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Abstract 

 
The purpose of this paper is to analyze several algorithm design paradigms applied to a 
single problem – the 0/1 Knapsack Problem. The Knapsack problem is a combinatorial 
optimization problem where one has to maximize the benefit of objects in a knapsack 
without exceeding its capacity. It is an NP-complete problem and as such an exact 
solution for a large input is practically impossible to obtain.  
 
The main goal of the paper is to present a comparative study of the brute force, dynamic 
programming, memory functions, branch and bound, greedy, and genetic algorithms. The 
paper discusses the complexity of each algorithm in terms of time and memory 
requirements, and in terms of required programming efforts. Our experimental results 
show that the most promising approaches are dynamic programming and genetic 
algorithms. The paper examines in more details the specifics and the limitations of these 
two paradigms.   
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Introduction 
 
In this project we are going to use Brute Force, Dynamic Programming, Memory 
Functions, Branch and Bound, and Greedy Algorithms to solve the Knapsack Problem 
where one has to maximize the benefit of items in a knapsack without extending its 
capacity. The main goal of this project is to compare the results of these algorithms and 
find the best one. 

 
 

The Knapsack Problem (KP) 
 
The Knapsack Problem is an example of a combinatorial optimization problem, which 
seeks for a best solution from among many other solutions. It is concerned with a 
knapsack that has positive integer volume (or capacity) V. There are n distinct items that 
may potentially be placed in the knapsack. Item i has a positive integer volume Vi and 
positive integer benefit Bi. In addition, there are Qi copies of item i available, where 
quantity Qi is a positive integer satisfying 1 � Qi � �.   
 
Let Xi determines how many copies of item i are to be placed into the knapsack. The goal 
is to:  
  Maximize  
     N        
    � Bi Xi  
              i = 1 
  Subject to the constraints  
    N 
    � Vi Xi � V  
              i = 1 
  And  
   0 � Xi � Qi. 
 
If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded 
[1]. The bounded KP can be either 0-1 KP or Multiconstraint KP. If Qi = 1 for i = 1, 2, 
…, N, the problem is a 0-1 knapsack problem In the current paper, we have worked on 
the bounded 0-1 KP, where we cannot have more than one copy of an item in the 
knapsack.  
 
 
Different Approaches 
 
 
Brute Force 
 
Brute force is a straightforward approach to solving a problem, usually directly based on 
the problem’s statement and definitions of the concepts involved. If there are n items to 
choose from, then there will be 2n possible combinations of items for the knapsack. An 
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item is either chosen or not chosen. A bit string of 0’s and 1’s is generated which is of 
length n. If the ith symbol of a bit string is 0, then the ith item is not chosen and if it is 1, 
the ith item is chosen.  
 
ALGORITHM BruteForce (Weights [1 … N], Values [1 … N], A[1…N]) 
//Finds the best possible combination of items for the KP 
//Input: Array Weights contains the weights of all items 

Array Values contains the values of all items 
Array A initialized with 0s is used to generate the bit strings  

//Output: Best possible combination of items in the knapsack bestChoice [1 .. N] 
 
for i = 1 to 2n do 
 j � n 
 tempWeight � 0 
 tempValue � 0 
 while ( A[j] != 0 and j > 0) 
  A[j] � 0 
  j � j – 1 
 A[j] � 1 

for k � 1 to n do 
  if (A[k] = 1) then 
   tempWeight � tempWeight + Weights[k] 
   tempValue � tempValue + Values[k] 
 if  ((tempValue > bestValue) AND (tempWeight � Capacity)) then 
  bestValue � tempValue 
  bestWeight � tempWeight 
   
 bestChoice � A 
return bestChoice 
 
Complexity   
2n 

       1         n     2n 
� [ �  + � ]=  �[{1+..+1}(n times) +{1+..+1}(n times)] 
i = 1   j = n       k=1     i=1 

  = (2n)* [1+1+1…..+1] (2n times) 
  = O(2n*2n) 
  = O(n*2n) 
 
Therefore, the complexity of the Brute Force algorithm is O (n2n).  Since the complexity 
of this algorithm grows exponentially, it can only be used for small instances of the KP. 
Otherwise, it does not require much programming effort in order to be implemented. 
Besides the memory used to store the values and weights of all items, this algorithm 
requires a two one dimensional arrays (A[] and bestChoice[]).  
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Dynamic Programming 
 
Dynamic Programming is a technique for solving problems whose solutions satisfy 
recurrence relations with overlapping subproblems. Dynamic Programming solves each 
of the smaller subproblems only once and records the results in a table rather than solving 
overlapping subproblems over and over again. The table is then used to obtain a solution 
to the original problem. The classical dynamic programming approach works bottom-up 
[2].  
 
To design a dynamic programming algorithm for the 0/1 Knapsack problem, we first 
need to derive a recurrence relation that expresses a solution to an instance of the 
knapsack problem in terms of solutions to its smaller instances.  

 
Consider an instance of the problem defined by the first i items, 1 � i � N, with: 

 weights w1, … , wi,  
  values   v1, … , vi,  
and knapsack capacity j, 1 � j � Capacity.  
 

Let Table[i, j] be the optimal solution of this instance (i.e. the value of the most valuable 
subsets of the first i items that fit into the knapsack capacity of j). We can divide all the 
subsets of the first i items that fit the knapsack of capacity j into two categories subsets 
that do not include the ith item and subsets that include the ith item. This leads to the 
following recurrence: 
 If      j < wi   then  

Table[i, j] � Table[i-1, j]    Cannot fit the ith item  
    Else  
  Table[i, j] � maximum { Table[i-1, j]  Do not use the ith item  

AND  
vi + Table[i-1, j – vi,]  Use the ith item  
 

The goal is to find Table [N, Capacity] the maximal value of a subset of the knapsack.  
The two boundary conditions for the KP are:   

- The knapsack has no value when there no items included in it (i.e. i = 0). 
  Table [0, j] = 0   for j � 0  
- The knapsack has no value when its capacity is zero (i.e. j = 0), because no items 

can be included in it.  
Table [i, 0] = 0   for i � 0  

 
ALGORITHM Dynamic Programming (Weights [1 … N], Values [1 … N],  

Table [0  ... N, 0 … Capacity]) 
// Input:   Array Weights contains the weights of all items 
 Array Values contains the values of all items 

   Array Table is initialized with 0s; it is used to store the results from the dynamic 
programming algorithm.  

// Output: The last value of array Table (Table [N, Capacity]) contains the optimal 
solution of the problem for the given Capacity  
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for i = 0 to N do 
 for j = 0 to Capacity 
  if   j < Weights[i] then 
   Table[i, j] � Table[i-1, j] 
  else  
   Table[i, j] � maximum { Table[i-1, j]  

AND  
Values[i] + Table[i-1, j – Weights[i]] 

return Table[N, Capacity]  
 
In the implementation of the algorithm instead of using two separate arrays for the 
weights and the values of the items, we used one array Items of type item, where item is a 
structure with two fields: weight and value.  
 
To find which items are included in the optimal solution, we use the following algorithm:  
 

n � N  c � Capacity 
 Start at position Table[n, c] 
 While the remaining capacity is greater than 0 do  
  If Table[n, c] = Table[n-1, c] then  
   Item n has not been included in the optimal solution 
  Else  
   Item n has been included in the optimal solution 
   Process Item n 
   Move one row up to n-1  
   Move to column c – weight(n)  
 
Complexity  
 N    Capacity             N 

�   � 1 = � [1+1+1+……+1] (Capacity times) 
i=0     j=0                 i=0 

       = Capacity * [1+1+1+……+1] (N times) 
       = Capacity * N 
       = O (N*Capacity) 
 
Thus, the complexity of the Dynamic Programming algorithm is O (N*Capacity). In 
terms of memory, Dynamic Programming requires a two dimensional array with rows 
equal to the number of items and columns equal to the capacity of the knapsack. This 
algorithm is probably one of the easiest to implement because it does not require the use 
of any additional structures.   
 
 
Memory Functions 
 
Unlike dynamic programming, memory functions solve in a top-down manner only 
subproblems that are necessary. In addition, it maintains a table of the kind that would 
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have been used by a bottom-up dynamic programming algorithm. Initially, all the cells in 
the table are initialized with a special “null” symbol to indicate that they have not been 
calculated. This method first checks if the value in the needed cell has already been 
calculated (i.e. it is not null). If this is true, it retrieves it from the table. However, if the 
value in the cell is “null,” it is computed by the recursive call whose result is then 
recorded in the table [2]. Memory functions use the same recurrence relations as the 
dynamic programming algorithm.  
 
ALGORITHM MemoryFunction (i, j) 
// Input:  The function is initially called with i = N and j = Capacity 
// Output: The last value of array Table (Table [N, Capacity]) contains the optimal 
solution of the problem for the given Capacity  
// The program uses global variables input arrays Weight [1 … N], Values [1 … N], and 
Table[0 … N, 0 … Capacity) whose entries are initialized with -1s except for the 0th row 
and column, which are initialized with 0s (follows from the boundary conditions 
explained in the Dynamic Programming section).  
 
if Table[i, j] < 0 then 
 if j < Weights[i] then  
  if   j < W[i] then 
   value � MemoryFunction (i-1, j) 
  else  
   value � maximum { MemoryFunction (i-1, j)  

AND  
Values[i] + MemoryFunction (i-1, j – Weights[i]) 

 Table [i, j] � value 
return Table[i, j] 
 
Overall, memory functions are an improvement of dynamic programming because they 
only solve sub-problems that are necessary and do it only once. However, they require 
more memory because it makes recursive calls which require additional memory.  
 
 
Greedy Algorithm 
 
Greedy programming techniques are used in optimization problems. They typically use 
some heuristic or common sense knowledge to generate a sequence of suboptimum that 
hopefully converges to an optimum value.  
 
Possible greedy strategies to the 0/1 Knapsack problem:  
 

1. Choose the item that has the maximum value from the remaining items; this 
increases the value of the knapsack as quickly as possible. 

2. Choose the lightest item from the remaining items which uses up capacity as 
slowly as possible allowing more items to be stuffed in the knapsack. 

3. Choose the items with as high a value per weight as possible.  
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We implemented and tested all three of the strategies. We got the best results with the 
third strategy - choosing the items with as high value-to-weight ratios as possible.  
 
ALGORITHM GreedyAlgorithm (Weights [1 … N], Values [1 … N]) 
// Input:   Array Weights contains the weights of all items 
 Array Values contains the values of all items 
// Output: Array Solution which indicates the items are included in the knapsack (‘1’) or 

not (‘0’) 
 
Integer CumWeight  
Compute the value-to-weight ratios ri = vi / wi, i = 1, …, N, for the items given  
Sort the items in non-increasing order of the value-to-weight ratios 
for all items do 
 if   the current item on the list fits into the knapsack then  
  place it in the knapsack  
 else  
  proceed to the next one  
 
Complexity 

1.Sorting by any advanced algorithm is O(NlogN) 
      N 

2. � 1 = [1+1+1….1] (N times) = N � O(N) 
              i = 0 

From (1) and (2), the complexity of the greedy algorithm is, O(NlogN) + O(N) � 
O(NlogN). In terms of memory, this algorithm only requires a one dimensional array to 
record the solution string.  
 
 
Branch and Bound 
  
Branch and bound is a technique used only to solve optimization problems. It is an 
improvement over exhaustive search, because unlike it, branch and bound constructs 
candidate solutions one component at a time and evaluates the partly constructed 
solutions. If no potential values of the remaining components can lead to a solution, the 
remaining components are not generated at all. This approach makes it possible to solve 
some large instances of difficult combinatorial problems, though, in the worst case, it still 
has an exponential complexity.  
  
Branch and bound is based on the construction of a ‘state space tree’. A state space tree is 
a rooted tree where each level represents a choice in the solution space that depends on 
the level above and any possible solution is represented by some path starting out at the 
root and ending at a leaf. The root, by definition, has level zero and represents the state 
where no partial solution has been made. A leaf has no children and represents the state 
where all choices making up a solution have been made. In the context of the Knapsack 
problem, if there are N possible items to choose from, then the kth level represents the 
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state where it has been decided which of the first k items have or have not been included 
in the knapsack. In this case, there are 2k nodes on the kth level and the state space tree’s 
leaves are all on level N [2].  
  
The most common ways, branch and bound uses to traverse the state space tree, are 
breath-first traversal and best-first traversal. Both breath-first and best-first stop searching 
in a particular sub-tree when it is clear that to search further down is pointless. The only 
difference between breath-first and best-first is that the first one uses a regular queue and 
the second uses a priority queue, where both queues keep track of all currently known 
promising nodes. We implemented the branch and bound algorithm using a priority 
queue.  
  
In the state space tree, a branch going to the left indicates the inclusion of the next item 
while a branch to the right indicates its exclusion. In each node of the state space tree, we 
record the following information:  

level - indicates which level is the node at, 
 cumValue – the cumulative value of all items that have been selected on this 
branch, 
 cumWeight – the cumulative weight of all items that have been selected on this 
branch, 
 nodeBound – used as a key for the priority queue.  
 
We compute the upper bound on the value of any subset by adding the cumulative value 
of the items already selected in the subset, v, and the product of the remaining capacity of 
the knapsack (Capacity minus the cumulative weight of the items already selected in the 
subset, w,) and the best per unit payoff among the remaining items, which is vi+1 / wi+1 

[2].    
Upper Bound = v + (Capacity – w)*(vi+1 / wi+1) 

 
ALGORITHM BestFirstBranchAndBound (Weights [1 … N], Values [1 … N) 
// Input:   Array Weights contains the values of all items 
 Array Values contains the values of all items 
// Output: An array that contains the best solution and its MaxValue 
// Precondition:  The items are sorted according to their value-to-weight ratios  
 
PriorityQueue<nodeType> PQ 
nodeType current, temp 

 
Initialize the root  
PQ.enqueue(the root)  
MaxValue = value(root) 

 
while(PQ is not empty)  

current = PQ.GetMax()   
 if (current.nodeBound > MaxValue) 

Set the left child of the current node to include the next item 
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if (the left child has value greater than MaxValue) then  
MaxValue = value (left child)  
Update Best Solution  

if (left child bound better than MaxValue)  
PQ.enqueue(left child) 

Set the right child of the current node not to include the next item 
if (right child bound better than MaxValue)  

PQ.enqueue(right child) 
return the best solution and it’s maximum value  
 
In the worst case, the branch and bound algorithm will generate all intermediate stages 
and all leaves. Therefore, the tree will be complete and will have 2n-1 – 1 nodes, i.e. will 
have an exponential complexity. However, it is still better than the brute force algorithm 
because on average it will not generate all possible nodes (solutions). The required 
memory depends on the length of the priority queue.  
 
 
Genetic Algorithm 

 
A genetic algorithm is a computer algorithm that searches for good solutions to a problem 
from among a large number of possible solutions. All GAs begin with a set of solutions 
(represented by chromosomes) called population. A new population is created from 
solutions of an old population in hope of getting a better population.  Solutions which are 
then chosen to form new solutions (offsprings) are selected according to their fitness. The 
more suitable the solutions are the bigger chances they have to reproduce. This process is 
repeated until some condition is satisfied [4]. 

 
Most GAs methods are based on the following elements: “populations of chromosomes, 
selection according to fitness, crossover to produce new offspring, and random mutation 
of new offspring”[3].  
 
Outline of basic GA s 
 
1. Start: Randomly generate a population of N chromosomes.  
2. Fitness: Calculate the fitness of all chromosomes. 
3. Create a new population: 

a. Selection: Randomly select 2 chromosomes from the population.  
b. Crossover: Perform crossover on the 2 chromosomes selected.  
c. Mutation: Perform mutation on the chromosomes obtained. 

4. Replace: Replace the current population with the new population.  
5. Test: Test whether the end condition is satisfied. If so, stop. If not, return the best 
solution in current population and go to Step 2.  
  
Each iteration of this process is called generation. The entire set of generations is called a 
run [3]. 
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We described in detail a genetic algorithm for solving the 0/1 Knapsack Problem in our 
previous publication “Solving the 0/1 Knapsack Problem with Genetic Algorithms.” 
There we concluded that the group selection function that we implemented produced 
better results than the roulette wheel selection function. Thus, in this project, we perform 
our testing with the group selection function. We also set the population size to 250, the 
mutation rate to 0.1% and the crossover rate to 85% (85% of every new generation will 
be formed with crossover and 15% will be copied without any changes). In our genetic 
algorithm the population converges when either 90% of the chromosomes in the 
population have the same fitness value or the number of generations is greater than a 
fixed number usually set to 500 [5].  
 
Complexity  
 
The complexity of the genetic algorithm depends on the number of items (N) and the 
number of chromosomes in each generation (Size). It is O(Size*N).   
 
 
Analysis of Results 

 
For the testing of the different algorithms, we generated files with different sizes where 
each record consists of a pair of randomly generated integers representing the weight and 
value of each item. We performed two types of testing. For the first one, we were 
increasing the number of items to be considered for the knapsack, while holding the 
capacity of the knapsack constant (equal to 50). During the second testing, we were 
increasing the capacity of the knapsack, while fixing the number of items to 500.  
 
 
Testing I: Increase the number of items & Capacity = 50  
 
10 Items  

Number of Items Items included Total Value Max Value  
Brute Force 3, 6, 8, 9, 10 152 152 

Greedy Algorithm  3, 4, 6, 7, 8, 9 142 152 
Branch and Bound 3, 6, 8, 9, 10 152 152 

Dynamic Programming  3, 6, 8, 9, 10 152 152 
Genetic Algorithm  3, 6, 8, 9, 10 152 152 

Table 1 
25 Items  

Number of Items Items included Total Value Max Value  
Brute Force 6, 7, 9, 13, 17, 19, 20, 21 298 298 

Greedy Algorithm  4, 6, 7, 9, 13, 19, 20, 21 284 298 

Branch and Bound 6, 7, 9, 13, 17, 19, 20, 21 298 298 Dynamic Programming 6, 7, 9, 13, 17, 19, 20, 21 298 298 Genetic Algorithm  6, 7, 9, 13, 17, 19, 20, 21 298 298 Table 2 



 10  

The maximum number of items we could run the brute force algorithm for was 25. 
Moreover, Table 1 and Table 2 show us that so far branch and bound, dynamic 
programming and genetic algorithms produce results that are the same as the optimal 
solution generated by the brute force algorithm.  
 
Next we consider the solutions greedy, branch and bound, dynamic programming and 
genetic algorithms generate in terms of the total value, average number of basic 
operations and memory used.  

 
100 Items  

Number of Items Total Value Total Weight   Operations Memory 
Greedy Algorithm  1361 50 1398 100 
Branch and Bound 1388 49 4598 2156 

Dynamic Programming 1388 49 5100 5100 
Genetic Algorithm  1386 49 5608 15000 

Table 3 
300 Items  

Number of Items Total Value Total Weight   Operations Memory 
Greedy Algorithm  5523 50  300 
Branch and Bound 5658 50 6346 12578 

Dynamic Programming 5658 50 15300 15300 
Genetic Algorithm  5658 50 17688 45000 

Table 4 
500 Items  

Number of Items Total Value Total Weight   Operations Memory 
Greedy Algorithm  15347 49  500 
Branch and Bound 15466 50 200920 48560 

Dynamic Programming 15466 50 25500 25000 
Genetic Algorithm  15466 50 29441 75000 

Table 5 
750 Items  

Number of Items Total Value Total Weight   Operations Memory 
Greedy Algorithm  25800 48  750 
Branch and Bound 26504 50 1388299 223592 

Dynamic Programming 26504 50 38250 38250 
Genetic Algorithm  26456 49 44132 112500 

Table 6 
1000 Items  

Number of Items Total Value Total Weight   Operations Memory 
Greedy Algorithm  43985 48  1000 
Branch and Bound NA NA NA NA 

Dynamic Programming 44549 50 51000 51000 
Genetic Algorithm  44512 49 58823 150000 

Table 7 
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As we can see from Tables 3 through 7, the maximum number of items we could run the 
branch and bound algorithm was 750. Therefore, although its complexity grows 
exponentially like the brute force algorithm, branch and bound executes for a lot greater 
inputs. Moreover, we can conclude that the dynamic programming, branch and bound, 
and genetic algorithms outperform the greedy algorithm in terms of the total value it 
generates. We decided to further analyze the dynamic programming, branch and bound, 
and genetics algorithms in terms of the number of basic operations (Fig. 2) and memory 
used (Fig. 1) for the different input files (number of items).  
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As we increase the number of items, the number of basic operations for the dynamic 
programming and genetic algorithms increase with approximately the same rate (Fig. 2). 
Since, dynamic programming seems to require less memory than the genetic algorithms 
(Fig. 1) one may conclude that it is better to use dynamic programming over genetic 
algorithms. However, we are missing to consider something. The complexity of dynamic 
programming depends on the number of items and the capacity. Unlike it, the complexity 
of the genetic algorithms depends on the number of items and the size of the population. 
Therefore, if we increase the capacity of the knapsack the number of basic operations and 
the memory required for the dynamic programming will increase and for the genetic 
algorithms will stay approximately the same (Table 8 through 13).  
 
 
Testing II: Increase the capacity & Number of Items = 500 
 
Capacity = 50  

Number of Items Total Value Operations Memory 
Dynamic Programming 15466 25500 25000 

Genetic Algorithm  15466 29441 75000 
Table 8   

Capacity = 100  
Number of Items Total Value Operations Memory 

Dynamic Programming 22408 50500 50500 
Genetic Algorithm  22313 29456 75000 

Table 9   
Capacity = 200  

Number of Items Total Value Operations Memory 
Dynamic Programming 31793 100500 100500 

Genetic Algorithm  31772 29535 75000 
Table 10   

Capacity = 300  
Number of Items Total Value Operations Memory 

Dynamic Programming 39245 150500 150500 
Genetic Algorithm  39231 29542 75000 

Table 11   
Capacity = 400  

Number of Items Total Value Operations Memory 
Dynamic Programming 45775 200500 200500 

Genetic Algorithm  45764 29574 75000 
Table 12   

Capacity = 500  
Number of Items Total Value Operations Memory 

Dynamic Programming 51413 250500 250500 
Genetic Algorithm  51392 29576 75000 

Table 13   
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We plot the results of the above tables in Fig. 3 and Fig. 4.  
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As long as the capacity of the knapsack is less than the size of the population, the 
dynamic programming will outperform the genetic algorithm. However, once the 
capacity becomes greater than the size of the population, the dynamic programming 
number of operations and memory required will be a lot greater than the genetic 
algorithms ones.  
 
 
Conclusion  
 
The comparative study of the brute force, greedy, dynamic programming, branch and 
bound and genetic algorithms shows that while the complexities of these algorithms are 
known, the nature of the problem they are applied to makes some of them more suitable 
than others. The best approximation approaches for the 0/1 Knapsack Problem are 
dynamic programming and genetic algorithms. As we have shown, the choice between 
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the two depends on the capacity of the knapsack and the size of the population. However, 
one may decide to choose dynamic programming over genetic algorithms in any 
circumstances, because it is easy and straightforward to code. In contrast, genetic 
algorithms require a lot more time in terms of understanding the concepts of the paradigm 
and in terms of programming effort.  
 
For future work, we would like to implement some of the more advanced approximation 
schemes and compare their performance to the dynamic programming and genetic 
algorithms paradigms.  
 
Acknowledgements  
  
I want to thank Dr. Sinapova for her helpful comments and valuable advice.   
 
 
References  
 
[1] Gossett, Eric. Discreet Mathematics with Proof. New Jersey: Pearson Education Inc., 

2003.  
[2] Levitin, Anany. The Design and Analysis of Algorithms. New Jersey: Pearson 

Education Inc., 2003. 
[3] Mitchell, Melanie. An Introduction to Genetic Algorithms. Massachusettss: The MIT 

Press,  1998. 
[4] Obitko, Marek. “Basic Description.”  IV. Genetic Algorithm. Czech Technical 

University (CTU). <http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html> 
[5] Hristakeva, Maya and Dipti Shrestha. “Solving the 0/1 Knapsack Problem with 

Genetic Algorithms.” MICS 2004 Proceedings. 
<www.micsymposium.org/mics_2004/Hristake.pdf>. 

 
 
 


