
Packet Stream Reconstructor (PSR):
 A Network Security Tool

Nem W. Schlecht
Computer Science

North Dakota State University
Fargo, ND 58105

nem.schlecht@ndsu.edu

Abstract

In today's networks, pattern complexity and packet traffic counts are steadily increasing.
Simple packet sniffing of many networks provides too much information in an
unorganized and unreadable manner. A solution to this is to analyze this raw packet data
and not only provide statistics on the various addresses and ports where communication is
occurring, but also to reconstruct any streams of packets into their original format. Such
a tool will allow network analysts and security officers the ability to easily see the content,
in its human viewable form, of the traffic that is occurring on their network along with the
type of traffic. This is especially advantageous when data is of a binary nature, such as
images, video, PDF and/or word processor documents, and audio files. This paper
describes a prototype of such an application that provides basic stream reconstruction
functionality for several TCP/IP protocols. Although still in an early development stage,
the application shows great promise.

1 Introduction

Network security usually focuses on detecting intrusion and providing integrity and
privacy in networks. These concerns help to protect a network from other entities and the
various entities within your network, but what if you needed to see and understand the
traffic traversing your network in real time. There are many tools to help you view your
network traffic, but almost all of them assume that the user is only concerned with the
packet traffic and not the packet contents.

1.1 Sniffers

The main tool for network security professionals are packet sniffers such as Ethereal[1],
tcpdump[2], snoop[3], and Sniffem'[4]. Ethereal & Sniffem' provide a graphical user
interface, making them easier to use, but they still only provide useful information for
users that are fluent in networking internals and have the ability to decipher what exactly is
going on. For example, without the use of at least some limiting rules (such as limiting
captured traffic to a certain port or IP address) the output of packet sniffing software is
often too voluminous to ascertain what traffic trends are present. A good networking
professional will know which rules will be the most effective to ascertain what is causing a
certain problem. However, not knowing the proper rules will result in obtaining useless
information from the network.

1.2 Streams

What is needed is the ability to see, in their entirety, any files being transferred or other
transactions that are occurring on the network. There are network tools available today to
do this, such as Iris[5], but such tools are very expensive and often use proprietary output
formats. The goal with this project was to produce a prototype application, written in
Perl[6], to process the raw output from tcpdump, reconstruct any identifiable streams and
perform some basic statistical analysis, and produce output in simple HTML. Each stream
identifies a single logical transaction between a client and a server. In the case of an
HTTP[7] transaction, a stream is composed from a single request from a client and the
response from the server. This is true for many protocols, but for others, such as
SMTP[8] and POP[9], the stream is composed from all of the requests from a client and
all of the responses from the server. The prototype Packet Stream Reconstructor (PSR)
only handles several protocols at the moment, but shows promise in being a very useful
network tool.

2 Network Information

In order to make large amounts of output from packet sniffing software understandable, it
needs to broken down into its logical components. The first level of this is the packet
type. In the PSR program, all packets are categorized into one of three types: ARP, IP,
and generic or unknown (IEEE). By examining ARP packets, we will know what kind of

1

discovery activity is going on in the network. This may not be of great importance, but it
might show trends such as a network entity attempting to contact all of the machines in a
subnet using non-broadcast or non-multicast protocols. A high presence of ARP packets
may also indicate a host attempting to spoof the IP address of another host on the
network. Next are IP packets, which will be discussed in great detail below. The last
type, IEEE, covers all packet types that are unknown to the program. Usually, these
packets are IPX or Appletalk packets. Future versions of the software should be able to
analyze these packets as well for trends.

2.1 IP Packets

The next level of detail concerns only IP packets. Here the focus is on four different types
of packets: ICMP (type 1), TCP (type 6), UDP (type 11), and unknown (any other type).
When testing the PSR program, 99.6% of the average IP traffic fell into one of the three
known categories. High levels of ICMP traffic may indicate a ping flood attack, either
direct or reflexive. Steady ICMP traffic from one host to another may indicate either an
errant 'ping' that was left running or the possibility of an open itunnel or icmptunnel[10] on
the network, which allow for hackers to tunnel telnetd or some other network service
through ICMP packets. The next type of IP traffic, TCP, will be discussed in detail
below. The last type of traffic, UDP, in the PSR test runs, was typically for DNS
resolutions (port 53). However, odd UDP traffic may indicate a network entity
attempting to do a thorough portscan[11] on a network device for an open tftp port, a
favorite back door for hackers, or some other open service.

2.2 TCP Packets

The last level of detail concerns only TCP packets. Most of the IP traffic examined during
testing was TCP traffic. Indeed, when most people think of Internet traffic, they are
thinking about TCP traffic. All e-mail, web, network filesystem (NFS, CIFS/Samba), file
sharing, database and instant messaging traffic is typically TCP traffic. For this prototype,
focus was placed on e-mail and web traffic. More specifically, all SMTP (Simple Mail
Transport Protocol), POP (Post Office Protocol), IMAP[12] (Internet Message Access
Protocol), and HTTP (Hyper-Text Transfer Protocol) traffic packets were examined.
Statistics for the packet hosts and counts are generated for these protocols, just like the
traffic at the other levels, but for these specific protocols 'streams' of traffic were identified
and reconstructed into their original format.

3 Packet Structure

In order to process a packet stream, an application must first identify the different types of
packets that are traversing the pipe from the packet sniffer to the stream analyzer. As the
packets are piped to the PSR application, their type is identified and recorded. If the
packet is an IP packet, it is sent to an instance of an 'IP' object that further analyzes it and,
if applicable, sends the packet on to an object that performs stream reconstruction.

2

Although the PSR application does not open a direct connection to the network interface
controller, it still needs a rather low level of knowledge of packet structure in order to
correctly identify and process the packets. Table 1 above shows a sample breakdown of a
packet. This particular example is a packet from an HTTP response, although the payload
isn't shown. The PSR application deconstructs each packet into each of the separate fields
outlined in the table and the relevant data is stored in a packet data structure. Where
needed, the packet bytes were joined and converted from hexadecimal into decimal or a
similar format that was more easily identified and readable.

Although this task was tedious, a great deal of knowledge was gained about the structure
of packets and how this structure changes during and between connections. However, it
became apparent that in order to have an application that can identify and process all
packets and packet streams, the application would have to have a working knowledge of
all packet types and Internet protocols! In effect, PSR would need an application level IP
stack capable of processing multiple types of Ethernet traffic along with the definitions of
hundreds of protocols and know the correct way of reconstructing streams for all them. It
is hoped that there will be some interest in the computing community in this application
and that others will help to expand and enhance the functionality of PSR.

3

Table 1: Breakdown of a typical TCP/IP packet

Type Size (bytes) HEX Decimal or examples
Ethernet Header

Destination MAC address 6 00 04 9a 86 fc 17
Source MAC address 6 00 b0 d0 20 a4 96
Packet Type 2 08 00 8 => IP

IP Header
Version & Length 1 45 4 & 20
Services 1 00
Total Length 2 00 40 64
ID Number 2 5b 2f 23343
Flags & Fragment offset 1 40 00
Time to live (TTL) 1 40 64
Protocol 1 6 1 => ICMP, 6 => TCP, 11 => UDP
Header checksum 2 3e 57
Source IP address 4 41 65 66 39 65.101.102.57
Destination IP address 4 86 81 73 12 134.129.115.18

TCP Header
Source Port 2 9c 71 40049
Destination Port 2 00 50 80
Sequence number 4 c4 14 dc 5f 3289701471
Header length 1 b0 44
Flags 1 2 02 => SYN
Window Size 2 80 52 32850
Checksum 2 2a 13
Options var.

4 Stream Analysis

In order to reconstruct a packet stream, one must recognize that any stream is comprised
of packets sent from a specific port on one IP address to another specific port on another
IP address. By looking at the first packet in such a stream, the service that is being
contacted can be identified and the IP addresses determine the direction of the stream.
For example, host 10.0.0.10 uses port 5000 to contact port 80 on 10.0.0.20. We can
identify this as a web stream, since the second host was contacted on port 80. The next
packet we see from either 10.0.0.20 and using port 80 or 10.0.0.10 using port 5000 can be
considered part of the same stream. In this case, 10.0.0.10 is referred to as the 'client', as
it initiated the connection and host 10.0.0.20 is the 'server', as it had a service listened on
port 80 for incoming connections (see Illustration 1 below). Each stream is identified by
its 'stream ID', which is a concatenation of the IP addresses involved (server, then client),
as well as the client port, and if necessary, the IP ID Number (see Table 1 above).

4.1 Decoding Transactions

A 'stream' constitutes a single connection and transaction. The transaction may contain
several commands from the client to the server, such as the case with SMTP and POP
traffic. However, for the most part, is it usually a single command from the client to the
server and the response from the server. Currently, what constitutes a stream for a
particular protocol is coded into the class for that particular protocol handler. In the
future, this will hopefully be an option that is selectable when the output is viewed, rather
than when packets are processed, as it is now. Table 2 (below) shows a sample POP

4

Table 2: Sample POP transaction - a single 'stream'

Sample POP transaction between a client & server
Client Server

--> Connect
+OK ready

USER username
+OK Password required for username.

PASS password
+OK username has 1 visible message

RETR 1
+OK xxx octets (message follows)

QUIT

Illustration 1: Stream ID / Client-Server

transaction between a client and server. The client first makes a connection, then provides
their user identifier followed by their password. The server responds that a single message
is available, which the client then requests. After the server has sent the message to the
client, the client requests an end to the session at which point the server sends a 'goodbye'
message and closes the connection. Although there is interaction between the client and
the server, this is considered a single transaction and is decoded as such by the PSR
application.

4.2 HTTP Streams

Decoding streams of IMAP and SMTP traffic is nearly identical to decoding streams of
POP traffic. However, HTTP traffic proved to be much more complex. First an HTTP
client can request a 'Keep-Alive' connection with the server. This means that unlike usual
HTTP traffic where a client makes a single request and receives a single reply, multiple
requests and multiple responses are sent along the same port connection. In the PSR
application, these connections should not be considered a single stream, since each HTTP
request should be considered to be a different transaction. Luckily, these separate
requests are identifiable by examining the IP ID Number (see Table 1 above) and
concatenating this number to the stream ID. Another problem with the HTTP protocol is
the fact that a server may respond with a header indicating a 'Transfer-encoding' type of
'chunky'. This means that the HTTP server breaks the response into several variable-
length 'chunks' before sending the response to the client. To add to the complexity, these

5

Illustration 2: Simplified class diagram for PSR system

chunks can span several packets. To make the application able to process these odd types
of streams, as well as make it extendable to other similarly complex protocols in the
future, an object-oriented code development model was used, which allowed all such
oddities to be coded into a single class. Thus, the IP object doesn't need to know that
such complex streams are being seen on the network, only the HTTP object sees and
decodes these streams. As can be seen Illustration 2 above, any protocol extensions can
be easily added onto existing system. Each class needs only to define three methods:
new() (the constructor), add_packet() and output_stream(). add_packet() receives a
packet and determines if it is a stream or not and stores the packet properly and
output_stream() simply provides the proper HTML output for that particular packet type.

5 Reporting

In any application that takes some type of input, it is assumed that some sort of output will
be generated. The PSR application is no different and generates multiple HTML pages in
a predefined directory. The main page shows statistics on the total number of packets, the
number of ARP, IEEE (generic/unknown), and IP packets, and finally a list of a links, one
for each stream that was found. Each of the protocol count labels is a clickable link that
will show additional information, such as MAC & IP addresses and any ports involved in
the connections sorted by either MAC or IP address on one side and on the other side
sorted by number of packets seen or by port/service number (see Text 1 below). Although
this is a rather simplistic report, it can be very useful. As described earlier, certain simple
trends can indicate various problems, and these trends are easily seen in these reports. For
example, if the IP report shows many packets from many sequential ports on a single host,
this would indicate that the host is connecting (or attempting to connect) to either multiple
hosts or repeatedly to a single host. This would indicate either a port scan or possibly an
attack. Another example would be if many packets are seen involving port 3306, the
MySQL daemon port, and such a server is not supposed to be present in the current

6

PSR: IP Stats - Fri Mar 11 14:58:33 2005

19 IP packets were seen.

19 TCP/IP requests were seen.

Text 1: Sample IP Statistics

Source IP addresses:
65.101.102.57 -> 10
134.129.115.18 -> 9

Destination IP
addresses:
65.101.102.57 -> 9
134.129.115.18 -> 10

Source ports:
80 -> 10
58698 -> 9

Destination ports:
80 -> 9
58698 -> 10

Source IP addresses:
65.101.102.57 -> 10
134.129.115.18 -> 9

Destination IP
addresses:
134.129.115.18 -> 10
65.101.102.57 -> 9

Source ports:
80 -> 10
58698 -> 9

Destination ports:
58698 -> 10
80 -> 9

network. When looking at the output from a packet sniffer, such traffic might have been
noticed, if one was looking for it, but it might have been overlooked.

Lastly, of great interest to most, will be the stream reconstructions, which are also on the
main HTML page (see Text 2 below). Beside each stream identifier is the type of TCP
packet stream that was reconstructed. In the prototype, this is HTTP, IMAP, POP, or
SMTP. Clicking on the stream identifier will bring up the human visible reconstruction of
the stream. In the case of an HTTP stream, the HTML, graphic, or file type that was
transferred will be displayed. In the case of a POP or IMAP stream, the client commands
and server responses, as well as any messages will be displayed. Also as a part of the POP
stream report, any USER and PASS commands (showing the username & password for
the connection - see Table 2 above on page 4) are highlighted in red and the IMAP report
shows the 'login' command similarly highlighted. Finally, in the case of an SMTP stream,
the client commands and server responses are again show, this time with the "mail from:"
and "rcpt to:" commands highlighted in red, allowing the security agent to easily see who
the mail was from and who its intended recipient is.

Also of note is that under an HTTP stream there is a link labeled "Header" that will show
the headers of the GET request and HTTP response (see Text 3 below). In the future, it
would be possible to use the information from these headers to modify the HTML tags in
reconstructed HTTP streams to allow for images, applets, and included Javascript code to
all properly show up and function in such reconstructions. Currently, none of the HTML

7

PSR: Sun Dec 12 16:23:23 2004

4682 packets processed
Arp: 206
IEEE: 363
IP: 4113

7 IP streams processed
S: 134.129.115.4-66.44.132.62-33203-25c5 - HTTP - html
 (Header)
S: 134.129.115.4-66.44.132.62-33203-2581 - HTTP - html
 (Header)
S: 65.101.102.57-65.101.102.59-1046 - POP
S: 134.129.115.4-64.124.85.91-33890-cff9 - HTTP - html
 (Header)
S: 134.129.115.4-64.124.85.91-33890-d015 - HTTP - html
 (Header)
S: 134.129.115.4-66.44.132.62-33204-257f - HTTP - jpeg
 (Header)
S: 134.129.115.4-68.77.240.28-52075 - HTTP - html
 (Header)

Text 2: Sample output of main HTML page from PSR

code is modified. The header information would also make it possible to recreate a partial
mirror of any web sites whose pages we have seen. It would also be possible to modify
the stream reconstruction code to not reconstruct any streams for files that currently exist
on the mirrored filesystem and have not been modified since they were placed there.
Other protocols would have a similar format in the main HTML page. For example, an
FTP transaction would have a file associated with it that would be stored separately from
the request for the file. Also, a MySQL result would be displayed in an HTML table in a
separate file from the SQL request that generated the result set.

6 Conclusion

To take this project from a prototype, written in Perl, to an application that would be
written in C or Java, would take a considerable amount of time and effort. Especially
when the desired outcome is to have an application that processes packets of many
different types and protocols. Many obstacles were encountered in reading the output
from tcpdump correctly and reconstructing the streams found within. From the problem
of the varying length of the HTTP protocol, to just ignoring the generic or unknown
packets proved to be time consuming tasks in the development of the application. Many
such tasks would be needed to be overcome in order to have a flexible tool that works in
many different network environments. The PSR application, even in this early stage, is a
useful tool that will hopefully, someday, become an essential addition to every network
administrators set of applications.

8

GET /~nem/ HTTP/1.1
TE: deflate,gzip;q=0.3
Connection: TE, close
Host: empyrean.lib.ndsu.nodak.edu
User-Agent: lwp-request/2.06
HTTP/1.1 200 OK
Date: Mon, 06 Sep 2004 04:12:56 GMT
Server: Apache/2.0.48 (Unix) mod_ssl/2.0.48 OpenSSL/0.9.7c
Accept-Ranges: bytes
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=ISO-8859-1

Text 3: Sample output of HTTP header reconstruction

References:

[1] Ethereal - http://www.ethereal.com/

[2] tcpdump - http://www.tcpdump.org/

[3] snoop - Part of the Solaris operating system - http://wwws.sun.com/software/solaris/

[4] Sniffem' - http://www.sniff-em.com/

[5] Iris Network Traffic Analyzer - http://www.eeye.com/html/products/iris/

[6] Perl - http://www.perl.com/

[7] HTTP (Hyper-Text Transfer Protocol) RFC - http://www.w3.org/Protocols/rfc2616/rfc2616.html

[8] SMTP (Simple Mail Transport Protocol) RFC - http://www.ietf.org/rfc/rfc821.txt

[9] POP (Post Office Protocol) RFC - http://www.ietf.org/rfc/rfc1939.txt

[10]icmptunnel - http://www.detached.net/icmptunnel/index.html

[11]Portscanning - see nmap: http://www.insecure.org/nmap/

[12]IMAP (Internet Message Access Protocol) - http://www.imap.org/

9

	PSR: IP Stats - Fri Mar 11 14:58:33 2005
	PSR: Sun Dec 12 16:23:23 2004

