
Writing, Reviewing, and Rewriting in
Upper-Level Computer Science Courses

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
julstrom@stcloudstate.edu

Abstract

Computing professionals spend a large part of their time writing a wide variety of
documents, so it is essential that they write well. As innumerable authorities on writing
have pointed out, careful revision is the essential path to good writing. Computer
scientists often submit their writing to refereed forums like conferences or journals,
where it is reviewed, and they review the work of other authors. Computer science
students gain experience in writing, revising, reviewing, and being reviewed when
projects in upper-level computing courses include papers that are reviewed and revised as
for a conference.

This conference model has been used in a variety of upper-level computing courses.
Students review each others’ papers; they undertake revisions in response to those
reviews and produce improved papers; and they recognize the benefits of the process.

Introduction

Though the uninformed may still harbor the illusion that computing consists mainly, if
not exclusively, of coding, we know that computer scientists produce far more natural
language than code (e.g., Sullivan [13]). They write problem descriptions, program
designs, program and user documentation, grant proposals, reports, papers, articles, and
more. It is therefore essential that computer scientists write well. Modern computing
curricula emphasize good writing, as do the ACM/IEEE curriculum guidelines [6, p.42]
and the computer science accreditation standards of the Accreditation Board for
Engineering and Technology (ABET) [1, p.4].

Effective rewriting is the key to good writing. The first draft of a document is rarely
acceptable; careful editing and rewriting produce clear, concise, readable prose. As
Higham points out, “All writing benefits from revision.” [5, p.94]

Computing professionals are likely, occasionally or regularly, to find themselves writing
for submission to refereed forums--conferences or journals--and to be called on to review
such submissions. After submitting a paper to a conference or journal, its authors receive,
along with notification of its acceptance or rejection, reviews of the paper. If the paper
has been accepted, the authors are obliged to consider the reviewers’ observations as they
prepare the paper’s final version. CS coursework should expose students to the processes
of submitting and reviewing papers. As Pesante [12] points out, “Students … need an
initiation into the computer science and software communities.” Reviewing and being
reviewed are among the activities of those communities.

To encourage and enable students to edit and rewrite, and to acquaint them with the
processes of reviewing and being reviewed, I have instituted research projects in senior-
level courses whose writing component is modeled on submitting papers to a conference.
For these assignments, students propose and carry out large projects and describe those
projects in conference-style papers. Other members of the class and the instructor review
the papers, and the students consider these reviews in preparing their final drafts. They
also make oral presentations based on their papers.

This mechanism has been used recently in 400-level courses in Neural Networks,
Artificial Intelligence, Evolutionary Computation, and (currently) Expert Systems in the
Department of Computer Science at St. Cloud State University. Students report that, after
the opportunity to rewrite in response to readers’ reactions to their papers, they feel more
confident in the quality of their work, and the papers are indeed improved.

The following sections of this paper consider the process of editing and rewriting in the
context of computer science, describe the reviewing process, present the conference
model of paper preparation, and summarize the results of following this model, both
effects on writing quality and students’ reactions.

Editing and Rewriting

Authorities on writing are unanimous in asserting the importance of careful, thorough
revision in producing clear, concise, readable prose. Kay [9], for example, points out that
“Writing is an iterative process of enhancement, revision, and polish.” Many authors
suggest writing the first draft as quickly and freely as possible, so as to get on paper the
raw material for revision. As Zobel [16, p.8] observes, “Many writers find it helpful to
write freely … so that they can concentrate on presenting a smooth flow of ideas,” and,
more forcefully, “If you tend to get stuck, just write anything, no matter how awful.”

However a first draft is constructed, it is rarely acceptable as finished work. More often
than not, it is cluttered with errors of organization, style, and even grammar. Nonetheless,
this draft provides the basis for successive steps of rewriting and editing, through which
the author incrementally improves and polishes the document and arrives at its final form.
In general, only careful revising will produce a readable, informative product. To quote
Zobel once more, “The best writing is the result of frequent, thorough revision.”

Several authors note, with Anewalt [2], “the similarity between the writing process and
the software design process,” and invoke that similarity both to improve the quality of
students’ writing and to “make computer science students feel more connected to the
writing process.” The similarity lies, of course, in the processes of top-down design and
stepwise refinement. Programmers elaborate program designs, implement them, and flesh
out their details. At each step, they test and correct previous work. Similarly, writers
(ideally) write from a plan, working through a series of drafts, each more polished than
the last. Taylor and Paine [15], Kay [9], and others have made this connection explicit.
(Conversely, Ladd [10] described a writing-inspired multi-draft model of programming in
CS1 and CS2. Null et al. [11] also applied paper-rewriting models to the construction of
software.)

More generally, several authors (e.g., Jackowitz et al. [7], Hafen [4], and Kay [9])
describe multi-step writing projects in computer science courses that involve drafts and
revisions. The conference model described below is one of these.

Reviewing

Reviewing is the careful and critical reading of others’ work and the writing of
observations about and suggestions for that work. It is a regular obligation for many
computing professionals, especially academics. It is a crucial step in the process of seeing
an article published. And it encourages and requires careful, close reading. For all these
reasons, computer science students should be introduced to the process of reviewing, both
writing reviews and being reviewed themselves. Upper-level writing projects offer an
opportunity for this introduction: students can review each others’ work.

This process is called peer reviewing, and many authors have described writing projects
in computer science that include peer review. Hafen [4], for example, described peer
review of term papers in a senior-level database course. Students not only wrote
comments but also participated in workshop-style sessions to discuss the papers.
Gehringer [3] presented a web-mediated peer review mechanism. Sullivan [14] described
the use of peer review to evaluate presentations and software. Kaczmarczyk [8] used peer
review in a course devoted specifically to technical writing for computer science.

Peer review has the additional benefit of lending credibility to the instructor’s criticisms.
Students sometimes claim that if an idea is on paper, they should get credit for it,
regardless of the artlessness of its presentation. When other students suggest that the
presentation is poor, they are often more likely to take such observations seriously.

The Conference Model

In imitation of the submission of papers to a conference, projects in upper-level courses
consist of these steps: proposal, papers, reviews, and revised papers. This structure, of
course, is not original. Hafen [4], for example, describes writing assignments in a
database course that include “several stages: topic selection, first draft, peer critiques, and
final paper.”

Projects begin with one-page proposals in which the students outline what they plan to do
and how. Proposals give the instructor the opportunity to intervene early to widen
investigations that are too narrow, narrow those that are too broad (more frequently), and
generally avoid likely difficulties. Proposals have the added benefit of discouraging
procrastination.

The format of the papers is precisely specified. The title and author(s) occupy one
column that reaches across the page, but the body of the papers is in two columns of 10-
point type. There must be an abstract, independent of the text that follows it. Tables and
figures are numbered, with captions. Table captions precede tables, while figure captions
follow figures. The name-date style is used for references: “… (Jones, 1993)” or “Jones
(1993) reported that … .”

Most important, papers may be no more than five pages long. In the two-column format,
this is ample space, but it imposes some discipline and warns against windiness. Students
often express surprise at the requirement and (later) at the thought and care required to
adhere to it.

The students hand in multiple copies of their papers for reviewing. The instructor gets
one copy of every paper, and the remaining copies are randomly redistributed so that
every students gets two papers to review and every paper gets at least two reviews in
addition to the instructors’. In their comments, students are encouraged to be both

specific and helpful. “Say what?” is not a useful comment, but “I don’t understand the
quantity r in the evaluation function. An example?” is.

Figure 1 shows the reviewing form; it is adapted from one used by the ACM Symposium
on Applied Computing. In general, reviewing is not blind, a departure from most
conferences’ practice, but in small, upper-level courses, the students generally know who
is working on what, so blind reviewing is impossible.

 Author(s): __

 Title: __

 ===
 EVALUATION:
 tend to reject tend to accept
 <-------------|------------->
 Technical Content and Accuracy 1 2 3 4 5 6 7 8 9 10
 Originality 1 2 3 4 5 6 7 8 9 10
 Replicability 1 2 3 4 5 6 7 8 9 10
 Significance 1 2 3 4 5 6 7 8 9 10
 Title/Introduction/Conclusion 1 2 3 4 5 6 7 8 9 10
 Organization 1 2 3 4 5 6 7 8 9 10
 Style and Clarity 1 2 3 4 5 6 7 8 9 10
 Adequacy of References 1 2 3 4 5 6 7 8 9 10
 Adherence to Standards 1 2 3 4 5 6 7 8 9 10

 OVERALL EVALUATION: 1 2 3 4 5 6 7 8 9 10

 COMMENTS:

Figure 1: The reviewing form used in the conference-model projects.

The students have a few days to review the papers, then the reviews are distributed to the
papers’ authors. Based on the reviews, the students revise their papers and turn in the
revised versions. It is on the revised versions that their evaluations are based.

The projects conclude with oral presentations ten to fifteen minutes long, and every
student receives a copy of the course’s Proceedings: all the final versions with a table of
contents, covered and bound.

Results

So far, the conference model has been a success. First, students participate willingly in
the process. Though their reviews are not tallied or graded, students feel an obligation to
each other and generally get the reviews done promptly; they are eager to see readers’
reactions to their own work; and they take those reactions seriously as they revise their
papers.

http://www.acm.org/conferences/sac/
http://www.acm.org/conferences/sac/

Second, while a few students use the opportunity to revise only to correct the errors of
spelling and punctuation that the reviewers found and ignore larger issues of content,
organization, and presentation, most revise conscientiously and carefully in response to
the reviews.

Third, students like the process. Evaluations in these courses include an open-ended
question about the steps of reviewing and revising in projects. Responses to this question
have been overwhelmingly positive. Comments have included, “A great experience in
writing a paper,” “The more feedback, the better,” and “Having a second go at the paper
was wonderful.”

There is, of course, a down side. Some students use the revision period not to revise a
carefully constructed paper but to complete one. Their first submissions are hasty,
sketchy, often incomplete. A conference would reject such papers, but these are courses.

The students’ reviews are sometimes superficial. The one critical observation from the
course evaluations mentioned this, observing that the instructors’ comments were more
helpful than the other students’.

And the conference model creates more work for the instructor, who must now read and
evaluate every paper twice rather than just once. In a small class, this is no problem, but
with a large group it can be daunting.

Conclusion

Computer scientists write a wide variety of documents so it is essential that they write
well; revision is the essential step toward this end. Computer scientists review
submissions to conferences and journals, and their submissions are reviewed in turn.
Students gain experience in all these tasks when projects in upper-level courses include
papers that are submitted, reviewed, and revised as for a conference. This conference
model, similar to writing projects that many authors have described, has been used
successfully in a variety of upper-level courses. In spite of some malingering, students in
general participate enthusiastically, produce both useful reviews and improved papers,
and find the process helpful.

The model could be extended in a variety of ways. No doubt the final papers would be
improved by earlier feedback, more rounds of reviewing, and workshop-style sessions on
the papers’ mechanics. Similarly, students could evaluate the reviews of their work.
However, these projects take place in courses devoted to particular topics in computing.
That material must remain their focus while we use the conference model to
incrementally improve students’ writing.

References

1. Accreditation Board for Engineering and Technology (ABET) (2003). Criteria for
accrediting computing programs. Baltimore, MD, 2003.
http://www.abet.org/criteria.html.

2. Anewalt, Karen (2003). A professional practice component in writing: A simple way to
enhance an existing course. The Journal of Computing in Small Colleges, V.18, n.3,
pp.155-165.

3. Gehringer, Edward F. (2001). Electronic peer review and peer grading in computer-
science courses. ACM SIGCSE Bulletin, V.33, n.1, pp.139—143.

4. Hafen, Marguerite (1994). Developing writing skills in computer science students.
ACM SIGCSE Bulletin, V.26, n.1, pp.268-270.

5. Higham, Nicholas J. (1993). Handbook of Writing for the Mathematical Sciences.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

6. IEEE Computer Society, Association for Computing Machinery (ACM) (2001).
Computing curricula 2001 computer science.
http://www.computer.org/education/cc2001/final.

7. Jackowitz, Paul M., Richard M. Plishka, and James R. Sidbury (1990). Teaching
writing and research skills in the computer science curriculum. ACM SIGCSE Bulletin,
V.22, n.1, pp.212-215.

8. Kaczmarczyk, Lisa C. (2003). A technical writing class for computer science majors:
Measuring student perceptions of learning. ACM SIGCSE Bulletin, V.35, n.1, pp.341-
345.

9. Kay, David G. (1998). Computer scientists can teach writing: An upper division course
for computer science majors. ACM SIGCSE Bulletin, V.30, n.1, 1998, pp.117-120.

10. Ladd, Brian C. (2003). It’s all writing: Experience using rewriting to learn in
introductory computer science. The Journal of Computing in Small Colleges, V.18, n.5,
pp.57—64.

11. Null, Linda, Mike Ciaraldi, Liz Adams, Ursula Wolfe, and Max Hailperin (2002).
Rewrite cycles in CS courses: Experience reports. ACM SIGCSE Bulletin, V.34, n.1,
pp.249—250.

12. Pesante, Linda Hutz (1991). Integrating writing into computer science courses.
ACM SIGCSE Bulletin, V.23, n.1, pp.205-209.

http://www.abet.org/criteria.html
http://www.computer.org/education/cc2001/final

13. Sullivan, Sarah L. (1988). How much time do software professionals spend
communicating? ACM SIGCPR Computer Personnel, V.11, n.4, pp.2-5.

14. Sullivan, Sarah L. (1994). Reciprocal peer reviews. ACM SIGCSE Bulletin, V.26, n.1,
pp.314-318.

15. Taylor, Harriet G. and Katherine M. Paine (1993). An inter-disciplinary approach to
the development of writing skills in computer science students. Proceedings of the
Twenty-Fourth SIGCSE Technical Symposium on Computer Science Education.
Indianapolis, IN, pp.274—278.

16. Zobel, Justin (1997). Writing for Computer Science: The Art of Effective
Communication. Singapore: Springer-Verlag.

	Editing and Rewriting
	Reviewing
	The Conference Model
	Results
	Conclusion

