
A PROTOCOL TO DEVELOP AGENT-BASED FORM
FLOW SYSTEMS

PAUL JUELL AND
MD. AHSAN HABIB

COMPUTER SCIENCE DEPARTMENT

NORTH DAKOTA STATE UNIVERSITY, FARGO, ND 58102

PAUL.JUELL@NDSU.NODAK.EDU
 MD.HABIB@NDSU.NODAK.EDU

ABSTRACT

We present a protocol to develop a computerized form flow system from an existing paper
form flow system. Form flow systems involve the flow of information and control in a
process. Our protocol maps the processing into an agent-based system. The agent-based
methodology presents a rich model for form flow systems. The design methodology
allows the designer to easily transform the requirements of a form flow system into an
agent-based automated from flow system. The protocol is simple, flexible, and generic in
nature to adapt to different kinds of form flow systems. We show the steps of the protocol
for an example of a course drop/add form. The prototype we built for the example is a
multi-agent system designed to run on multiple processors.

INTRODUCTION

This paper presents a protocol to develop a form flow or work flow system using agent
based technology. The protocol converts the requirements of a document flow into an
agent-based document flow system. While agent applications are becoming increasingly
popular, there have not been many proposals for agent-oriented methodologies for
analysis, design, and software development. We will follow object-oriented analysis and
design methodology to reach our goal. Our approach is to identify the agents’ role so that
they can be arranged in a class hierarchy. Responsibilities are then assigned to each role,
along with the services required to meet those responsibilities.

We have the following steps in the proposed design methodology for an agent-based
document flow system:

1. Identify tasks or processes of the document flow system.
2. Identify entities in the document flow system.
3. Identify agents along with their tasks for the system.
4. Identify interaction among agents.

mailto:PAUL.JUELL@ndsu.nodak.edu

5. Build agents and implement the system.

Step one is basically the requirement specification of the document flow. We will identify
the tasks involved in a business system in this step. In step two, entities will be identified.
The tasks identified in step one are performed by these entities.

Once entities are identified, we will go to step three where we will recognize the agents
required in the agent-based document flow system. Interaction among agents is handled
via some messages. In step four, we will define the message format which will be
handled by the agents in the system.

Finally, it is time to build the agents. To build agents, we need an agent platform. In our
proposed system, we will not build our own agent platform. We will use an existing one
to build the agents. Once agents are built, we will implement the whole system.

Identify tasks or processes of the document flow

In this step, we will basically define the business logic of the document flow system. The
function of business process modeling is to render a business process from the real world
into a formal definition which can easily be computer interpretable. The procedure to
model the business process is a separate methodology itself. The modeling can be done
by the use of analysis, modeling, and system definition techniques. The resulting
definition is called a process model or process definition. This type analysis was
proposed in the seventies [6] and has been refined since then [1] [2] [8].

In this study, we will not focus on a specific process model to define the business
component of a document flow system. It is rather very open to the reader, but in our
case, we will use the object-oriented analysis to recognize a set of tasks and business
rules of a document flow system. While there are a range of tools to build document flow
systems [1] [2] [14] [15] they typically do not come with a design protocol or deign
techniques to develop the systems. We have found some work on developing these
systems [7] [8] [9], and our work will follow the general patterns they propose. We set
out a simple mapping protocol. We will continue to the next step in the methodology
from there.

This step is very tied with a specific document flow system. We can recognize the
processes and/or rules in the business system by first looking at the requirements of the
document flow system to be automated. Answers to the following questions would give a
good understanding of the process rules:

1. What is the content of the document being automated?
2. What part of the form will be processed at each level?
3. What are the rules associated with each processing?
4. What are the rules to flow the document to the next level?
5. How will the changes to the document be updated in the storage?

Along with the answers to these questions, we can look at the use case diagram of the
requirements of the specific document flow system. This will help us to recognize tasks
associated with each processor in the system.

The characteristics of the document flow system are a set of features that can be expected
of document flow systems. It is very important to resolve issues of the state of the
document. Each state of the document is stored in the database using a unique id (token).
The token is passed around with the messages to the agents. The combination of the
location of the token and the database entry give the state of the document. We will
discuss more about the unique id later in the step four.

Identify entities in the document flow system

Once the tasks are defined, identifying entities is simple. The entity in the system is the
user or the device that performs some tasks. Each entity plays a different role in the
system. We can make out the entities by asking questions with “who.” For example,
“who does initiate the document?” would give us the answer “initiator.” This initiator is
one entity or actor of the system. Actor and entity are synonymously used throughout this
paper.

If we look at how the system will be used, we can also find the actors in the system. Use
cases are utilized to provide a description of how the system will be used. The use case
diagram will be utilized to represent use cases.

From the characteristics the initiator, intermediate processors, and curator can be
identified as the actors of the system. Database can also be treated as an actor of the
system. The behavior of these actors is presented using a use case diagram. The generic
use case diagram presents some high-level requirements of a document flow system. We
obtained these requirements from the analysis of the two experimental document flow
systems.

Irrespective of the kind of document flow system, the actors and their behavior presented
in the generic use case diagram will be similar. For example, the initiator will always
start up the flow of the document which will be processed by the intermediate processors.
Similarly, all of the changes to the document will be updated into the database.

The designer can use this generic use case diagram and map the actors in the system that
will be automated. In the specific system, use cases can be added or removed as needed.
The one we showed here is a very simple diagram of a generic system. It can easily be
altered according to the requirements of the specific system being automated.

Identify agents along with their tasks in the system

So far, we have talked about the document flow system itself. We have established the
tasks or processes involved in the business level of the document flow system. We have
also found the actors or entities along with their tasks in the document flow system in the
previous steps.

Now we are at the execution phase of the methodology. Once we have the actors in the
document flow system, we can map these actors in the system architecture of the agent-
based document flow system. Each actor will eventually be an agent, and each agent will
perform some specific tasks coupled with it. Tasks found in the first step will be
performed by these agents, respectively.

Table 1.1 Generic Agents of a Document Flow System
Actors Agents

Initiator Initiator Agent

Processors Processors Agent

Curator Curator Agent

Database Database Agent

Identify interaction among agents

Our agents need to interact with each other. They can do this in a variety of ways. They
can talk to each other directly, provided they speak the same language, or they can talk
through an interpreter or facilitator, provided they know how to talk to the interpreter and
the interpreter can talk to the other agent.

There are two levels of language: basic and deeper level. While in the basic level, the
syntax and the messages are involved; in the deeper level, the meaning or semantics are
involved. When agents talk to each other, they need to understand the message format as
well as the meaning of the message. Therefore, they need to have shared vocabulary of
words and their meanings. This shared vocabulary is called ontology.

Our goal in this step is not to develop an Agent Communication Language (ACL); rather,
we will explore an existing one which we will use in our system. And then we will
discuss how the messages can be formatted to interact with other agents.

We will use the most widely used Agent Communication Language, KQML (Knowledge
Query and Manipulation Language). KQML [17] provides a framework for programs and
agents to exchange information and knowledge. It focuses mainly on the message formats

and the message-handling protocols between agents. It defines the operations that agents
may attempt on each others’ knowledge base.

KQML messages are called performatives. There are a large number of performatives
defined in KQML specifications. Most agent-based systems support only a small subset
of it. Using performatives, agents can ask other agents for information, tell other agents
facts, subscribe to the services of agents, and offer their own services.

KQML messages encode information in three different architectural levels: content,
message, and communication. An example of a KQML message from agent “john”
telling “hello” to agent “jason” might be encoded as follows:

(tell
: sender john
: receiver jason
: content (hello)
: language English
: ontology Standard

)

The KQML performative is tell. The :content parameter completely defines the content
level. The :sender and :receiver parameters specify information at the communication
level. The performative name, the :language specification, and the :ontology name are
part of the message level.

There are many implementations of the KQML framework. A Java implementation of a
subset of the specification was developed at Stanford University [16]. The
implementation is one of the layers in JATLite (Java Agent Template Lite).

In our proposed agent-based document flow system, the document data are stored in the
database. At each level of the flow, the document is updated by the agent at that level.
The changes in the document are updated in the database as well. The document is stored
with a unique identifier. The agent sends a message with this identifier to the next level
agent and the database agent. The receiver agent gets the document from the database
using the unique id sent with the message.

Choosing a unique identifier is a tricky part of the system. It gets more difficult for a
complicated system. For a simple document flow system, the initiator agent id would be
sufficient, but it is up to the designer what the document identifier will be. In our case, we
make a combined unique identifier using the initiator agent id plus the time stamp.

Build agents and implement the system

So far, we have analyzed the system and gone through the steps to identify artifacts in the
document flow system. In step one, we identified tasks that will be performed by the
agents. In step two, we recognized the entities in the system. Entities found in step two

become agents that we mapped in step three. We identified the interaction between
agents and the message formats to communicate among them in step four.

Before going to build the agents, we will look at the database we need. We will have a
central database to store the document information. The document will be identified by
the unique key we have defined in step four.

Now is the time to build the agents. We need an agent platform to build and run agents.
We have chosen JATLite as the agent platform.

JATLite is a set of Java packages that facilitates the agent framework development using
the Java language. It provides basic communication tools and templates based upon
TCP/IP. It especially facilitates the development of agents that exchange KQML
messages. It also provides a special Agent Message Router (AMR) functionality. The
AMR allows any registered agent to send messages to any other registered agent by
making a single socket connection to the AMR; messages are forwarded without the
sending agent having to know the receiving agents’ physical address. The AMR buffers
all messages, like an email server, so that messages are not lost due to network transient
problems. This also allows the individual agent to go down or logout and return for its
messages at a future time.

EXAMPLE OF THE METHODOLOGY

In this section, we will present an example of the design methodology that we presented
in the last secton. One system we considered is the Course drop/add form flow system .

Example: Course drop/add form flow system

Requirement

The student will submit details of the course to be added or dropped by accessing the
form via the internet. The student must be registered and logged in the system prior to the
submission. The details of the student information will be stored in the database. The
details of the course to be added or dropped will also be stored in the database. The
message will be sent to the adviser about the submission of the form. The adviser will
also be a registered user of the system. The adviser will access the document and accept
or reject the request made. Depending on the action taken by the adviser, the message
will be sent to the registrar’s office or back to the student. If the adviser accepts the
request, the registrar will get the message to make the request final.

From the use case diagram, we get the following tasks:

1. Submit or start the document,
2. Register/login,
3. Send message,

4. Process the document,
5. Store document as well as the user information into the database, and
6. Finalize the request.

Step 2: Identify entities

We recognized tasks in the first step. Now we will look at the entities in the drop/add
document flow system. Entities in the system are nothing but the actors in the use case
diagram. If we look at the use case diagram, we get the following actors (entities) in the
system:

1. Student,
2. Adviser,
3. Registrar, and
4. Database.

Step 3: Identify agents and their tasks

Communication between agents is made using KQML. The main focus in this step is to
determine the information wrapped in the message content to retrieve document data
from the database. The document itself does not flow from agent to agent; rather, the
document is stored in a central database. The unique document identifier is sent in the
message from agent to agent. Agents retrieve the document from the database using this
unique id. Thus, it is a very crucial part of the design to define the unique id. As we
discussed in the methodology, the designer is free to choose his/her own unique id. We
also give some guidelines to choosing the ID, later.

In the drop/add agent-based document flow system, we chose a combined key for the
unique identifier, and it is the student agent id (NDSU id) plus the timestamp of the
document submission.

RESULTS

The protocol for designing agent-based document flow systems was successfully
implemented. We presented a design methodology which is very simple and flexible in
nature. We walked through the steps in the methodology to produce working versions of
two experimental systems.

One of the experiments was the drop/add course form flow system that is used for NDSU
students to drop/add courses. We successfully mapped the generic items in the design
methodology with the system-specific items. We made a working version of the system
walking through steps in the methodology.

The other example we considered was the flow system of the graduate student application
form to participate in commencement. This system is used by the NDSU graduate

students who want to participate in commencement. We successfully plotted the generic
items in the design methodology with the commencement flow system.

Thus, we claim that our protocol is simple and easily adaptable. The protocol worked for
a specific domain of the document flow system. We tested it with a single-form-based
document flow system, and it worked very well. We want to extend our view that it will
work for more complicated office systems.

Though the method we presented may suffice for the experimental systems, it may not be
adequate for a critical document flow or workflow systems. The generic items in the
architecture presented should be mapped properly with the specific system to get the best
result.

Another limitation of the system is to define the proper unique identifier to map the
agents with the database. We recommended using a combined key of agent id plus
timestamp to the database for this purpose. The agent platform, JATLite, which we used,
has a limitation of producing an erroneous timestamp. The designer should address this
problem when choosing a unique identifier. For example, instead of using timestamp, the
designer can choose a suitable hashing algorithm specific to the needs.

CONCLUSION AND FUTURE WORKS

In this study, we introduced and developed a simple and flexible architecture for
designing an agent-based document flow system. It addresses the issues pertaining to
agent-based document flow or workflow systems in a generic manner while allowing
system-specific alterations. It can be easily adapted by many offices. It also represents a
low cost in terms of design and development time.

We worked on a single-form-based document flow system. This kind of flow system has
an initiator and a curator of the document. If the problem to be solved is similar to the
examples we worked, then the document flow designer should be able to quickly convert
the problem into a working version. We presented generic flow architecture as well as the
methodology. A designer will just replace those generic items in the architecture with the
system-specific items.

Although the protocol will work well for a single-form-based office system, there is room
to further enhance the protocol for multi-form-based complicated office systems. There is
room for further enhancement of the system in the area of intelligibility of the agent.
Human interactions can be reduced by making the agents more intelligible.

Improvement can also be made in the area of modularity of the system by separating
tasks/activities from the agents. One way of doing that is by employing a separate
task/activity server, and mapping the tasks with the corresponding agents. The system can
also be made more interoperable by engaging a universal data format, XML (Extended
Markup Language).

BIBLIOGRAPHY

[1] Ting Cai, Peter A. Gloor, and Saurab Nog. “Dartflow: A Workflow Management
System on the Web Using Transportable Agents.” Technical Report TR96-283,
Dept. of Computer Science, Dartmouth College, 1996.

[2] Workflow Management Coalition. “Introduction to the Workflow Management
Coalition.” http://www.wfmc.org/about.htm, September 2003.

[3] Paul A. Buhler and Jose M. Vidal. “Semantic Web Services as Agent Behaviors.”
In Agentcities: Challenges in Open Agent Environments, Springer-Verlag, 2003,
pp. 25-31.

[4] H.S. Nwana. “Software Agents: An Overview.” The Knowledge Engineering
Review, 11(3), 1996, pp. 205-244.

[5] AgentBuilder. “When should I use Agents.” http://www.agentbuilder.com,
September 2003.

[6] Clarence A. Ellis and Gary J. Nutt. “Office Information Systems and Computer
Science.” Computing Surveys, 12(1), March 1980, pp. 27-60.

[7] V. Neelakantpillai. “An Object-oriented Protocol for Rapid Prototyping of
Document Flow Systems.” M.S. Thesis, North Dakota State University, Fargo,
2000.

[8] P. Mambrey and M. Robinson. “Understanding the Role of Documents in a
Hierarchical Flow of Work.” In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work, Phoenix, AZ, 1997, pp.
119-127.

[9] R. Paturu. “A Flexible Protocol to Design Document Flow Systems for Rapid
Prototyping.” M.S. Thesis, North Dakota State University, Fargo, 1998.

[10] Paul Buhler and José M. Vidal. “Towards Adaptive Workflow Enactment Using
Multiagent Systems.” Information Technology and Management Journal, 2003, to
appear.

[11] Z. Maamar, N. Troudi, and P. Rostal. “Software Agents for Workflow Support.”
The Journal of Conceptual Modeling, 12(1), February 2000.

[12] J. Meng, S. Helal, and S. Su. “An Ad-Hoc Workflow System Architecture Based
on Mobile Agents and Rule-Based Processing.” In Proceedings of the
International Conference on Parallel and Distributed Computing Techniques and
Applications, Las Vegas, NV, June 2000.

[13] A. Dogac, et al. “A Workflow System through Cooperating Agents for Control
and Document Flow over Internet.” In Proceedings of the 7th International
Conference on Cooperative Information Systems, Eilat, Israel, September 6-8,
2000.

[14] IBM. “WebSphere MQ Workflow.”
 http://www-3.ibm.com/software/integration/wmqwf, September 2003.

[15] Plexus Software. “FloWare.” http://www.plx.com/products/floware/floware.html,
September 2003.

[16] H. Jeon, et al. “JATLite: A Java Agent Infrastructure with Message Routing.”
IEEE Internet Computing, 4(2), 2000, pp. 87-96.

[17] T. Finin, et al. “KQML as an Agent Communication Language.” In Proceedings
of the 3rd International Conference on Information and Knowledge Management,
ACM Press, Gaithersburg, MD, November 1994.

