information gathered.  All 
the unknowns are assumed to be a wall when traveling back to the start with this 
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algorithm.  A new path will never need to be calculated because the return path is based 
upon a path the robot knows exists.  The third is “Assume Walls Unless Cell is Visited.”  
This is in between the previous two algorithms.  It will only assume an unknown is not a 
wall if the cell it is attempting to enter has already been visited.  Otherwise it will assume 
that all unknowns are walls. 
 
 Twelve different algorithms can be created with the different combinations of the 
above steps.  We number the algorithms for later reference. 
 
Algorithm 
Number 

Left Right 
Sweep 

Follow 
Right Wall 

Closest  to 
Robot 

Closest to 
Start 

Assume No 
Walls 

Assume 
Walls 

No Walls if 
Visited 

1 X  X  X   
2  X X  X   
3 X   X X   
4  X  X X   
5 X  X   X  
6  X X   X  
7 X   X  X  
8  X  X  X  
9 X  X    X 
10  X X    X 
11 X   X   X 
12  X  X   X 

 
 We decided to run many different test cases pitting each of the algorithms against 
each other to determine which algorithm, if any, is the best for a situation.  The test case 
consisted of the average of five hundred runs, for each algorithm, in random 
environments with constant variables for its creation.  The environment’s size was 10 by 
10 cells.  The initial percentage of obstacles was zero and we incremented it by 10 after 
each test case, to maximum of 30 percent. 
 
 The results from these tests were split into three different categories.  The robot 
logged the number of bumps, turns and moves it took during the duration of each test.  
With these different statistics we can apply weights to each type of movement and 
anticipate the amount of time it would take different robots to reach the goal in the same 
situation.  The weights are multipliers applied to the different movement types.  We used 
three different sets of weights against our results, each adding up to a total of 15.  The 
first weight applied was five on each of the three movement types.  This was to model the 
robot that takes the same amount of time to do all three movements. The second is three 
on one and six on the other two.  This set demonstrates the robots that are quick at one of 
the movements and slower at the other two.  The third is nine on one and three on the 
other two.  This weight set describes the robots that are really slow at one of the 
movements and fast at the other two movements. 
 
 After putting all this together, we are testing 12 different algorithms in four 
different situations.  Each of these situations yield seven different result sets, after being 
weighted for the assortment of robots that are being represented.  The analysis of these 
different result sets should provide us with an accurate picture of what combinations 
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supply better results than others.  These good algorithms will be further investigated later 
to determine better combinations for robot navigation. 
 
 
Results 
 
 The first test run was ten by ten cells with zero obstacles.  The results that this test 
presented were very interesting.  It seems that the algorithms containing the pessimistic 
end algorithm “Assume Walls” has higher movement counts and higher turn counts, 
which almost double the movement and turn counts of the algorithms that don’t use 
“Assume Walls.”  Some characteristics of the algorithms are clearly showing in this 
result set.  Algorithms with “Follow the Right Wall” have a higher movement count than 
the ones that have “Left Right Sweep.”  Algorithm numbers 2 and 4 have the lowest total 
count in all result sets except the two that put more weight on the move count.  
Algorithms 5 and 7 took the longest in every single result set.  Algorithms 1-4 are the 
lowest and algorithms 9-12 are close behind and algorithms 5-8 take significantly longer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The second test run increased the percentage of obstacles to ten percent.  This 
result set has additional information that wasn’t seen in the first test run.  Since there are 
obstacles in this test run we can find more information about the algorithms.  Algorithm 1 
had the most bumps while algorithm 7 had the least.  This information may not be very 
useful because the difference between the best and worst count was 2 bumps.  Once again 
the longest algorithms are 5-8; the “Assume Walls” algorithm appears to be responsible 
for the slow completion time again.  An interesting variance from the first set is that the  
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fastest four algorithms were the ones containing “Find Closest Unvisited Cell.”  One odd 
relation is the two slowest also contained “Find Closest Unvisited Cell” as part of their 
algorithm. 
 
 The third test run raised the percentage of obstacles up to twenty percent.  With 
the increase in density of the obstacles some interesting patterns formed.  The quickest 
algorithms were once again the ones containing “Find Closest Unvisited Cell.”  A 
different pattern emerged in this run.  “Left Right Sweep” combined with “Find Closest  
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Unvisited Cell to Start” took the longest.  Also the weighting didn’t make much of a 
difference in the result set.  They may need to have more drastic differences in weights to 
have an impact when the density of objects is higher.  Algorithm 7 continued to rank 
among the lowest for bumping, but it again had the highest count to finish. 
 
 The final run had the density at thirty percent of the cells.  Most of the algorithms 
took a relatively long time to complete this run.  The only two algorithms that completed  
this run comparatively fast were 2 and 10; they both contain the algorithms “Find closest 
Unvisited Cell” and “Follow Right Wall”.  Algorithm 7 once again took the longest to 
complete the run, but this time it was joined by 3, 4, 5, 8, 11, and 12.  Most of these 
algorithms contain “Find Closest Unvisited Cell to Start”.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion 
 
 Many interesting patterns emerged in the result sets as the percentage of the 
obstacles rose.  Any algorithms containing “Find Closest Unvisited Cell to Start” or “Left 
Right Sweep” became increasingly inefficient as the obstacle number rose.  The “Assume 
Walls” algorithm was very slow, but seemed to begin to hold its own as the number of 
walls rose.  It may become useful if the obstacle percentage rose even higher.  The 
winning algorithm is number 2.  The pieces didn’t get hindered as much as the other 
algorithms as the obstacle percentage rose, and it was consistently among the quickest 
algorithms. 
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