
Using Design Patterns to Improve the Run-Time Efficiency of Real-Time
Fractal Generation

Benjamin M. Dotte
Computer Science Department

University of Wisconsin-Eau Claire
Eau Claire, WI 54701
dottebm@uwec.edu

Daniel C. Julson

Computer Science Department
University of Wisconsin-Eau Claire

Eau Claire, WI 54701
julsondc@uwec.edu

Abstract

In today’s world of pervasive computer graphics, fractals have become an important area of research.
Fractals encompass a wide range of self-repeating patterns that are often recursive and iterative in
nature. The computerized generation of fractal images requires a considerable amount of processing
power for even modest-sized images. Run-time efficiency is therefore a paramount concern when
designing a system that is capable of generating real-time fractal images. In the past, this run-time
efficiency has often been achieved by compromising design robustness.

Design patterns are an exciting area of research in object-oriented design that have been shown to offer
more flexible and robust system designs, usually at the cost of performance. In this paper, we will
demonstrate that design patterns can be used to improve both the robustness of the design and the run-
time performance of a real-time fractal generator.

Introduction

Fractals are self-similar, rough geometric shapes that occur in a plethora of natural and synthetic
environments. Since the introduction of the term “fractal” by Benoit Mandelbrot in 1975 [3], this new
system of geometry has impacted such diverse fields
as physical chemistry, physiology, and fluid
mechanics. A classic example is the fern, which has a
seemingly infinite self-repeating pattern of leaf
structures.

Fractals are used in many realms of the design world,
including graphic displays of mountainous landscapes,
coastlines, and flowers. Their intricacy attracts digital
artists who display their vivid fractal work in online
galleries. Image compression through the use of
fractal formulas has also emerged as a major area of
study [2].

Due to the heavy computational requirements that define fractal generation, none of the previously
mentioned applications could be possible without the use of a computer. Like other computationally
intensive applications, fractal generators often suffer from poor design to achieve optimal performance.

With the publication of Design Patterns: Elements of Reusable Object-Oriented Software [4], design
patterns have emerged, in a catalogued form, as a way to structure object-oriented code in a
responsibility-driven manner. Using objects that coordinate, structure, or service the system being
developed, design patterns create more modular and flexible programs. Unfortunately, increasing levels
of indirection inherent in this model of programming is thought to typically result in a decrease in
system performance. Through the judicious use of the State, Strategy, and a variation on the Memoize
design patterns, we have found that both performance and flexibility can be attained in a real-time
fractal generator written in C#.

Background - Fractal Generation

For our fractal generator, we chose to model six fractal types, split into three categories. These were
chosen from personal taste and to allow for variety. Within the Mandelbrot category of fractals, we
included the Mandelbrot type and the Julia type. Representing Iterative Function Systems (IFS) were
the Fern and Sierpinski’s Triangle fractals. Finally, we included the Gingerbreadman and Pickover
Popcorn types from the Orbital category of fractals.

Mandelbrot Category

The Mandelbrot and Julia fractal types share almost exactly the same formula, as shown below [7].

 Figure 1a: Mandelbrot Equation Figure 1b: Julia Equation

cZ =0

cZZ nn +=+
2

1

cZ =0

KZZ nn +=+
2

1

Note that Z, c, and K are complex numbers. The Mandelbrot fractal is plotted out by running the
formula listed in figure 1a for every pixel on the screen. Each pixel, in turn, represents a location within
the mathematical space the fractal is being calculated over. If the equation never reaches infinity at a
given location for a set number of iterations, that point is said to belong to the set. If, on the other hand,
the equation does reach infinity, a color can be assigned to that location based on how many iterations
were processed before it reached infinity (technically this is assumed when has reached 4). This
value is often indexed to a gradient or palette to create colorful representations of the set.

2
nZ

Whereas there is only one Mandelbrot set, an infinite number of Julia sets exist based on the value of its
‘K’ constant from figure 1b. An interesting relationship exists between the Mandelbrot and Julia sets
wherein the singular Mandelbrot set essentially acts as a “map” for all possible Julia sets. Locations in
the Mandelbrot set with the most detail provide ‘K’ values to the Julia set that are also the most
interesting Julia sets. Much like the formulas, the code used to generate each of these fractal types is
quite similar.

 Figure 2: Mandelbrot and Julia Code
 for (yPoint = 0; yPoint < height; yPoint++) {

 // Find the mathematical location based on the current pixel location

 yLocation = yMin + (yPoint * yIncrement);

 for (xPoint = 0; xPoint < width; xPoint++) {

 xLocation = xMin + (xPoint * xIncrement);

 zReal = 0d; // JULIA: zReal = xLocation
 zImaginary = 0d; // zImaginary = yLocation
 distSquared = 0d;

 // Iterate until the maximum number of iterations have been reached

 // or the current location is going to infinity

 for (curItr = 0; curItr < maxItr && distSquared < 4; curItr++) {

 realOld = zReal;

 zReal = zReal*zReal – zImaginary*zImaginary + xLocation;

 zImaginary = 2*realOld*zImaginary + yLocation;

 // JULIA: zReal = zReal*zReal – zImaginary*zImaginary + juliaX
 // zImaginary = 2*realOld*zImaginary + juliaY
 distSquared = zReal*zReal + zImaginary*zImaginary;

 }

 // Set a point here at (xPoint, yPoint)

 }

}

Figure 2 illustrates the code used to generate the Mandelbrot fractal, with the variations needed to create
the Julia fractal shown in bolded comments.

Iterative Function Systems (IFS) Category

Iterative Function Systems were first applied to the realm of fractals by Michael Barnsley through his
Collage Theorem from 1984 [1]. The Fern and Sierpinki’s Triangle are among the fractal types that fall
into this category that we chose to model. The formula used to calculate these fractals is as follows [1]:

 Figure 3: IFS Equation









+
















=

f
e

y
x

dc
ba

xFi)(

The values a-f and the probability of each function act as input values for each type of Iterative Function
System. The matrices for the Fern and Sierpinski’s Triangle are as follows:

 Figure 4a: Fern Matrix Figure 4b: Sierpinski’s Triangle Matrix

a { 0, .85, .2, -.15

b 0, .04, -.26, .28

c 0, -.04, .23, .26

d .16, .85, .22, .24

e 0, 0, 0, 0

f 0, 1.6, 1.6, .44

prob .01, .85, .07, .07 }

The row listed as “prob” is the probability a random numb
defined for the Fern fractal or each of the 3 systems for th
generate both fractal types is the same; only the input mat

a { .5, .5, .5

b 0, 0, 0

c 0, 0, 0

d .5, .5, .5

e 0, 1, .5

f 0, 0, .8660254

prob .333, .333, .334 }
er will be entered into each of the 4 systems
e Sierpinski’s Triangle. The code used to
rices differ:

 Figure 5: IFS Code

O

O
su
G

T
P
a

// maxIterations here is simply the number of pixels to plot
for (curIteration = 0; curIteration < maxIterations; curIteration++) {
 randNum = rand.NextDouble();
 // Choose a row of numbers based on the given probabilities
 if (randNum < (curProb = barnsley[6,0])) {
 index = 0;
 }
 else if (randNum < (curProb += barnsley[6,1])) {
 index = 1;
 }
 else if (randNum < (curProb += barnsley[6,2])) {
 index = 2;
 }
 else {
 index = 3;
 }

 // Apply the function to the selected index
 newX = barnsley[0,index] * curX + barnsley[1,index] * curY + barnsley[4,index];
 curY = barnsley[2,index] * curX + barnsley[3,index] * curY + barnsley[5,index];
 curX = newX;

 // Find the corresponding pixel location
 xPoint = (int)(((curX - xMin)/(xMax - xMin)) * width);
 yPoint = (int)((((curY * -1) - yMin)/(yMax - yMin)) * height);
 if (xPoint > 0d && xPoint < width && yPoint > 0d && yPoint < height) {
 // Set a point here at (xPoint, yPoint)
 }

}

rbital Category

rbital fractals vary more from one another than the Mandelbrot or IFS fractal types. Essentially, each
ccessive point is calculated by applying some formula to the previously calculated value. The
ingerbreadman fractal type is one of the most basic:

Figure 6: Gingerbreadman Equation

11 −+−= nn xyx

1−= nn xy

he pattern created by this equation resembles that of a gingerbreadman. Similarly, the Pickover
opcorn fractal type resembles a set of evenly spaced popcorn kernels. Each kernel is, itself, an orbit,
round which pixels are randomly generated and fed into a formula.

 Figure 7: Pickover Popcorn Equation

))3tan(sin(
))3tan(sin(

1

1

nnnn

nnnn

xxhyy
yyhxx

•+•−=
•+•−=

+

+

Interestingly, while the orbits are generated within 10-pixel wide “kernels”, the resulting pixels are
blown up to the proportions of the entire viewing area. Thus, the orbits are actually comprised of
interwoven pixels from other orbits. This creates the odd effect where zooming into a particular
location appears slightly different at each zoom level from the previous zoom level. This effect is
illustrated with the following images:

 Figure 8a: Pickover Popcorn Position 1 Figure 8b: Pickover Popcorn Position 2

Figure 8a was zoomed into the bottom right corner to produce figure 8b; notice how the activity in the
bottom right corner decreases while the activity in the center increases. This illustrates how, unlike all
the other fractal types mentioned in this paper, this fractal actually changes dynamically when it is
viewed in different places.

Our Design: Applicable Design Patterns

State Design Pattern

The State design pattern was designed to separate the functionality exhibited in an object that has
multiple states into individual classes. When the state of the object changes, it appears to change its

class and provide the desired behavior for the new state. Large, monolithic switch statements are
commonly refactored into this pattern to improve code readability and maintainability. The structure of
the classes that make up this design pattern is as follows [4]:

 Figure 9: State Design Pattern

In order to display fractals in a graphical C# application window, we needed to write each individual
pixel to a Bitmap object. The Bitmap class provided by C# offers two useful functions for our
application, GetPixel() and SetPixel(). Every time a pixel is plotted, SetPixel() is used on the Bitmap
object. The problem with these functions is that they are slow and were not intended for use on entire
Bitmap objects [5].

The solution to this problem typically involves accessing the Bitmap data directly through unsafe
pointer code. (Unsafe meaning, in a managed memory environment, directly accessing pointer
memory.) A function is also provided for this purpose called LockBits(). In order to use LockBits(), the
memory containing the Bitmap object must be locked using the Lock() function to avoid memory access
issues. It must then be unlocked again using Unlock() after being used before the Bitmap can be
displayed. If this locking and unlocking mechanism were used every time a pixel was set, in a display
view of 500x500 pixels, 250,000 calls would be made to each function to generate one image. This
would be a prohibitively expensive set of operations to perform for our real-time fractal generator.

To get around this problem, the code using a class capable of accessing a Bitmap directly would need to
explicitly lock the Bitmap object before sending it GetPixel() and SetPixel() calls, and then unlock it
again before the Bitmap was displayed. The problem with this lies in the fact that the client code should
not have to change only because the means by which a Bitmap object is modified has changed. By
using the State design pattern, the state transitions from locked to unlocked, and vice versa, can be made
implicitly within the Bitmap manipulation class itself.

 Figure 10: Bitmap Manipulation Classes

To use this class structure, the client code creates an instance of the BitmapLowlevel class. The
BitmapLowlevel class, in turn, holds onto an instance of the BitmapState class. The GetBitmap(),
GetPixel(), and SetPixel() functions correspond with the handle() function from the State design pattern
class diagram. The concrete instance of BitmapState held onto by the BitmapLowlevel class changes
between BitmapLocked and BitmapUnlocked depending on the operations being called by the client
code.

Whenever a call to GetPixel() or SetPixel() is made, if the concrete instance of BitmapState is already
BitmapLocked, the functions are simply applied immediately to the Bitmap object using unsafe pointer
code; the Bitmap memory is continuously locked until a call to GetBitmap() is made. Once a call to
GetBitmap() has been made, the concrete instance of BitmapState is changed to BitmapUnlocked, the
Bitmap memory is unlocked, and the Bitmap object itself is returned for display.

The advantage to this approach is that the Bitmap memory need only be locked once for a series of
GetPixel() or SetPixel() calls, rather than 250,000 times as in the previous example. The State design
pattern makes the calls to Lock() and Unlock() implicit within the Bitmap manipulation classes.

Strategy Design Pattern

Considering the similarities between the Mandelbrot and Julia fractal types, it may make sense to create
one generic algorithm using the Template Method design pattern, and subclass variant behavior. The
Template Method is designed to describe the core functionality of an algorithm and allow subclasses to
define functionality specific to their operation. The class structure of the Template Method is as follows
[4]:

 Figure 11: Template Method

Figure 2, illustrating the operation of the Mandelbrot and Julia fractals, shows that only the values of c
and K vary for each fractal type. The retrieval of these values could, then, be performed by running a
subclass call for each variant equation from a superclass containing the core algorithm. The problem
with this approach lies in the fact that a large quantity of additional subclass calls must be made if the
variant behavior is extracted into subclass functions. At a standard zoom position and maximum
iteration level on the Mandelbrot fractal, for example, the inner-most iteration loop is run 1.7 million
times. The expense of all these additional calls may be too great to take advantage of the Template
Method to solve this problem.

A better solution involves the use of the Strategy design pattern. Its class structure is as follows [4]:

 Figure12: Strategy Design Pattern

Rather than represent the core functionality of the algorithm in a superclass, the Strategy design pattern
chooses to have algorithms written out in their entirety in the subclasses. This avoids the need to make
any subclass calls during the computation of the Mandelbrot and Julia fractal types.

Variation on the Memoize Design Pattern

Recall the Pickover Popcorn equation noted earlier:

 Figure 13: Pickover Popcorn Equation

))3tan(sin(
))3tan(sin(

1

1

nnnn

nnnn

xxhyy
yyhxx

•+•−=
•+•−=

+

+

For a display view of 500x500 pixels, 2,500 orbits would exist if spaced at 10 pixels vertically and
horizontally, resulting in 250,000 sin and tan calculations each at 100 iterations per orbit.
Trigonometric functions are expensive operations. We needed a way to store these values in advance so
that we would not need to calculate them during the run-time operation of the program.

The Memoize design pattern describes a caching technique similar to our own approach. It stores the
results of a function for each input value it receives in a table. Subsequent input values are checked
against this table first to see if the value has already been calculated. If it has, the previously calculated
result is returned. If it hasn’t, the function is run, and the result is stored in the table [8].

Unfortunately, this design does not solve our problem because it relies on recurrent input values.
Because our input values are so fine-grained and because they rarely, if ever, recur, the cached results
would never be used.

As an alternative, we chose to pre-calculate a large quantity of values that fit within the desired range of
input values prior to running any of the real-time code. These values were stored in a lookup table for
later access. To determine the number of input values paired with results we needed to store, we relied
on the fact that computer monitors are only capable of displaying a limited picture of the fractal at any
given position. This effectively created a set of 500,000 “result buckets” that input values were rounded
into for the sin and tan functions. We refer to the number of result buckets created (500,000 in this case)
as the “granularity” of the lookup table. Specifically, we observed the point at which the Pickover
Popcorn fractal looked identical using the lookup tables vs. calculating all the trigonometric functions in
real-time.

The process of creating a lookup table does not change whether it is being made from the results of a sin
function, a tan function, or any other kind of function. The next step was to find a way to create a
generic class capable of creating a lookup table from any given function.

The answer to our problem came in the form of the “delegate” type built in to C#, which operates, to a
limited extent, like higher order functions in the functional programming paradigm. Delegates function
much like functors in C++. They create a pre-defined return value and set of parameters for which
functions can be written and then passed as first-class objects [6]. We chose to write a class capable of
accepting a Delegate-defined function, a granularity level, and a range to handle the pre-calculation of
the trigonometric values:

 Figure 14: Lookup Table Generator

The cla
granula
functio
level o
genera
through
where
Fortun
image

Resul

Metho

To ens
optimiz
on Inte
droppe

For the
contain
inform
// This defines the return value and parameters of the delegate
public delegate void LookupFunction(int val);
public class LookupTable {
 protected LookupFunction func;
 protected double[] table;
 public LookupTable(LookupFunction func) {
 this.func = func;
 }
 public void generateTable(int granularity, double minVal, double maxVal) {
 // Reset table to specified granularity
 table = new double[granularity]
 double curVal = minVal;
 double increment = (maxVal - minVal)/(double)granularity;

 for (int i = 0; i < granularity; i++)
 {
 // Run the function for every input value accepted in advance
 table[i] = func(curVal, maxVal);
 curVal += increment;
 }

 }

 public double[] getTable() {
 return table;
 }

}
ss that creates the Pickover Popcorn fractal need only pass this class the sin and tan functions, a
rity level, and the range over which the lookup tables must be generated. The generateTable()
n is called initially to create the table, and again any time there is a change to the granularity
f the table or the desired input range (this does not occur in our program). When the fractal
tion code needs to access these pre-generated result buckets, it simply retrieves the table itself
 the getTable() function and accesses it as an integer-indexed array. This does create a limitation

the granularity level can never exceed the maximum size of an integer (32 bits in C#).
ately, for our problem, 500,000 buckets is more than sufficient to avoid any degradation of the
produced.

ts

dology

ure accurate test results, we chose to compare the unoptimized version of our program to the
ed version for each design pattern we discussed on three separate computers, two of which ran
l processors, and one of which ran on an AMD processor. Each test was run 110 times. We
d the first 10 results and averaged the rest.

 State design pattern, we timed the process of transferring our domain-level data structure
ing the fractal information into a Bitmap object. The unoptimized version was timed transferring
ation via SetPixel() calls, whereas the optimized version utilized our State pattern-driven Bitmap

manipulation class. Since the type of fractal being drawn does not impact the test, we simply chose to
use the Mandelbrot fractal for this test. We started at the default position of the fractal and zoomed into
the center 110 times, timing the process of creating the Bitmap object each time.

We also used the Mandelbrot fractal to time the Strategy design pattern optimization. Due to the fact
that zooming into the fractal exhibited different results from panning on the top level of the fractal, we
chose to include both zooming and panning in this comparison. (Panning means moving across the x
and y axes, without changing the width or height of the viewing area.) Note that this is likely due to a
difference in the proportion of calculations that take place between the initial starting point of the
fractal, and a deeper zoom level.

Since our variation on the Memoize pattern was applied only to the Pickover Popcorn fractal, we used
this fractal to find the test results.

Outcome

Listed below are the test results from the three computer systems used for testing. Note that each bar
represents the average amount of time it took for each of the 100 process runs to complete. Because
time is the dependent variable, less is better.

 Figures 15a-c: Time Trial Results

Intel Pentium IV 3 GHz

0 0.1 0.2 0.3 0.4 0.5

Variation on
Memoize

Strategy
Panning

Strategy
Zooming

State

Time (sec)

Unoptimized
Optimized

Intel Pentium IV 1.8 GHz

0 0.2 0.4 0.6 0.8 1

Variation on
Memoize

Strategy
Panning

Strategy
Zooming

State

Time (sec)

Unoptimized
Optimized

AMD 1.67 GHz

0 0.1 0.2 0.3 0.4 0.5 0.6

Variation on
Memoize

Strategy
Panning

Strategy
Zooming

State

Time (sec)

Unoptimized
Optimized

It is interesting to note that significant differences exist between the performance of an optimization on
one machine versus that on another. The State design pattern seemed the most stable, on average
affording a 35 – 45% increase in speed. The Strategy pattern, on the other hand, ranged from no
improvement on the 3 GHz Pentium IV to almost double the performance on the AMD machine. But
the greatest difference exists when using the variation on the Memoize pattern. The 1.8 GHz Pentium
IV machine experienced very little improvement, while the 3 GHz Pentium IV machine showed over
double the performance.

It is difficult to draw a definitive conclusion as to the reason for such inconsistent results. Note that the
set of instructions run in each test case did not differ from one test run to the next. We even chose to re-
run some of the tests multiple times to verify the soundness of our findings, and found the same numbers
resulted each time. One theory we have come up with is that because the C# language is so new, it may
not be fully taking advantage of the differences in architecture on each processor we tested. The
compilation process in and of itself may also not be as refined as those created for more established
languages. We are in the process of further investigating these ideas.

Analysis

Despite the inconsistencies we found in the performance of these optimizations, it is clear that none of
them decreased performance in any of our tests, and in many cases, performance increased quite
dramatically. The reason for this can be attributed to a single concept that ties all of the design patterns
we used together; they are all utilizing some form of caching. Within the State Design Pattern section,
the locked and unlocked states are in essence cached allowing for the retrieval of the proper state when
needed. The Strategy Design Pattern outlays the caching of function values within the concrete classes.
Finally, within the Variation of the Memoize Pattern, all of the formula values are pre-calculated and
cached away in a look-up table to be used during the actual display rather than computing the
calculations on each pixel during run-time.

Conclusion

In this report, we have shown that through the use of the State, Strategy, and a variation of the Memoize
design patterns, both design robustness and increased performance can be achieved within a fractal
generator. With the State Design Pattern, the locking and unlocking of the bitmap one time for all pixel
manipulations incurred up to a 45% increase in performance. Using the Strategy Design Pattern allowed
for the handling of the variant behavior to be done within the Mandelbrot and Julia subclasses.
Expensive function calls were replaced in the parent class with values thus improving the performace by
up to 85%. And finally, the variation of the Memoize Design Pattern permitted all of the computation
time to be handled before run-time, resulting in as much as a 134% increase in performance.

References

[1] Bennetto, P. Iterated Function Systems. Retrieved March 13, 2004, from

http://www.student.cs.uwaterloo.ca/~pbennett/fractals/.
[2] Fractal. Retrieved March 13, 2004, from http://en.wikipedia.org/wiki/Fractal.
[3] Fractals bring order to our world of chaos. (2000). South China Morning Post, 5. Retrieved March 7,

2004, from ProQuest database.
[4] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley.
[5] Gunnerson, E. (2001). Unsafe Image Processing. Retrieved March 13, 2004, from

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp11152001.asp.
[6] Liberty, J. (2002). Programming C# Second Edition. Sebastopol, CA: O’Reilly & Associates, Inc.
[7] The Mandelbrot Set. Retrieved March 13, 2004, from http://www.students.tut.fi/~warp/Mandelbrot/.
[8] White, T. (2003). Memoization in Java Using Dynamic Proxy Classes. Retrieved March 13, 2004,

from http://www.onjava.com/pub/a/onjava/2003/08/20/memoization.html?page=1.

Acknowledgements
We would like to acknowledge the assistance of Dr. Michael Wick in the preparation of these materials.

	The row listed as “prob” is the probability a ran
	Figure 14: Lookup Table Generator

