Some Observations about the n-Queens Problem
in Higher Dimensions

Jeremiah Barr* Shrisha Raof
Department of Computer Science
Mount Mercy College
1330 Elmhurst Drive NE
Cedar Rapids, IA 52402

March 14, 2004

Abstract

A well-known chessboard problem is that of placing eight queens
on the chessboard so that no two queens are able to attack each other.
(Recall that a queen can attack anything on the same row, column, or
diagonal as itself.) This problem is known to have been studied by the
mathematician Gauss, and can be generalized to an n x n board, where
n > 4. It can further be generalized to a problem in higher dimensions
as well.

We use a generalized implementation of the well-known backtrack-
ing algorithm to generate solution counts for certain values of n and
higher dimensional spaces.! We discuss the problem of generalizing
the algorithm and provide details of our implementation. Based on
our solution counts, we offer hypotheses for the behavior of the num-
ber of possible solutions in higher dimensions, and offer suggestions for
further work.

*jrbarr@mmec.mtmercy.edu

tsrao@mmec.mtmercy.edu

!Sample solutions and code showing our implementation can be viewed at the URL
http://www2.mtmercy.edu/academicsdir/compscience/projects/nqueens/.

1 Introduction

The 8-queens problem is a well known chessboard problem, whose constraints
are to place eight queens on a normal chessboard in such a way that no two
attack each other, under the rule that a chess queen can attack other pieces
in the same column, row, or diagonal. This problem can be generalized to
place n queens on an n by n chessboard, otherwise known as the n-queens
problem. The mathematicians Gauss and Polya studied this problem [2],
and Ahrens |1]| showed that for all n > 4, solutions exist. This problem can
be further generalized to d-dimensions, where two queens attack one another
if they lie on a common hyperplane [4]. This problem can be described as
the n-queens problem in d-dimensions. (The traditional 8-queens problem,
as described above, is 2-dimensional.)

2 A Brief Survey of the Literature

A number of versions of the m queens problems exist. For example, the
modular version is the same as the traditional problem, except for the fact
that diagonals on the board do not stop at the edge of the board, but continue
and wrap around to the opposite side(s) [6]. This results in fewer solutions
for a given n. For modular boards, the concept of a partial solution where
less than n queens are placed on a board has been introduced. For most
values of n, only partial solutions can be found, except for the case where
gcd(n,6) = 1 for a modular board of size n by n, conditions which Polya
and Hurwitz proved can hold n queens [7].

Numerous methods for solving the problem exist as well. An interesting
manner of constructing an n queens board is discussed in [2], where queens
board solutions are derived from magic square solutions. Another method
involving no combinatorial searching, and also no computer time, is discussed
by Bernhardsson [5], where queens are placed based on if n is even and not
of form 6k + 2, if it is even and not of the form 6k, or if it is odd. However,
the traditional method is called backtracking, which is the only known way
to find every solution for a given board of size n in d-dimensional space. This
method is discussed more below.

3 Describing the Queens’ Attack Lines in Cartesian
d-Space

3.1 In Two Dimensions

On a 2-dimensional grid, a queen can attack along two axes, and along two
diagonals. For a queen located at coordinates (4, j), the axes are given by
z =1 and y = j. The diagonals are x —¢ =y — j and x — ¢ = j — y. Figure
1 shows this. These equations provide the basis for testing a position on the
actual board for validity, where a non-valid position is attackable and a valid
position is not attackable.

Figure 1: The directions of attack and their equations.

3.2 In Three Dimensions

In a 3-dimensional chess grid, a queen can be thought of as located in three
2-dimensional grids (corresponding to the XY plane, the X Z plane, and the
Y Z plane). There thus are six 2-dimensional diagonals and three axes. For a
queen at (4, 7, k), the diagonals are the previous two, as well as x —1 = z —k,
r—t1=k—2 y—j=z—k,and y —j = k — 2. The axes of course are
Tz =1,y =j, and z = k. There are also four 3-dimensional diagonals. Their
equations are, for a queen at (7, j, k):

er—i=y—j=z—-k%k

er—i=y—j=k—=z

er—i=j—y=2z—%k

e i—gx=y—j=z—k

3.3 In Four Dimensions

Similarly, in a 4-dimensional chess hyperspace, the queen is in four 3-
dimensional subspaces (i.e., cubes) that are projections to the lower dimen-
sion. For each of these subspaces, equations to attack diagonals in three,
two, or one dimensions may be found as previously. There also are eight 4-
dimensional diagonals, given for a queen at ¢, j, k,[in a 4-dimensional space
XY ZW by:

er—i=y—j=z—k=w-1I
erx—i=y—j=z—k=1l—-w
er—i=y—j=k—z=w-—1I
er—i=j—y=z—k=w-1
e i—zr=y—j=z—k=w-—1I
s i—zr=y—j=z—k=1l—-w
el —zrz=y—j=k—z=w-—I

ei—r=j—y=z—k=w-1

3.4 Counting the Number of d-Dimensional Attack Diago-
nals

In general, we can consider the problem of enumerating the the number of d-
dimensional lines of attack for a queen in d dimensions to be the same as that
of counting the number of d-dimensional diagonals in a hypercube. Using a
topological approach, we see that for all d, each vertex in a d-dimensional
hypercube has exactly one polar reciprocal [8]. A d-dimensional diagonal
is a line connecting a vertex and its polar reciprocal. Since there are 2¢
vertices in a hypercube, there must be 24~! d-dimensional diagonals in a
d-dimensional hypercube. This tells us that a queen in d dimensions has
24=1 d-dimensional attack lines.

3.5 The Equations for the d-Dimensional Attack Lines

The equations for the d-dimensional attack diagonals for a queen at location
1,%2,-.-,%q in a d-dimensional chess hyperspace X1, Xo,..., X4 are of the
form:

:*:(.’171 — ’il) = :*:(.’1,‘2 — ’i2) =...= :t(xd - id)

(Compare with Subsections 3.1, ff.)

There are obviously 2¢ such equations in all. However, noting that changing
the signs on all the terms gives us a new equation with the same meaning as
the one changed, there are 2%~ equations that are distinct, which is a nice
agreement with our topological reasoning.

The distinct equations for the d-dimensional attack diagonals may thus be
given by:

® L1 — 11 =X2— 19 =...=Tq— g
® L1 — 11 =%2—13=...= 14— X4
[] ’il—.Tl =i2—x2=...=xd—id

4 The Algorithm for Finding Solutions to the n-
Queens Problem

The traditional method of finding solutions for the n-queens problem is called
backtracking, which is another name for the well-known technique of depth-
first search (DFS) [9]. Goodrich and Tamassia [3] describe backtracking in
terms of graph theory, where vertices and their incident edges within a graph
are traversed via this method. As described by Goodrich and Tamassia, the
algorithm works by starting on a source vertex v; of some graph G, which
contains the n vertex set (v1, vg,...,v,) and all incident edges. First, the
algorithm traverses an arbitrary incident edge e that is unexplored, arriv-
ing at vertex v;, where i is of any value of the set (2, 3,...,n). If v; has
not been visited, the previous step is repeated of traversing an unexplored
incident edge of v; to the next vertex. However, if v; has been visited, e is
traversed back to vi, and a different unexplored incident edge is traversed.
This backwards traversal is the actual backtrack.

In the context of the queens problem, the search space of possible queen
positions on the board is representable as a graph.

4.1 In Two Dimensions

The way this algorithm is used for the n queens problem is by first placing
a queen at the position of the board where the first column and first row
intersect. In the 2-dimensional case, the algorithm traverses to the next row,
first column, and attempts to place a queen at this position. Since both
queens are in the same column, the test fails, and so the algorithm traverses
to the next column and tries again, and continues to do so until a valid
position is found in the row. Once one is found, the algorithm traverses to
the next row and repeats the process of searching for a valid column within
that row to place a queen. However, if no valid columns are found within
a given row, except for the first row, the algorithm must traverse to the
previous row and attempt to place the queen for that row in the next valid
column.

This is the backtrack move, and it is repeated until either

e 3 previously placed queen is replaced into a valid column for its row,
or

e all queens have been placed at their farthest valid column position in
their respective row.

A solution has been found when the n* queen is placed on the n** row. All
solutions have been found when the first queen is replaced in the nt* column
of the first row, and all subsequent queens are in their farthest valid column
positions. Note that the orientation of board traversal and the row-by-row
queen placement are not the only ways to find solutions for the 2-dimensional
case; queens can be placed column-by-column as well. The same solutions
will be found, as well as the same number of solutions.

4.2 In Multiple Dimensions

Definition 4.1. depth; £ the label of a specific i-dimensional hyperplane,
where © belongs to the set 0,1,...,d. For example, depths is the label for a
3-dimensional hyperplane.

In three dimensions, instead of attempting to place queens by traversing to
each successive row, the algorithm tests for placing queens by traversing to
each successive depth;. A row (depth,) corresponds to the X axis, a column
(depthsy) corresponds to the Y axis, and depths corresponds to the Z axis.
Once the algorithm traverses a depthg, instead of attempting to place queens
at positions on columns, it tests positions by columns and rows. Essentially

each depths contains a 2-dimensional nxn board, which is iterated through in
a column-by-column, row-by-row fashion. The manner of traversing forward
or backward to locate a valid position is the same as the 2-dimensional case.
The first queen is placed at the first row, column, and depths. Next, the
algorithm traverses to the next depths and attempts to place the second
queen at the first row and column. Since this position is on the z = k axis
of the previously placed queen, it is not valid. Therefore, the algorithm
traverses to the next column, and then the next column, and so on until the
nt" row and column are reached, or a valid position is located. If a valid
position is found, a queen is placed there, and the algorithm traverses to the
next depths, performing the same column-by-column, row-by-row traversal
and testing for that depthg, just as before. If no valid positions are found at
any depths except for the first one, the algorithm backtracks to the previous
depths and moves the queen for that depths to the next valid position. A
solution is found when the n*” queen is placed in the n'* depths, and all
solutions are found when the queen at the first depths is at the nt?
and column, and all subsequent queens are at the farthest row and column
positions possible. Similarly to the 2-dimensional case, the orientation of the
board can be changed to where queens are placed in each successive row or
column instead of each successive depthg.

row

For d dimensions, generalize column as depthy, and row as depths. The first
queen is placed at the first depthy,deptho, ..., depthy. The algorithm tra-
verses to the next depthg, testing for validity at each position of that depthy’s
(d — 1)-dimensional hyperplane, backtracking to the queen at the previous
depthgy if no valid positions are found. However, if a valid position is found,
the queen is placed there and the algorithm traverses to the next depthg to
place the next queen. This process is repeated for queens 2 through n. A so-
lution is found when the nt* queen is placed at the n'* depthy. All solutions
are found when the first queen is at the n'* depth, depths, . . ., depthq_;, and
queens 2 through n are at the farthest possible depthi,depths, ..., depthg 1
in their respective depthy. As mentioned in each of the previous cases, the
orientation of board traversal and queen placement can be changed to where
queens are placed by row, column, ..., or depthy_1 instead of by depthg.

5 The Solutions to the n-Queens Problem in d
Dimensions

The numbers of n-queens solutions in d dimensions

n=3 n=4 n=>5 n==0 n=7|n=8
0 2 10 4 40 92
72 7196 98106 | 205444488 | 60754055080 —

4632 5313008 | 11353276978 - -
198096 | 2268218096 -

| O x| W[N &

14348907 - - - -

Table 1: n-queens solutions—dashes indicate where the count is too large.

The solutions enumerated are not unique, in the sense that rotations and
mirror-images are considered different solutions. (In this sense, the standard
2-dimensional problem has 92 solutions, of which 12 are unique.)

In Table 1, the general tendency of the number of solutions for a board of a
given size n and dimension d is that it is greater than the number of solutions
for a board of size m and dimension d, where m is less than n.

Also of note is the tendency for the number of solutions for a board of a
given size n and dimension d to be greater than the number of solutions for
a board of size d and dimension 7.

Given the following:

Definition 5.1. Q(n,d) £ the number of solutions for an n-queens problem
in d dimensions.

We can express our observations as follows:
Conjecture 5.2. Q(n,d) > Q(m,d),Yn >m, d> 2.

Conjecture 5.3. Q(n,d) > Q(d,n),¥Yn > d.

6 The Algorithmic Implementation of the n-Queens
Problem in d Dimensions

The implementation of the algorithm used to find the solution counts in
Table 1 follows the traditional algorithm described in Section 4 closely.

6.1 Representing a Location in d-Dimensional Space in a
Single-Dimensional Array

Our implementation works by “unrolling” the d-dimensional chess space onto

a long 1-dimensional array of size n¢.

For the standard 2-dimensional case, the relationship between the row and
column position and the location in the 1-dimensional array may be given
as follows.

Remark 6.1. Given that the coordinates of a position on a 2-dimensional
board are iy (denoting the row), and i1 (denoting the column), the equation
for calculating the position’s single coordinate p in the array is:

p =11+ (ia X n)

In a generalized d-dimensional situation,

Remark 6.2. If i, where j € {1,2,...,d}, are the coordinates of a lo-
cation in d-dimensional space, the equation for the single coordinate in the
1-dimensional array is:

d

p= Z (ij X nj_l)

=1

6.2 The Implementation Structures

The implementation makes use of the following structures to represent a
given problem of n queens in d dimensions:

typedef int cPos;

struct cQueen {
cPos pos;
};
struct cBoard {
int size, dimensions;

list < cQueen > queens;
list < cPos > #*lists;

};

These three—cPos, cQueen, and cBoard—respectively represent:

e individual positions on the board;
e queens placed at a certain position; and

e the board with its size n, d dimensions, placed queens, and each queen
position’s attack list.

6.3 The cPos Structure

Several things need to be noted about the use of these structures within
the implementation. First, cPos is only a single integer value. The reason
for this is that the possible queen positions are stored as though they were
1-dimensional, but they are used in a d-dimensional space. This usage is
described more below (see Subsection 6.4). Thus new implementations of
the positions for each dimension are not necessary.

6.4 The cBoard Structure

Also of note are the queens list and *1ists variables stored in the cBoard
structure. The queens list is merely a bi-directional linked list that is used
to store the queens that have been placed on the board. When a valid
position is found for a queen on a hyperplane, it is added to this list. The
queens list is essentially the permutation of a given solution. As shown in [2],
solutions for the 2-dimensional problem can be represented by a permutation
(a1,a9,...,a;...,a,), where ¢ € {1,2,...,n}. % corresponds to the row
number of a queen, and a; corresponds to the column number of a queen.
This permutation representation is extended to represent more than two
dimensions in the implementation, where ¢ still belongs to the same set but
corresponds to the depthg of a queen, and a; corresponds to the queen’s
position within the board.

The *1lists variable is a slightly more complicated member of cBoard. It
is a pointer to a sequence of lists, and so it is used as an array. This array
contains n? elements, where a single element corresponds to a single position
on the board. Each element is a list that stores the hypothetical positions
that a queen could attack if it were placed on that element’s corresponding
position.

Shown below is an example of how *1ists elements are populated for the
2-dimensional case:

int rowl, coll, row2, col2;
cPos tempPos;

10

cBoard board;
for (rowl = 0; rowl < board.size; rowl++)
for (coll = 0; coll < board.size; coll++)
for (row2 = 0; row2 < board.size; row2++)
for (col2 = 0; col2 < board.size; col2++)
if ((rowl == row2) || (col2 == coll) ||
(abs(rowl - row2) == abs(coll - co0l2)))

{
tempPos = row2%board.size + col2;
board.lists[rowl*board.size
+ co0l1] .push_back(tempPos) ;
}

The list population works by iterating through each position on the board for
both the position corresponding to the current list element and the positions
that a queen located there can attack. The if-statement is the implemen-
tation of the queen attack position equations shown in Section 3. It tests
if the positions lie on the same X-axis, Y-axis, and diagonals. Notice the
use of the absolute value function, abs, in the diagonal equality test. The
reason for using the absolute value is to cover both 2-dimensional diagonals
in a single test instead of two. Next, given that the if-statement returns
true to indicate that a queen at rowl, coll can attack the position at row2,
col2, the position is stored in temporary position variable tempPos and is
then added to the current element in the board’s 1ists array’s list.

6.5 The Placement of Queens in the Implementation

The actual method for board traversal and queen placement in the implemen-
tation is via a recursive function. In [3], a recursive algorithm for traversing
every vertex in a graph G is discussed. Although the purpose of traversing
the queens board is different from that given there, recursion is the method
used by this implementation of the backtracking algorithm as well. The code
for the function is:

void placeQueens(cBoard *board, int depth, unsigned int#* count)
{
int boardPos;
static int maxPos = (int)pow((float)board->size,
(float)board->dimensions - 1.0f)
cQueen tempQueen;
for(boardPos = 0; boardPos < maxPos; boardPos++)

{

11

tempQueen.pos = depth * maxPos + boardPos;
if (valid(board, tempQueen) == 1)

{
board->queens.push_back (tempQueen) ;
if (depth == (board->size - 1))
{
*count = *count + 1;
Yelse
placeQueens(board, depth + 1, count);
board->queens.pop_back();
};

};
};

For parameters, this function takes a pointer to the cBoard structure being
used, the current depthy, and a pointer to a counter that keeps track of the
number of solutions found, respectively. The variable boardPos is used to
iterate through positions of the current hyperplane at depth, and maxPos
is the n{@=Dt position on that hyperplane. tempQueen is the queen to be
placed. As the function iterates through the positions of depth’s (d — 1)-
dimensional hyperplane, it assign’s tempQueen’s pos member to the current
position on the board. Next, valid is called to test if tempQueen is in an at-
tacked position. If it is not, tempQueen is added to the list of placed queens,
and if depth is the final depthy, the solution counter is incremented by one.
Otherwise placeQueens is called again recursively for the next depthy. Fi-
nally, once the algorithm is done with the queen for this position on depth,
it is removed from the list.

6.6 Implementation Optimizations

A major performance optimization for this implementation occurs during
the population of attacked positions in the cBoard structure’s 1ists array’s
population stage, discussed in Subsection 6.4. Since the recursive algorithm
places queens on a depthy by depthg basis, the positions of attack that exist
on the current (d — 1)-dimensional hyperplane of a given position do not
need to be computed and stored. Therefore, these positions of attack are
not stored for a given position. This shrinks the list, saving large amounts
of memory, and also computation time when the valid function iterates
through the previously placed queens’ positions’ attack lists.

12

7 Potential changes to the algorithmic implemen-
tation of the n-Queens problem in d dimensions

A number of performance oriented changes could be made to the algorithmic
implementation described above. The authors of this paper treat the problem
of finding attack positions for a queen in 3 or more dimensions in a manner
quite similar to that in the well-known 2-dimensional board. If there are
better methods, it is possible that much computational time would be saved,
resulting in a greater range of values for which Q(n,d) (see Definition 5.1)
could be computed.

Also of note is the single-threaded nature of the current implementation. If
the implementation called the placeQueens (see Section 6.5) function for
each position in the (d — 1)-dimensional hyperplane for the first queen, and
the algorithm only found the solutions for when the first queen was in a
single position and did not move it to the next position, all solutions could
be found by calls to the function. If each function call was in a single thread,
n%1 threads—each finding solutions for the first queen at a specific starting
position—could find the total number of solutions. Similarly, the threads
could be distributed and ran amongst multiple machines on a network. The
only issue would be keeping the solution counter in sync between threads.

Obviously, if another algorithm besides backtracking is discovered that can
find all possible solutions for a given n and d, and it happens to be faster, this
would be changed. However, the thoroughness of the backtracking algorithm
has yet to be matched by any other method.

8 Conclusions and Suggested Work

We have generalized the standard m-queens problem on a two-dimensional
board into a problem of placing n queens in a d-dimensional chess grid. It is
trivial to observe that such solutions must always exist for all n > 4,d > 2,
since we know [1] that solutions always exist for n > 4,d = 2, and since
the existence of a solution for a given n in r dimensions always implies the
existence of solutions in all dimensions ¢ > r. (An r-dimensional solution
may just be placed in one suitable fragment of a t-dimensional chess space.)

However, it is far from obvious that non-trivial solutions (those that can-
not be projected onto lower-dimensional subspaces) always exist for all
n > 4,d > 2. A natural extension of the known result would be to prove
that they do. It is interesting in this regard to note that whilst there is no
solution for n = 3,d = 2, there is one for n = 3,d = 3.

13

We also have stated two conjectures earlier (see Conjectures 5.2, 5.3) sug-
gested by our counts for the number of solutions for various small n, d values.
Proofs or counter-examples, and similar results, would be interesting.

More powerful computers, better optimized code (e.g., using distributed com-
putation or multi-threading), or faster algorithms might conceivably fill more
of Table 1. It is known that the complexity of finding all solutions for d = 2
is O(n!). It would be interesting to find out if this result can be matched or
even exceeded in higher dimensions.

Acknowledgement

The authors would like to thank K. R. Knopp for useful discussions on this
topic.

References

[1] Ahrens, W. Mathematische Unterhaltungen und Spiele (Berlin, 1910).

[2] Demirors, O., Rafraf, N., and Tanik, M. M. Obtaining N-queens so-
lutions from Magic Squares and Constructing Magic Squares from N-
Queens solutions. J. Recreational Mathematics 24 (4), 1992, 272-280.

[3] Goodrich, M. T., and Tamassia, R. Algorithm Design: Foundations,
Analysis, and Internet Examples. Wiley, 2002.

[4] Nudelman, S. P. The modular n-queens problem in higher dimensions.
Discrete Mathematics 146, 1995, 159-167.

[5] Bernhardsson, B. Explicit Solutions to the N-Queens Problem for all
N. SIGART bulletin 2 (2), 1991, 7.

[6] Heden, O. On the modular n-queen problem. Discrete Mathematics
102, 1992, 155-161.

[7] Polya, G. Uber die “doppelt-periodishen” Lésungen des n-Damen-
Problems. Mathematische Unterhaltungen und Spiele 2 (2), 1921.

[8] Diaconis, P., and Keller, J. B. Fair Dice. American Mathematical
Monthly 96 (4), April 1989, 337-339.

[9] Cormen, T., Leiserson, C. E., Rivest, R., and Stein, C. Introduction
to Algorithms. Second Edition, McGraw-Hill, 2001.

14

