

Different Approaches to Solve the 0/1 Knapsack Problem

Maya Hristakeva
Computer Science Department

Simpson College
Indianola, IA 50125

hristake@simpson.edu

Dipti Shrestha
Computer Science Department

Simpson College
Indianola, IA 50125

 shresthd@simpson.edu

Abstract

The purpose of this paper is to analyze several algorithm design paradigms applied to a
single problem – the 0/1 Knapsack Problem. The Knapsack problem is a combinatorial
optimization problem where one has to maximize the benefit of objects in a knapsack
without exceeding its capacity. It is an NP-complete problem and as such an exact
solution for a large input is practically impossible to obtain.

The main goal of the paper is to present a comparative study of the brute force, dynamic
programming, memory functions, branch and bound, greedy, and genetic algorithms. The
paper discusses the complexity of each algorithm in terms of time and memory
requirements, and in terms of required programming efforts. Our experimental results
show that the most promising approaches are dynamic programming and genetic
algorithms. The paper examines in more details the specifics and the limitations of these
two paradigms.

 1

Introduction

In this project we are going to use Brute Force, Dynamic Programming, Memory
Functions, Branch and Bound, and Greedy Algorithms to solve the Knapsack Problem
where one has to maximize the benefit of items in a knapsack without extending its
capacity. The main goal of this project is to compare the results of these algorithms and
find the best one.

The Knapsack Problem (KP)

The Knapsack Problem is an example of a combinatorial optimization problem, which
seeks for a best solution from among many other solutions. It is concerned with a
knapsack that has positive integer volume (or capacity) V. There are n distinct items that
may potentially be placed in the knapsack. Item i has a positive integer volume Vi and
positive integer benefit Bi. In addition, there are Qi copies of item i available, where
quantity Qi is a positive integer satisfying 1 � Qi � �.

Let Xi determines how many copies of item i are to be placed into the knapsack. The goal
is to:
 Maximize
 N
 � Bi Xi
 i = 1
 Subject to the constraints
 N
 � Vi Xi � V
 i = 1
 And
 0 � Xi � Qi.

If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded
[1]. The bounded KP can be either 0-1 KP or Multiconstraint KP. If Qi = 1 for i = 1, 2,
…, N, the problem is a 0-1 knapsack problem In the current paper, we have worked on
the bounded 0-1 KP, where we cannot have more than one copy of an item in the
knapsack.

Different Approaches

Brute Force

Brute force is a straightforward approach to solving a problem, usually directly based on
the problem’s statement and definitions of the concepts involved. If there are n items to
choose from, then there will be 2n possible combinations of items for the knapsack. An

 2

item is either chosen or not chosen. A bit string of 0’s and 1’s is generated which is of
length n. If the ith symbol of a bit string is 0, then the ith item is not chosen and if it is 1,
the ith item is chosen.

ALGORITHM BruteForce (Weights [1 … N], Values [1 … N], A[1…N])
//Finds the best possible combination of items for the KP
//Input: Array Weights contains the weights of all items

Array Values contains the values of all items
Array A initialized with 0s is used to generate the bit strings

//Output: Best possible combination of items in the knapsack bestChoice [1 .. N]

for i = 1 to 2n do
 j � n
 tempWeight � 0
 tempValue � 0
 while (A[j] != 0 and j > 0)
 A[j] � 0
 j � j – 1
 A[j] � 1

for k � 1 to n do
 if (A[k] = 1) then
 tempWeight � tempWeight + Weights[k]
 tempValue � tempValue + Values[k]
 if ((tempValue > bestValue) AND (tempWeight � Capacity)) then
 bestValue � tempValue
 bestWeight � tempWeight

 bestChoice � A
return bestChoice

Complexity
2n

 1 n 2n
� [� + �]= �[{1+..+1}(n times) +{1+..+1}(n times)]
i = 1 j = n k=1 i=1

 = (2n)* [1+1+1…..+1] (2n times)
 = O(2n*2n)
 = O(n*2n)

Therefore, the complexity of the Brute Force algorithm is O (n2n). Since the complexity
of this algorithm grows exponentially, it can only be used for small instances of the KP.
Otherwise, it does not require much programming effort in order to be implemented.
Besides the memory used to store the values and weights of all items, this algorithm
requires a two one dimensional arrays (A[] and bestChoice[]).

 3

Dynamic Programming

Dynamic Programming is a technique for solving problems whose solutions satisfy
recurrence relations with overlapping subproblems. Dynamic Programming solves each
of the smaller subproblems only once and records the results in a table rather than solving
overlapping subproblems over and over again. The table is then used to obtain a solution
to the original problem. The classical dynamic programming approach works bottom-up
[2].

To design a dynamic programming algorithm for the 0/1 Knapsack problem, we first
need to derive a recurrence relation that expresses a solution to an instance of the
knapsack problem in terms of solutions to its smaller instances.

Consider an instance of the problem defined by the first i items, 1 � i � N, with:

 weights w1, … , wi,
 values v1, … , vi,
and knapsack capacity j, 1 � j � Capacity.

Let Table[i, j] be the optimal solution of this instance (i.e. the value of the most valuable
subsets of the first i items that fit into the knapsack capacity of j). We can divide all the
subsets of the first i items that fit the knapsack of capacity j into two categories subsets
that do not include the ith item and subsets that include the ith item. This leads to the
following recurrence:
 If j < wi then

Table[i, j] � Table[i-1, j] Cannot fit the ith item
 Else
 Table[i, j] � maximum { Table[i-1, j] Do not use the ith item

AND
vi + Table[i-1, j – vi,] Use the ith item

The goal is to find Table [N, Capacity] the maximal value of a subset of the knapsack.
The two boundary conditions for the KP are:

- The knapsack has no value when there no items included in it (i.e. i = 0).
 Table [0, j] = 0 for j � 0
- The knapsack has no value when its capacity is zero (i.e. j = 0), because no items

can be included in it.
Table [i, 0] = 0 for i � 0

ALGORITHM Dynamic Programming (Weights [1 … N], Values [1 … N],

Table [0 ... N, 0 … Capacity])
// Input: Array Weights contains the weights of all items
 Array Values contains the values of all items

 Array Table is initialized with 0s; it is used to store the results from the dynamic
programming algorithm.

// Output: The last value of array Table (Table [N, Capacity]) contains the optimal
solution of the problem for the given Capacity

 4

for i = 0 to N do
 for j = 0 to Capacity
 if j < Weights[i] then
 Table[i, j] � Table[i-1, j]
 else
 Table[i, j] � maximum { Table[i-1, j]

AND
Values[i] + Table[i-1, j – Weights[i]]

return Table[N, Capacity]

In the implementation of the algorithm instead of using two separate arrays for the
weights and the values of the items, we used one array Items of type item, where item is a
structure with two fields: weight and value.

To find which items are included in the optimal solution, we use the following algorithm:

n � N c � Capacity
 Start at position Table[n, c]
 While the remaining capacity is greater than 0 do
 If Table[n, c] = Table[n-1, c] then
 Item n has not been included in the optimal solution
 Else
 Item n has been included in the optimal solution
 Process Item n
 Move one row up to n-1
 Move to column c – weight(n)

Complexity
 N Capacity N

� � 1 = � [1+1+1+……+1] (Capacity times)
i=0 j=0 i=0

 = Capacity * [1+1+1+……+1] (N times)
 = Capacity * N
 = O (N*Capacity)

Thus, the complexity of the Dynamic Programming algorithm is O (N*Capacity). In
terms of memory, Dynamic Programming requires a two dimensional array with rows
equal to the number of items and columns equal to the capacity of the knapsack. This
algorithm is probably one of the easiest to implement because it does not require the use
of any additional structures.

Memory Functions

Unlike dynamic programming, memory functions solve in a top-down manner only
subproblems that are necessary. In addition, it maintains a table of the kind that would

 5

have been used by a bottom-up dynamic programming algorithm. Initially, all the cells in
the table are initialized with a special “null” symbol to indicate that they have not been
calculated. This method first checks if the value in the needed cell has already been
calculated (i.e. it is not null). If this is true, it retrieves it from the table. However, if the
value in the cell is “null,” it is computed by the recursive call whose result is then
recorded in the table [2]. Memory functions use the same recurrence relations as the
dynamic programming algorithm.

ALGORITHM MemoryFunction (i, j)
// Input: The function is initially called with i = N and j = Capacity
// Output: The last value of array Table (Table [N, Capacity]) contains the optimal
solution of the problem for the given Capacity
// The program uses global variables input arrays Weight [1 … N], Values [1 … N], and
Table[0 … N, 0 … Capacity) whose entries are initialized with -1s except for the 0th row
and column, which are initialized with 0s (follows from the boundary conditions
explained in the Dynamic Programming section).

if Table[i, j] < 0 then
 if j < Weights[i] then
 if j < W[i] then
 value � MemoryFunction (i-1, j)
 else
 value � maximum { MemoryFunction (i-1, j)

AND
Values[i] + MemoryFunction (i-1, j – Weights[i])

 Table [i, j] � value
return Table[i, j]

Overall, memory functions are an improvement of dynamic programming because they
only solve sub-problems that are necessary and do it only once. However, they require
more memory because it makes recursive calls which require additional memory.

Greedy Algorithm

Greedy programming techniques are used in optimization problems. They typically use
some heuristic or common sense knowledge to generate a sequence of suboptimum that
hopefully converges to an optimum value.

Possible greedy strategies to the 0/1 Knapsack problem:

1. Choose the item that has the maximum value from the remaining items; this
increases the value of the knapsack as quickly as possible.

2. Choose the lightest item from the remaining items which uses up capacity as
slowly as possible allowing more items to be stuffed in the knapsack.

3. Choose the items with as high a value per weight as possible.

 6

We implemented and tested all three of the strategies. We got the best results with the
third strategy - choosing the items with as high value-to-weight ratios as possible.

ALGORITHM GreedyAlgorithm (Weights [1 … N], Values [1 … N])
// Input: Array Weights contains the weights of all items
 Array Values contains the values of all items
// Output: Array Solution which indicates the items are included in the knapsack (‘1’) or

not (‘0’)

Integer CumWeight
Compute the value-to-weight ratios ri = vi / wi, i = 1, …, N, for the items given
Sort the items in non-increasing order of the value-to-weight ratios
for all items do
 if the current item on the list fits into the knapsack then
 place it in the knapsack
 else
 proceed to the next one

Complexity

1.Sorting by any advanced algorithm is O(NlogN)
 N

2. � 1 = [1+1+1….1] (N times) = N � O(N)
 i = 0

From (1) and (2), the complexity of the greedy algorithm is, O(NlogN) + O(N) �
O(NlogN). In terms of memory, this algorithm only requires a one dimensional array to
record the solution string.

Branch and Bound

Branch and bound is a technique used only to solve optimization problems. It is an
improvement over exhaustive search, because unlike it, branch and bound constructs
candidate solutions one component at a time and evaluates the partly constructed
solutions. If no potential values of the remaining components can lead to a solution, the
remaining components are not generated at all. This approach makes it possible to solve
some large instances of difficult combinatorial problems, though, in the worst case, it still
has an exponential complexity.

Branch and bound is based on the construction of a ‘state space tree’. A state space tree is
a rooted tree where each level represents a choice in the solution space that depends on
the level above and any possible solution is represented by some path starting out at the
root and ending at a leaf. The root, by definition, has level zero and represents the state
where no partial solution has been made. A leaf has no children and represents the state
where all choices making up a solution have been made. In the context of the Knapsack
problem, if there are N possible items to choose from, then the kth level represents the

 7

state where it has been decided which of the first k items have or have not been included
in the knapsack. In this case, there are 2k nodes on the kth level and the state space tree’s
leaves are all on level N [2].

The most common ways, branch and bound uses to traverse the state space tree, are
breath-first traversal and best-first traversal. Both breath-first and best-first stop searching
in a particular sub-tree when it is clear that to search further down is pointless. The only
difference between breath-first and best-first is that the first one uses a regular queue and
the second uses a priority queue, where both queues keep track of all currently known
promising nodes. We implemented the branch and bound algorithm using a priority
queue.

In the state space tree, a branch going to the left indicates the inclusion of the next item
while a branch to the right indicates its exclusion. In each node of the state space tree, we
record the following information:

level - indicates which level is the node at,
 cumValue – the cumulative value of all items that have been selected on this
branch,
 cumWeight – the cumulative weight of all items that have been selected on this
branch,
 nodeBound – used as a key for the priority queue.

We compute the upper bound on the value of any subset by adding the cumulative value
of the items already selected in the subset, v, and the product of the remaining capacity of
the knapsack (Capacity minus the cumulative weight of the items already selected in the
subset, w,) and the best per unit payoff among the remaining items, which is vi+1 / wi+1

[2].
Upper Bound = v + (Capacity – w)*(vi+1 / wi+1)

ALGORITHM BestFirstBranchAndBound (Weights [1 … N], Values [1 … N)
// Input: Array Weights contains the values of all items
 Array Values contains the values of all items
// Output: An array that contains the best solution and its MaxValue
// Precondition: The items are sorted according to their value-to-weight ratios

PriorityQueue<nodeType> PQ
nodeType current, temp

Initialize the root
PQ.enqueue(the root)
MaxValue = value(root)

while(PQ is not empty)

current = PQ.GetMax()
 if (current.nodeBound > MaxValue)

Set the left child of the current node to include the next item

 8

if (the left child has value greater than MaxValue) then
MaxValue = value (left child)
Update Best Solution

if (left child bound better than MaxValue)
PQ.enqueue(left child)

Set the right child of the current node not to include the next item
if (right child bound better than MaxValue)

PQ.enqueue(right child)
return the best solution and it’s maximum value

In the worst case, the branch and bound algorithm will generate all intermediate stages
and all leaves. Therefore, the tree will be complete and will have 2n-1 – 1 nodes, i.e. will
have an exponential complexity. However, it is still better than the brute force algorithm
because on average it will not generate all possible nodes (solutions). The required
memory depends on the length of the priority queue.

Genetic Algorithm

A genetic algorithm is a computer algorithm that searches for good solutions to a problem
from among a large number of possible solutions. All GAs begin with a set of solutions
(represented by chromosomes) called population. A new population is created from
solutions of an old population in hope of getting a better population. Solutions which are
then chosen to form new solutions (offsprings) are selected according to their fitness. The
more suitable the solutions are the bigger chances they have to reproduce. This process is
repeated until some condition is satisfied [4].

Most GAs methods are based on the following elements: “populations of chromosomes,
selection according to fitness, crossover to produce new offspring, and random mutation
of new offspring”[3].

Outline of basic GA s

1. Start: Randomly generate a population of N chromosomes.
2. Fitness: Calculate the fitness of all chromosomes.
3. Create a new population:

a. Selection: Randomly select 2 chromosomes from the population.
b. Crossover: Perform crossover on the 2 chromosomes selected.
c. Mutation: Perform mutation on the chromosomes obtained.

4. Replace: Replace the current population with the new population.
5. Test: Test whether the end condition is satisfied. If so, stop. If not, return the best
solution in current population and go to Step 2.

Each iteration of this process is called generation. The entire set of generations is called a
run [3].

 9

We described in detail a genetic algorithm for solving the 0/1 Knapsack Problem in our
previous publication “Solving the 0/1 Knapsack Problem with Genetic Algorithms.”
There we concluded that the group selection function that we implemented produced
better results than the roulette wheel selection function. Thus, in this project, we perform
our testing with the group selection function. We also set the population size to 250, the
mutation rate to 0.1% and the crossover rate to 85% (85% of every new generation will
be formed with crossover and 15% will be copied without any changes). In our genetic
algorithm the population converges when either 90% of the chromosomes in the
population have the same fitness value or the number of generations is greater than a
fixed number usually set to 500 [5].

Complexity

The complexity of the genetic algorithm depends on the number of items (N) and the
number of chromosomes in each generation (Size). It is O(Size*N).

Analysis of Results

For the testing of the different algorithms, we generated files with different sizes where
each record consists of a pair of randomly generated integers representing the weight and
value of each item. We performed two types of testing. For the first one, we were
increasing the number of items to be considered for the knapsack, while holding the
capacity of the knapsack constant (equal to 50). During the second testing, we were
increasing the capacity of the knapsack, while fixing the number of items to 500.

Testing I: Increase the number of items & Capacity = 50

10 Items

Number of Items Items included Total Value Max Value
Brute Force 3, 6, 8, 9, 10 152 152

Greedy Algorithm 3, 4, 6, 7, 8, 9 142 152
Branch and Bound 3, 6, 8, 9, 10 152 152

Dynamic Programming 3, 6, 8, 9, 10 152 152
Genetic Algorithm 3, 6, 8, 9, 10 152 152

Table 1
25 Items

Number of Items Items included Total Value Max Value
Brute Force 6, 7, 9, 13, 17, 19, 20, 21 298 298

Greedy Algorithm 4, 6, 7, 9, 13, 19, 20, 21 284 298

Branch and Bound 6, 7, 9, 13, 17, 19, 20, 21 298 298 Dynamic Programming 6, 7, 9, 13, 17, 19, 20, 21 298 298 Genetic Algorithm 6, 7, 9, 13, 17, 19, 20, 21 298 298 Table 2

 10

The maximum number of items we could run the brute force algorithm for was 25.
Moreover, Table 1 and Table 2 show us that so far branch and bound, dynamic
programming and genetic algorithms produce results that are the same as the optimal
solution generated by the brute force algorithm.

Next we consider the solutions greedy, branch and bound, dynamic programming and
genetic algorithms generate in terms of the total value, average number of basic
operations and memory used.

100 Items

Number of Items Total Value Total Weight Operations Memory
Greedy Algorithm 1361 50 1398 100
Branch and Bound 1388 49 4598 2156

Dynamic Programming 1388 49 5100 5100
Genetic Algorithm 1386 49 5608 15000

Table 3
300 Items

Number of Items Total Value Total Weight Operations Memory
Greedy Algorithm 5523 50 300
Branch and Bound 5658 50 6346 12578

Dynamic Programming 5658 50 15300 15300
Genetic Algorithm 5658 50 17688 45000

Table 4
500 Items

Number of Items Total Value Total Weight Operations Memory
Greedy Algorithm 15347 49 500
Branch and Bound 15466 50 200920 48560

Dynamic Programming 15466 50 25500 25000
Genetic Algorithm 15466 50 29441 75000

Table 5
750 Items

Number of Items Total Value Total Weight Operations Memory
Greedy Algorithm 25800 48 750
Branch and Bound 26504 50 1388299 223592

Dynamic Programming 26504 50 38250 38250
Genetic Algorithm 26456 49 44132 112500

Table 6
1000 Items

Number of Items Total Value Total Weight Operations Memory
Greedy Algorithm 43985 48 1000
Branch and Bound NA NA NA NA

Dynamic Programming 44549 50 51000 51000
Genetic Algorithm 44512 49 58823 150000

Table 7

 11

As we can see from Tables 3 through 7, the maximum number of items we could run the
branch and bound algorithm was 750. Therefore, although its complexity grows
exponentially like the brute force algorithm, branch and bound executes for a lot greater
inputs. Moreover, we can conclude that the dynamic programming, branch and bound,
and genetic algorithms outperform the greedy algorithm in terms of the total value it
generates. We decided to further analyze the dynamic programming, branch and bound,
and genetics algorithms in terms of the number of basic operations (Fig. 2) and memory
used (Fig. 1) for the different input files (number of items).

Memory

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

10 25 50 100 300 500 700 750 900 1000

Number of Items

M
em

or
y

U
se

d

B&B
DP
GAs

Fig. 1

Basic Operations

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

100000

10 25 50 100 300 500 700 750 900 100

Number of Items

N
u

m
b

er
 o

f
b

as
ic

 o
p

er
at

io
n

s

B$B

DP

GAs

Fig. 2

 12

As we increase the number of items, the number of basic operations for the dynamic
programming and genetic algorithms increase with approximately the same rate (Fig. 2).
Since, dynamic programming seems to require less memory than the genetic algorithms
(Fig. 1) one may conclude that it is better to use dynamic programming over genetic
algorithms. However, we are missing to consider something. The complexity of dynamic
programming depends on the number of items and the capacity. Unlike it, the complexity
of the genetic algorithms depends on the number of items and the size of the population.
Therefore, if we increase the capacity of the knapsack the number of basic operations and
the memory required for the dynamic programming will increase and for the genetic
algorithms will stay approximately the same (Table 8 through 13).

Testing II: Increase the capacity & Number of Items = 500

Capacity = 50

Number of Items Total Value Operations Memory
Dynamic Programming 15466 25500 25000

Genetic Algorithm 15466 29441 75000
Table 8

Capacity = 100
Number of Items Total Value Operations Memory

Dynamic Programming 22408 50500 50500
Genetic Algorithm 22313 29456 75000

Table 9
Capacity = 200

Number of Items Total Value Operations Memory
Dynamic Programming 31793 100500 100500

Genetic Algorithm 31772 29535 75000
Table 10

Capacity = 300
Number of Items Total Value Operations Memory

Dynamic Programming 39245 150500 150500
Genetic Algorithm 39231 29542 75000

Table 11
Capacity = 400

Number of Items Total Value Operations Memory
Dynamic Programming 45775 200500 200500

Genetic Algorithm 45764 29574 75000
Table 12

Capacity = 500
Number of Items Total Value Operations Memory

Dynamic Programming 51413 250500 250500
Genetic Algorithm 51392 29576 75000

Table 13

 13

We plot the results of the above tables in Fig. 3 and Fig. 4.

Memory

0

50000

100000

150000

200000

250000

300000

50 100 200 300 400 500

Capacity

M
em

or
y

U
se

d
DP

GAs

Fig. 3

Basic Operations

0

50000

100000

150000

200000

250000

300000

50 100 200 300 400 500

Capacity

N
um

be
r

of
 b

as
ic

 o
pe

ra
tio

ns

DP

GAs

Fig. 4

As long as the capacity of the knapsack is less than the size of the population, the
dynamic programming will outperform the genetic algorithm. However, once the
capacity becomes greater than the size of the population, the dynamic programming
number of operations and memory required will be a lot greater than the genetic
algorithms ones.

Conclusion

The comparative study of the brute force, greedy, dynamic programming, branch and
bound and genetic algorithms shows that while the complexities of these algorithms are
known, the nature of the problem they are applied to makes some of them more suitable
than others. The best approximation approaches for the 0/1 Knapsack Problem are
dynamic programming and genetic algorithms. As we have shown, the choice between

 14

the two depends on the capacity of the knapsack and the size of the population. However,
one may decide to choose dynamic programming over genetic algorithms in any
circumstances, because it is easy and straightforward to code. In contrast, genetic
algorithms require a lot more time in terms of understanding the concepts of the paradigm
and in terms of programming effort.

For future work, we would like to implement some of the more advanced approximation
schemes and compare their performance to the dynamic programming and genetic
algorithms paradigms.

Acknowledgements

I want to thank Dr. Sinapova for her helpful comments and valuable advice.

References

[1] Gossett, Eric. Discreet Mathematics with Proof. New Jersey: Pearson Education Inc.,

2003.
[2] Levitin, Anany. The Design and Analysis of Algorithms. New Jersey: Pearson

Education Inc., 2003.
[3] Mitchell, Melanie. An Introduction to Genetic Algorithms. Massachusettss: The MIT

Press, 1998.
[4] Obitko, Marek. “Basic Description.” IV. Genetic Algorithm. Czech Technical

University (CTU). <http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html>
[5] Hristakeva, Maya and Dipti Shrestha. “Solving the 0/1 Knapsack Problem with

Genetic Algorithms.” MICS 2004 Proceedings.
<www.micsymposium.org/mics_2004/Hristake.pdf>.

