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Abstract 
 
Traditionally, compilers perform a dual task: they transform a program from the source 
code (such as C or C++) to machine code, and also optimize the program to make it run 
faster. Common optimizations include constant propagation and folding, method inlining, 
dead code elimination, and many others. Java compliers are different from C or C++ 
compilers: most Java compliers transform Java source code into platform-independent 
byte code which is later executed by Java Virtual Machine (JVM), usually equipped with 
a Just-In-Time compiler (JIT) to compile byte code to native machine code on the fly. In 
this setup, program optimizations can be performed at two levels: by the compiler (while 
converting Java code into byte code) and by JVM when byte code is compiled to native 
code as the program is executed. 
 
In this project, we investigate optimizations that are performed by the compiler, javac, 
and by JVM.  We compare our test program efficiency with that of a non-optimized 
program in order to detect optimizations being performed on the programs, and to 
determine at which level they are performed. Our testing programs are specifically 
designed to detect individual program optimizations.  Our research is a work in progress. 
We present the current results and discuss techniques for detecting optimizations and also 
for determining whether these optimizations are performed at compile time or run time.  
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Introduction 
 
Originally, Java was designed as a web language, with some of the goals being client-side 
portability and security concerns.  Some of the security concerns involved never 
accessing memory that has not been allocated to the program, preventing array overflows 
and such.  This mobility came from the program source code being compiled into byte 
code, or .class files, which could be interpreted by any computer.  As a result, the first 
implementations of Java were slow.  Currently, Java has become faster, partly due to 
optimizations performed on the actual programming code or byte code.  Such 
optimizations can be performed by a Java compiler (such as javac) or at run time by Java 
Virtual Machine (JVM). 
 
The motivation for our research is to determine which optimizations are performed by the 
compiler, and which are performed by JVM.  The optimizations that we were looking for 
are fairly simple ones, such as method inlining.  This is where the code inside some 
methods is substituted for the calls to that method, eliminating the need to use memory to 
call and load that method.   We are looking for methods of detecting optimizations that 
have been done, as opposed to trying to measure the gains or efficiency of various 
optimizations. 
 
The actions we took to detect these optimizations were also fairly simple, mainly 
involving small class files, each created to test whether or not a single optimization was 
performed.  For example, to test method inlining we created a class where the main 
method called an empty method a large number of times inside of a loop.  We measured 
the time before and after the loop, and compared the time difference to that in the case of 
an empty loop repeated the same number of times. 
  
Some of the programs we tested and the results are listed in this paper, as well as 
background on Java, an explanation of why we used the methods we did, and our plans 
for future research. 
 
 
Overview of Java 
 
Since Java was originally developed to be a web language, a lot of focus was on 
portability of code and making sure that the programs could be run and behave the same 
way on any computer.  Thus, when Java programs are compiled, they are compiled into 
byte code, which is machine-independent.  The byte code, stored as .class files, can be 
transferred from machine to machine, as each computer uses a program (such as Java 
Virtual Machine) to interpret the byte code.  With the addition of this step, the run times 
of Java programs in general were longer than languages that compile straight into native 
code. 
 
Just-In-Time (JIT) techniques developed in the 60’s for languages like Lisp were adapted 
for Java, as a possible solution [1].  JIT compilers take the byte code and compile it into 
machine-specific native code.  The point of this is to translate byte code to native code 
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only once.  A new technology, Java HotSpot, is similar to JIT in that it translates code, 
however it only translates frequently used code to save on translation time [3].  The code 
that is translated is selected based on profiling done by HotSpot. 
 
 
Compilation Models 
 
The traditional compilation model is one where source code is compiled into native code, 
with optimizations being performed along the way.  The code is then run by the machine.  
For Java, some optimizations must be postponed until the native code is being interpreted 
and run by the virtual machine, which would mean that all optimizations depending on 
these must be postponed as well.  In particular, to take full advantage of constant 
propagation, method inlining is done first, and then constant propagation, but since 
inlining is done at run time, constant propagation is delayed until then.  The reason that 
method inlining is done at run time is that Java allows methods to be overridden by 
classes that inherit them.  Due to the changeable nature of many methods and classes, the 
compiler simply cannot optimize them since it doesn’t know if a later class might inherit 
and change the code.  Final variables and methods are much more likely to be optimized 
by javac, as they cannot be overridden. 
 
 
Overview of Optimizations 
 
Due to Java’s relatively long run times, a lot of emphasis has been placed on 
optimization.  Optimizations start by analyzing basic blocks of code.  Blocks of code are 
groups of code that are always run sequentially, with no jumps into or out of the middle.  
Local optimizations are performed within these blocks of code, whereas global 
optimizations first rearrange blocks, then combine them, if possible, and then run local 
optimizations on the blocks.  As a general rule, local optimizations are such that they do 
not require an analysis of the whole program, but rather just the small part of code that 
can be optimized. 
  
Most optimizations we are looking for are small-scale, and local, with the exception of 
method inlining, which is a global optimization but still does not require complete 
program analysis.  Method inlining is when the code inside a short or frequently called 
method is substituted for the call to the method, so that memory is not required to load 
and perform the method each time it is called.  Constant propagation is the process of 
substituting a value for a variable call, if the variable never changes.  Propagation is often 
followed by constant folding, which replaces expressions with fixed values, such as 2+3, 
by their value.  Dead code elimination is an optimization that allows a compiler or virtual 
machine to ignore code and variables that are never used. 
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Research 
 
 
Goals of Research 
 
The motivation for our research is to determine which optimizations are performed by the 
compiler, and which are performed by JVM.  Our research treats JVM and javac as black 
boxes. We do not study the byte code generated by the compiler or the source code of 
JVM. Instead, we focus on developing techniques to detect if optimizations have been 
performed.  Due to this focus, we are not trying to measure the efficiency or gain of 
optimizations, or find the best way to optimize java programs. 
 
 
Technical Details 
 
The main software that our research deals with are Java Virtual Machine (JVM), javac, 
and Java HotSpot.  Java HotSpot is a version of JVM that allows for optimization and 
performs several that we have detected.  JVM can run programs in two different modes, 
server and client.  The client mode is the default setting, however we have noticed that 
the server mode generally has better results, with shorter run times and more optimization 
being done.  As we are treating JVM as a black box, we do not know the exact steps 
taken by the server and client modes.  In the server mode, HotSpot performs more 
optimizations, which may result in longer time to perform them but shorter overall run 
time. 
 
We are documenting the differences in effects of specific optimizations, and only looking 
at a small window of the program’s total run time.  This approach is quite challenging, in 
that the differences in time observed are often due not to optimizations we’re trying to 
detect, but are possibly caused by optimizations related to loops or more efficient 
memory management or other unrelated factors. 
 
Another option of HotSpot that we use is the –Xint flag.  This flag disables HotSpot 
optimizations, and is useful in determining if the compiler has performed optimizations.  
Due to the disabling of optimizations, programs run with –Xint take significantly longer 
than those run without it. 
 
 
Systems Specifications and Platforms 
 
On a Dell Optiflex GX270 computer, using Microsoft Windows XP Professional, we use 
javac version 1.5.0_01, as well as Java version 1.5.0_01, and version 1.5.0_01-b08 of 
HotSpot for both client and server versions.  For Linux, we used javac version 1.5.0, Java 
version 1.5.0, Java 2 Runtime Environment build 1.5.0-b64, and HotSpot Client and 
Server build 1.5.0-b64. 
 
 



 
4 

Techniques Used 
 
In the process of our research, we used several techniques for detecting optimizations.  
The most common involves creating a non-optimized test case, and then creating a 
manually optimized comparison class. For this comparison class, we performed the 
expected optimizations on the source code.  For method inlining, we eliminated calls to 
empty methods.  For constant propagation, we replaced variables with constants.  This is 
not exactly the same as machine-optimized code, since the optimizations would not 
produce source code.  However, this manually optimized code allowed us a method of 
comparison to further confirm the hypothesis that time differences were indeed caused by 
the optimizations we tested for. 
 
For measuring run times, we chose to time the programs starting after the class was 
created, before the loop that performed the method calls, and ended the timing right after 
the loop.  The reason for this is that we are excluding the overhead of class creation, or 
delays due to printing.  The reason we looped the method call so many times was to 
ensure that the code was used frequently enough for HotSpot to optimize it [2].  Another 
reason to loop is to ensure that the differences in run time would be detectable. 
 
We run test programs using HotSpot in both the client and server versions, with and 
without the –Xint flag for both modes.  We document results of all of the four testing 
cases, and list the results of each in the table (see Tables 1 and 2).  The reason we give 
the results in a range, with the minimum being emphasized, is so that it is clear that there 
is a difference between two times.  The minimum is the most important, because it shows 
the potential of the optimization under the best circumstances.  Test runs that are slower 
could be affected by process scheduling or other external factors.  Occasionally, we get 
results that are significantly larger, probably due to such factors, which would make an 
average a meaningless measurement.  The range is included to demonstrate a difference 
in run times, which would be shown by non-overlapping ranges. 
 
 
Results of Research 
 
 
Method Inlining 
 
Since method inlining is one of the fundamental optimizations, it was the first example 
we studied.  The simplest case of this optimization is inlining an empty method, see 
Figure 1.1.  To test this, we created a class that was comprised of a main method that 
called an empty method a large number of times.  The results we received from running 
tests using this code are shown in Tables 1.1 and 1.2. 
 
Our conclusions from testing this program are that both the server and client modes of 
HotSpot perform method inlining, however javac does not.  Our reasoning for these 
conclusions is that the manually optimized version (Figure 1.2) was run with HotSpot 
optimizations disabled, and there was a significant difference in run times compared to 
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the non-optimized testing class (also run with HotSpot optimizations disabled).  This 
difference implies that javac does not inline the method.  When optimizations were 
enabled, both server and client version had results equal to the manually optimized 
versions, which implies that HotSpot does inline the method. 
 
We tried other variations of method inlining, such as using a non-static method (see 
Figure 1.3), and a method that increments a static counter (see Figure 1.4).  In both of 
these cases, we observed the same behavior as in the main example.  Both methods were 
not optimized by javac, but seemed to be optimized by server and client modes of 
HotSpot. 
 
public class EmptyMethod { 
 
  public final static void main(String[] args) { 
    long time1 = System.currentTimeMillis(); 
 
    int x = 0; 
    while(x<999999999) { 
      emptyMethod(); 
      x++; 
    } 
 
    long time2 = System.currentTimeMillis(); 
    System.out.println("The method took " 
       + (time2 - time1) + " milliseconds"); 
    } 
 
  public final static void emptyMethod() { 
  } 
} 

Figure 1.1: Test Program for Method Inlining 
 
public class EmptyMethod { 
 
  public final static void main(String[] args) { 
    long time1 = System.currentTimeMillis(); 
 
    int x = 0; 
    while(x<999999999) { 
//    emptyMethod(); 
      x++; 
    } 
 
    long time2 = System.currentTimeMillis(); 
    System.out.println("The method took " 
       + (time2 - time1) + " milliseconds"); 
    } 
 
//  public final static void emptyMethod() { 
//  } 
 
} 

Figure 1.2: Manually Optimized Program for Method Inlining 
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public class EmptyMethodObject { 
 
    public final static void main(String[] args) { 
 
        int x = 0; 
        EmptyMethodObject obj = new EmptyMethodObject(); 
        long time1 = System.currentTimeMillis(); 
        while(x<999999999) { 
            obj.emptyMethod(); 
            x++; 
        } 
 
        long time2 = System.currentTimeMillis(); 
        System.out.println("The method took " + (time2 - time1) + " 
milliseconds"); 
    } 
 
    public EmptyMethodObject() { 
    } 
 
    public void emptyMethod() { 
    } 
} 

Figure 1.3: Non-Static Test Variation for Method Inlining 
 
 
public class EmptyMethodObject { 
 
    public final static void main(String[] args) { 
 
        int x = 0; 
        EmptyMethodObject obj = new EmptyMethodObject(); 
        long time1 = System.currentTimeMillis(); 
        while(x<999999999) { 
            //      obj.emptyMethod(); 
            x++; 
        } 
 
        long time2 = System.currentTimeMillis(); 
        System.out.println("The method took " + (time2 - time1) + " 
milliseconds"); 
    } 
 
    public EmptyMethodObject() { 
    } 
 
    //public void emptyMethod() { 
    //} 
 
} 

Figure 1.4: Non-Static Manually Optimized Variation for Method Inlining 
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Program -server -client -server -Xint -client -Xint 
EmptyMethod.java 
non-optimized  (see 

Figure 1.1) 
3-4 2214-2254 53212-53251 50206-50794 

EmptyMethod.java 
manually optimized (see 

Figure 1.2) 
3 2218-2246 22699-22738 20005-20028 

EmptyMethod.java 
modifying a static 

variable, non-optimized  
267-334 4791-4878 83043-83122 104818-

104952 

EmptyMethod.java 
modifying a static 
variable, manually 

optimized 

218-305 4787-4909 40001-40011 37846-37965 

EmptyMethodObject.java 
with a non-static empty 
method, non-optimized 

(see Figure 1.3) 

6 3326-3329 56404-56702 54602-54650 

EmptyMethodObject.java 
With a non-static empty 

method, manually 
optimized (see Figure 

1.4) 

3-4 2239-2275 22733-22770 19985-20000 

Table 1.1 Empty method inlining. All times are measured in milliseconds (ms).  
 

Program -server  -client -server -Xint -client -Xint 
EmptyMethod.java 
non-optimized  (see 

Figure 1.1) 
0 1781-1797 41782-42469 39328-40531 

EmptyMethod.java 
manually optimized (see 

Figure 1.2) 
0 1797-1812 16937-18203 15000-15782 

Table 1.2: Empty method inlining measured on Windows XP. All times are in 
milliseconds (ms). 

 
 
Constant Propagation 
 
Another fundamental optimization is constant propagation, where fixed-value variables in 
the source code are replaced by their values.  The exact code for the examples is shown 
below, in figures 2.1, 2.2, and 2.3.  In order to test for this optimization, we created a 
class consisting of an array of size one million, and used a loop to set every position in 
the array equal to the sum of two variables (x and y), which had fixed values.  
Afterwards, we chose a random position and output the value contained there. 
 
The reason we used the random variable and the position check was to ensure that the 
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loop indeed ran one million times, setting the value of each position to be equal to the 
sum of x and y, and so each time we ran the program to test it, we checked a different 
position. 
 
Figure 2.1 shows the original test code.  The results for it shown in the first row of the 
results table (see Table 2).  Figure 2.2 shows the changes in the loop, which manually 
performed constant propagation on the source code, and the results are displayed in the 
second row of the results table.  Figure 2.3 is the non-final version of the loop, which was 
done to test if the final status influenced whether or not javac performed optimizations. 
 
Our results show that both the server and client versions seem to perform constant 
propagation on the test program, but the server version takes noticeably longer to run the 
program than the client version.  When the variables were non-final, the –Xint flag 
(disabling HotSpot optimizations) run time became much longer than when the variables 
were final, which would imply that javac does indeed perform constant propagation as 
long as a variable is final, but does not optimize non-final variables. 
 
By comparing the program to manually optimized code (see figure 2.2) we conclude that 
in this case javac performs constant propagation (to change the values of x and y to 2 and 
3, respectively), constant folding (to replace 2+3 by 5), and dead code elimination (to 
eliminate the variables x and y entirely). 
 
 
 
import java.util.*; 
 
public class ConstantPropagation { 
 
    public final static void main(String[] args) { 
        int[] a = new int[1000000]; 
 
        long time1 = System.currentTimeMillis(); 
 
        for(int i=0;i < a.length;i++) { 
            final int x = 2; 
            final int y = 3; 
            a[i] = x+y; 
        } 
 
        long time2 = System.currentTimeMillis(); 
        Random temp = new Random(); 
        int tempInt = temp.nextInt(1000000); 
        System.out.println("At position " + tempInt + " the number is 
" + a[tempInt]); 
        System.out.println("The method took " + (time2 - time1) + " 
milliseconds"); 
    } 
} 

Figure 2.1: Test Program for Constant Propagation 
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        for(int i=0;i < a.length;i++) { 
            // final int x = 2; 
            // final int y = 3; 
            a[i] = 5; 
        } 
 

Figure 2.2: Manually optimized loop in ConstantPropagation.java. 
 
        for(int i=0;i < a.length;i++) { 
            int x = 2; 
            int y = 3; 
            a[i] = x + y; 
        } 
 

Figure 2.3: The loop with non-final variables in ConstantPropagation.java. 
 

Program -server  -client -server -Xint -client -Xint 
ConstantPropagation.java 

with final variables  
(see Figure 2.1) 

13-14 7-8 28-29 27 

ConstantPropagation.java  
manually optimized  

(see Figure 2.2) 
13-14 7-8 28-29 27-28 

ConstantPropagation.java  
with non-final variables 

(see Figure 2.3) 
15-19 8-9 133-146 102-105 

Table 2: Constant propagation and related optimizations for final and non-final variables. 
All times are measured in milliseconds (ms). 

 
 
Other Optimizations 
 
In addition to method inlining, constant propagation, constant folding, and dead code 
elimination, we experimented with the optimizations of tail recursion and string 
concatenation.  
 
To detect tail recursion optimization, we wrote a program with a tail-recursive method 
that does not have a base case. To increase the chances of optimization, we chose a final 
static void method. We reasoned that if recursion is optimized, no stack frames will be 
generated for the recursive calls, and the program will either stop or behave as an infinite 
loop. If recursion is not optimized, the stack frames for the method will overflow the 
program stack. In the experiment, the stack overflow occurred in all four modes of 
running the program (server, client, and their combinations with –Xint). However, the 
number of stack frames was different in all of these modes, with the largest for the server 
without –Xint option. This is possibly due to an optimization that reduces the amount of 
memory allocated for a stack frame. We plan to continue exploring the optimization of 
tail recursion. 
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To check optimization of string concatenation, we created a program that was computing 
string concatenation in a loop (assigning it to a variable), and another one where the 
assigned value was the already concatenated strings. The two programs had different run 
times in all four cases, so we conclude that the optimization has not been performed in 
any case. 
 
 
Future Work 
 
At this point we have developed techniques for detecting program optimizations and for 
distinguishing between those performed by the compiler and those performed by JVM 
(with the additional distinction between the client and the server modes). We also 
obtained results for some simple forms of method inlining, constant propagation and 
folding, and dead code elimination. Future directions of this research include:  
 

• Experimenting with inlining longer, more complex methods, including all 
combinations of void and non-void, final and non-final, and static and non-static.   

• Experimenting with other forms of dead code elimination, such as unreachable 
branches of conditionals. 

• Continue experimenting with tail recursion optimization.  
• Study other compilers, in particular those that convert a program directly to native 

code, such as GCJ. 
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