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Abstract

The implementation of the bottom-layer of a simple RPC protocol stack is described
and its possible use in introductory computer networking courses is described.



Introduction

In their introductory computer networking text, Peterson and Davie[2, pp. 405ff]
introduce an RPC protocol stack: SELECT/CHAN/BLAST. The bottom layer,
BLAST, provides end-to-end transport and message fragmentation. Although
BLAST attempts to recover lost fragments, it does not ensure reliable transfer; this
is left to CHAN. SELECT delivers messages to individual processes.

Given a facility such as BLAST, a student can implement various sorts of upper layers
specified by an instructor or modify the BLAST implementation to perform in some
different fashion.

Hood College’s introductory networking course has a heavy programming emphasis,
with the programming done using sockets in Java. Adding one or two assignments
using BLAST would be compatible with this, and would illustrate a number of lower-
level implementation details, both in terms of student-written code and in terms of
instructor-written code read by the students, either as part of an assignment or as an
example in lecture.

The BLAST Protocol

A general overview of BLAST will be given here. For details, readers are referred to
Peterson and Davie[2].

BLAST, CHAN, and SELECT are intended to provide an example request-reply
protocol for educational purposes. At the bottom layer, BLAST takes messages of up
to 32KB and transfers them between hosts. Because many networks have a maximum
transmission unit of much less than 32KB, BLAST fragments the messages into 1KB
pieces. If at least one of these fragments of a message reaches the receiver, the
receiver will request retransmission of missing fragments, assemble the fragments into
a message, and pass the message to a higher layer.

There are three timers involved in the retransmit mechanism.

1. The DONE timers reside on the sender, with one associated with each outgoing
message. The sender keeps a copy of each message for a short time in case the
receiver requests retransmission of parts of the message. DONE is started when
a message is sent, and restarted whenever a request regarding the message is
received. When DONE expires, the message buffer is freed.

2. The LAST_FRAG timers reside on the receiver, with one associated with each
received message. Once the fragments of a message begin to arrive, LAST_FRAG



is started. If it expires before all fragments arrive, a selective retransmission
request (SRR) is returned to the sender, specifying which fragments to retrans-
mit.

3. When LAST_FRAG expires, and also upon reception of the last fragment of a
message, if there are missing fragments, the RETRY timer is started. Each time
RETRY expires, an SRR is generated for any missing fragments. The receiver
discards the message fragments if portions are still missing after three retries.

Timers are implemented as variables of type long, each holding the value of
System.currentTimeMillis() at the instant the timer is started. The various time-
out values are not specified by Peterson and Davie, and so are configurable in the
implementation.

BLAST cannot handle messages above 32KB, but in a data transfer application the
layer above BLAST is free to choose any message size up to 32KB. This has perfor-
mance and memory overhead implications, which provide opportunities for student
exercises. For example, attempting to transfer a sizable file using single-byte messages
can overwhelm the sender, since the sender is required to maintain each message in
memory until its DONE timer expires.

A BLAST Implementation

The author’s BLAST implementation is provided as a Java package for inclusion in
student programs. The author’s implementation might be thought of as a reference
implementation, since several concessions were made in favor of simplicity and read-
ability at the cost of efficiency.

A reason to not use this as a reference implementation is that Peterson and Davie
do not fully-specify BLAST. For example, bit numbering (from the left or from the
right?) is not given, and they say that the last fragment of a message is marked, but
do not say how. In this implementation, the last fragment is marked by setting the
high bit in the type field, and this can be used to generate classroom discussion or
as a test question.

BLAST is implemented as a multi-threaded singleton that sits on top of UDP. Stu-
dents interface with BLAST via the rpc.blast.Blast class and its send() and
receive() methods. A concession to the implementation is that, in addition to
a protocol number and array of bytes, send() also requires the IP address and port
number to identify the receiving process. receive() blithely assumes that any mes-
sage received from any host is intended for the layer above, but it does report the
sender’s IP address to the upper layer.

As shown in figure one, the Blast class uses a Sender to send data and a Receiver



to receive data. The Sender and Receiver each run as separate threads, with Blast
itself running in the same thread as the calling layer. The three aforementioned
classes are tied together with a Pipe instance, which provides FIFO communications
between the threads. The Sender removes objects from the Pipe, which are inserted
by Blast and by the Receiver. The inserted objects are messages to be transmitted.
The Receiver sends SRRs.
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Figure One: Overview of Major Classes

The rpc.blast.Blast Class

The Blast class is a singleton, meaning that only one instance of the class exists
within a process at a time; this restriction is enforced by the code. The UDP port at
which it receives messages is configurable. The UDP port to which it sends messages
is specified on a per-message basis by the upper layer, as is the destination IP address
(actually, the java.net.InetSocketAddress class is used to specify both).

When Blast is started, it creates a Pipe (written by the author for an operating
systems course, and described in [1]. Blast then creates and starts the Sender and
Receiver threads, each of which is given a reference to the pipe. Blast and Receiver
insert into the pipe. Sender reads from the pipe.



The layer above BLAST interacts with the Blast class predominantly via two meth-
ods, send() and receive(). To transmit, the upper layer calls send(). send () splits
the request into fragments, and passes the fragments to the Sender class via the pipe.
The transmission actually occurs within the Sender class.

send() makes local copies of parameters prior to returning to the upper layer. No
references to the original parameter copies are kept within Blast. This avoids any
chance of race conditions in cases where clients reuse objects.

The receive() method is passed a receive buffer and a protocol number from the
upper layer, and returns a message matching the requested protocol number. If no
such message is available, receive () blocks.

There are no restrictions on the size of the buffer. If the received message is larger
than the buffer, the message is truncated. If the buffer is larger than the message,
only the first part of it is used. receive() returns the number of bytes read, so
the client knows how much of the buffer corresponds to the message. receive () also
returns an InetSocketAddress in case the caller wishes to validate its correspondent.

If there are multiple clients in the layer above BLAST, each is honor-bound to identify
itself using the correct protocol number. In other words, this implementation of
BLAST trusts the layer above.

The general flow through receive() is that Receiver.read() is called to obtain a
message with the desired protocol number. When the message is obtained, it consists
of an array of fragments. These fragments are copies into the caller-supplied buffer.

The rpc.blast.Sender Class

The sender executes as a daemon thread. The Java virtual machine terminates once
no non-daemon threads are executing. Thus, if the layer above terminates, the sender
is not in itself sufficient to keep the virtual machine running.

Each message has to be kept until its DONE timer expires. Messages are held in
pending, an instance of java.util.Map, which is accessed by message I.D. taken
as a java.lang.Integer. Within pending, each I.D. maps to an instance of
PendingMessage, which is a local private class, composed of a timestamp (DONE)
and the message. PendingMessage also has a method, hasExpired(), which indi-
cates to the sender whether the message can be deleted. Note that the local copy of
the message cannot be deleted before DONE expires, since receivers are not expected
to send acknowledgments, but rather retransmit requests. In principle, individual
message fragments could be freed when an SRR is received, but this is not done.



In Java, thread execution begins in the run() method. In this implementation, run()
is simple:

e block at the pipe waiting for something to do;

e send the object removed from the pipe to one of the the private process()
methods. One of these processes Message instances, and the other processes
SelectiveRetransmit instances.

— Message instances are generated by Blast.send().

— SelectiveRetransmit instances are generated by Receive.run() in re-
sponse to incoming SRRs.

e Call checkTimers(), which sweeps through all the pending messages in
pending, looking for DONE timers that have expired.

The above three steps are wrapped in an infinite loop.

Checking for expired timers on every iteration of this loop is probably the simplest
solution. Certainly, if no work is coming into the sender via the pipe, the sender’s
memory requirements are not increasing, and so it seems that this solution checks
often enough. In conditions where many messages are being sent, however, one might
argue that the timers are being checked too often, but these are also the conditions
under which one would want to clean up as often as possible.

Checking the timers is straightforward. checkTimers() obtains an iterator with
which it sweeps through the pending messages in the map, pending. Any expired
message is removed.

Processing outgoing messages and processing SRRs differ for a few reasons. First,
an outgoing message must have a unique message ID generated. The message ID
associated with an SRR much match that of the partially-received message for which
the local Receiver instance is missing fragments. Outgoing messages must be stored
in pending for a time, whereas SRRs will not be re-sent, and so do not have to be
kept.

The version of process() intended for outgoing messages sends each fragment in its
own UDP datagram, encapsulates the message as a whole in a PendingMessage, and
finally adds the pending message to pending.

The processing of outgoing SRRs is a bit more involved. First, the corresponding
PendingMessage must be retrieved from pending. There is a possibility that the cor-
responding PendingMessage has been already been removed, in which case process ()
silently discards the request.

A mask within the SRR indicates which fragments have arrived successfully.



process() iterates through the bits of the mask, resending any fragments for which
the corresponding bit is zero.

As mentioned above, the Peterson and Davie text is vague on how bits are numbered in
the mask. This implementation numbers bits starting with zero as the least significant
bit. It will inter-operate correctly only with other BLAST implementations that have
made this choice.

If any fragments are re-sent, the DONE timer for the message must be restarted. If
no fragments needed to be re-sent, e.g., if the BLAST on the other host were to use
an SRR as an acknowledgment, then the pending message is freed.

Both versions of process actually call Sender.send() for transmission. The send ()
method itself is straightforward: given a fragment and a SocketAddress, it creates a

DatagramPacket and sends via UDP.

Sender and its related classes are illustrated in figure two.
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Figure Two: Classes important to the Sender

To review, the sender stores pending messages in a map, receives messages from
Blast via the pipe, and receives SRR requests from the receiver via the pipe.
The figure omits the Fragment class, which is used by Sender, Message, and
SelectiveRetransmit.

The rpc.blast.Receiver Class

Like the sender, the receiver executes as a daemon thread. Its related classes are



shown in figure three. PartialMessage contains the fragments of a message that
has started to arrive, but is not yet complete. RecvTimerDaemon is a thread that
periodically checks the LAST_FRAG and RETRY timers of all the partial messages,
requesting retransmission and removing failed messages as each partial message’s
state warrants. This thread is started as a daemon by the Receiver constructor. As
in the case of Sender, many of these classes make use of the Fragment class.

The major data structures with the Receiver class are ReadyMessages and
reassembly. readyMessages is a list of messages for which all fragments have been
received. It is ordered by age, oldest first, so when an upper layer requests a message,
it will get the oldest with a particular protocol. The current implementation is fast
if only one protocol is in use, but is a linear search, and so with multiple protocols,
could be slow.

The reassembly structure is a map from message IDs to PartialMessage instances.
This is used to store the fragments of messages as they arrive, and messages are
moved from reassembly to readyMessages as they complete. Unfragmented (i.e.,
single-fragment) messages are never placed in reassembly.
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Figure Three: Classes important to the Receiver

The receiver’s run() method is an infinite loop that reads UDP datagrams from
the network, places each in a Fragment, and then handles it as either an SRR or
an incoming data message. An incoming SRR is placed in a SelectiveRetransmit
instance, and queued up in the pipe to the local Sender object.



An incoming data message is passed to incomingData(), which does a small amount
of consistency checking, and silently discards any fragments that look bad. Then, if
this is an unfragmented message, it is placed in readyMessages. Otherwise, we check
to see if it is part of a message that’s already in reassembly. If so, it’s added to that
message, and the message is checked to see if it’s complete. If not, the new fragment
is inserted into a new PartialMessage, which is added to reassembly. Finally, if
this is the last fragment of a message, and some earlier fragments are missing, an
SRR is generated.

At various points in the receiver and in the timer daemon, it is necessary to generate
an SRR. This is done in a uniform fashion by invoking generateSRR().

The other major responsibility of Receiver is to pass messages to Blast.receive().
This is done by read (), which scans readyMessages for a messages with the requested
protocol number. If none is found, it waits until notified by incomingData() that
another message has arrived. When it obtains an acceptable message, it removes the
message from readyMessages and returns it.

This class has data that is shared across multiple threads: the Receiver thread it-
self, the receiver timer daemon, and the upper layer thread that indirectly enters
through read(). As a result, access to reassembly and readyMessages is synchro-
nized. Declaring entire methods to be synchronized carried a potentially significant
performance penalty, and placing these containers in synchronized wrappers provides
insufficient protection from race conditions. Thus, synchronized blocks are used.
Access to reassembly is synchronized on this. Access to readyMessages and its
contents are synchronized on readyMessages. To avoid deadlock, the “this lock” is
always acquired prior to the “readyMessages lock.”

Assignments using BLAST

There are a number of assignments that involve students writing code that makes
direct use of the BLAST implementation described in this paper. Possibilities include:

e Students can measure performance of this BLAST implementation using differ-
ent message sizes and different networks, e.g., dialup, broadband, and LANs.

e Students could produce a simple multiplexer that delivers messages to individual
processes. This would be analogous to UDP or SELECT.

e Students could provide a reliable message-oriented service. This would be anal-
ogous to CHAN.

e Students could provide a reliable byte stream service. This would be analogous
to TCP, though, presumably, greatly simplified.



Instructors should be aware that BLAST has no flow or congestion control, and so
can stress a network.

As an alternative to writing a layer on top of BLAST, students could be asked to
modify the behavior of BLAST in some manner, for example:

BLAST uses selective retransmission requests. Students might be asked to in-
stead acknowledge fragments individually (as in stop-and-wait) or cumulatively
(as in TCP). Students could then be asked to compare the resulting performance
with that of the original version.

BLAST supports up to 32 fragments per message. The number of fragments
supported could be increased by changing the 32-bit FragMask field to a frag-
ment number field. This would change the way the receiver keeps track of
received fragments, and the way it requests retransmissions from the sender.

As mentioned above, the sender in this implementation of BLAST can be over-
whelmed if asked to send many small messages quickly. The students could
modify Sender so that it blocks if the size of the data structure, pending, is
above a certain threshold.

The author’s implementation of BLAST is vulnerable to certain denial-of-service
attacks. Students could be asked to close or tighten one or more of these holes.

As mentioned above, Blast is a singleton. It might be interesting to allow
multiple instances of Blast, but just one per incoming UDP port.

It’s possible for the sender to terminate before all messages are sent, or before the
receiver on the other end has requested retransmissions of fragments. Students
could augment the sender to provide status information so that an upper layer
could wait for all pending messages to be resolved before exiting.

The sender checks for expired timers once on each iteration of its main loop.
Students might implement an alternative, such as:

— The sender could, like the receiver, use a separate thread to check for
timer expiration by sweeping through all the pending messages in regular
intervals.

— The sender could use a separate thread to check for timer expiration and
order timers temporally. Then the thread could sleep until a timer is
scheduled to expire, verify that it has indeed expired (the timer may have
been restarted), free the resources, and then sleep till the next scheduled
event.

Students could also be asked to discuss these alternatives on an examination.

The receiver’s readyMessages structure could be modified to scale well with
increasing numbers of protocols.



Many of the assignments suggested that modify this rpc.blast package involve skills
and knowledge that are not specific to networking, and in some cases may seem to
have little to do with networking. This in itself can be instructive, demonstrating
to students the breadth of skills needed. But, many of these suggestions may not
be appropriate for a networking course, and may not fit into other courses. One
possibility of the sort that I have explored successfully in the past is that of allowing a
good student to do an independent study in which rpc.blast is significantly modified
and augmented.

The Future

This BLAST layer will be used for the first time in Hood’s networking
course during Spring semester, 2004. Documentation, source code, usage
notes, and assignments will be available from the author’s home page, at
http://cs.hood.edu/ jmartens/rpc/.
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