
Online image database with

content searching capabilities∗

Scott Alexander, Joshua Strohm, Denis Popel

Computer Science Department,

Baker University

Baldwin City, KS

denis.popel@bakeru.edu

Abstract

This paper outlines the research done to create a searchable image database in which image

content is used rather than keywords. The outcome of this research is a database of images,

which has user-friendly interface and numerous search capabilities in identifying individual

images based on the image content alone.

∗This project has been done in cooperation with neoTROPY LLC, Lawrence, KS



1 Introduction

Image databases are currently considered to be a part of multimedia databases, and they

differ from traditional information databases, which are easy to query, given that text is

the object being searched for. Currently, there are no image databases which use an image

itself as an object for a query. This is because a text-based query is computationally more

efficient to perform than an image analysis of every image in the database. As a result,

search engines such as Google Image Search actually query the title of the image rather

than the content of the image itself. For example, a search for ‘duck’ will no doubt return

some images of actual ducks, but it may also return images that are completely unrelated

to the intended search. This is because such a search will return any image that has the

text ‘duck’ in the title of the image (i.e. duck.jpg), instead of evaluating the content of the

picture itself. An alternative method of circumventing this problem is to associate descriptive

keywords with every image. Then a text-based query will return those images that have the

appropriate associated keyword. The problem with this approach is that the descriptive

keywords associated with the images are generated by a human, who will assign keywords

based upon his/her interpretation of what is important to the image. Objectivity, in this

case, is impossible to achieve since interpretation of images differs from one person to another.

Not everyone is an expert at everything, and the fact remains that an expert can describe

something better and more meaningfully than an amateur.

At first glance, objectivity does not seem hard to obtain. For instance, most people

would properly classify a signature that spells ‘John Doe’ as belonging to the person John

Doe. However, when asked for more specific keywords to describe a signature, we gain

more objectivity. An average person might classify a signature as being ‘sloppy,’ whereas a

signature expert might classify it by defining the curvature. These are both different, yet

valid classifications of the same image. So for an image database in which specific objective

distinctions are necessary for similar images, the keyword method of classification proves

to be inadequate. Examples of images with such explicit requirements include fingerprints,

signatures, and mug shots. This project is aimed at creating a solution for a database of

signature images.

2 Solution

Since an image database of signatures based on keywords alone is inadequate for a qualitative

analysis, we decided to implement a project that incorporates distinctions based on the data

of the actual image. For instance, one might look at the image of a signature and deduce

that it belongs to John Doe. Yet how would one differentiate the authentic signature from

a forgery, as both signatures spell the name John Doe? It would be nearly impossible to

accurately describe the two distinct images using keywords. However, the computer still

needs to differentiate between the two images. A fairly simple computer analysis of the image



data can return many distinctive features. Using this analysis, we can ascertain features such

as line thickness, curvature, pressure and other distinctive characteristics. These features are

not only precise, but also completely objective and reproducible. This makes them desirable

classifiers for an image database. Thus, we have found that content-based image searching

and classification techniques are the best solution for this problem. It is also helpful to have

an association of a keyword with an image for advanced functionality in searching. This, in

turn, makes the program more robust. Some of the components of our solution include the

server-based database (MySQL), different types of image acquisition tools (pressure sensitive

tablets and flat scanners), image recognition and classification algorithms (C++ modules),

and a web-based user interface (PHP modules).

3 Implementation

The first part of our implementation was to design the algorithms used to classify and compare

the distinctive features of multiple images. This was accomplished by C++ modules which

take image data, generate multiple features, and store them. This objective method of

generating statistical data often solves the problem of differentiating between two different

signatures of one name. While both signatures may spell the name John Doe, the two images

may have vastly different curvature, speed, acceleration, and pressure features. Using these

algorithms we can properly identify signature forgeries with a high degree of accuracy.

3.1 C++ modules

Image processing and classification algorithms have been implemented in a few proprietary

C++ modules. These modules support the following functionality:

• generation of statistical data based on supplied images;

• comparison of two images providing a similarity score;

• generation of two-dimensional images for display purposes.

To facilitate the storing of this information, we decided to create a simple MySQL

database containing information about the actual image, image type, associated keyword,

and computer-generated characteristics derived from each image. Some of these derived

features include curvature, speed, acceleration, and pressure.

3.2 MySQL database

The first step of our solution was to decide on the type and layout of our database [1]. We

decided to create a database with three main tables: Images, Statistics, and Results.



Table 1: Database structure
Attribute name Data type Description

Images

Id integer unique id for all images

Label character image description

Extension character image file extension

File long blob image binary data

File type character distinguishes between raster or vector images

Date Added date date image added to database

Statistics

Id integer unique id for all images

Stat type character keyword describing the value vector (i.e. pressure or

acceleration)

Datatype character data type used for the value vector (i.e. float or

integer)

Value vector long blob binary array of statistical data

Results

Id integer unique id for all images

Similarity float floating point number representing the similarity of

two images, 0 being a perfect duplication

Login

Username character administrative username

Password PASSWORD(Character) password for the username hashed into a 16 byte

encrypted hexadecimal string

Last Name character last name of the user

First Name character first name of the user

Next we built the interface that allows users to execute and receive different queries. We

decided to use a PHP web-based solution for this step as it is well suited to interact with our

MySQL database [2; 3].

3.3 PHP modules

The PHP implementation has five basic functions: upload, list, compare, login, and add

user. A successful login occurs after typing in a username and password combination that

is found in the Login table of the MySQL database. After the successful login, the user is

given administrative rights to the upload, list, compare and add user functions.

Upload script The upload script allows the user to upload an image providing a descriptive

keyword to be saved in the Label field, and to choose a file type from the drop down list for

the File type field (see Figure 1). After clicking submit, the PHP script inserts a new record



Figure 1: Upload page

into the Images table, generates all the necessary statistics for the image, and inserts them

into the Statistics table.

List script The list script creates an HTML table, listing all the records in either the Images

or the Statistics table. The interesting functionality of this list is that if the Images table is

chosen it will read the File field of every record, create a thumbnail for the corresponding

image, and place these data into the viewable table (see Figure 2). A button labelled

“Regenerate Statistics” is also available for administrative users to automatically regenerate

statistics for all images. This is especially useful when a new classification feature is added

to the analysis stage. By clicking “Regenerate Statistics,” all previously entered data will be

recalculated, including the new classification data, for every image in the database. There is

also a delete button for all images, which allows for the deletion of an individual image and

its subsequent statistics in the database.

Add user script The script is used to add new administrative users to the database. It

requires a username, first and last name, and a duplicated password for the new user to

be successfully added to the Login table. It also has the ability to display all the current

administrative users showing the encrypted versions of their passwords (see Figure 3).

Compare script The only PHP function accessible to non-administrative users is the

compare function, because it is the only function that does not alter the database. Compare

is a simple PHP script that allows the user to upload an image, generate statistics for the

image using the C++ module, and compare the generated statistics against the statistical



Figure 2: List page

data of all images in the database. The compare script then creates an HTML table displaying

the testing image and listing the top ten images from the Image table and their corresponding

Similarity ratings to the testing image (see Figure 4).

4 Applications

There are many business applications for which this solution would be useful. Generally, it

is valuable for businesses which need multimedia databases, image databases in particular.

4.1 Identification

The approach outlined above is useful in image identification (including handprints,

signatures, etc.) for which the system is seeking a match for an unidentified image within

the image database. When identification is requested, the test image is supplied, and the

database is searched record-by-record for image content statistics until a match is found. If

no such match is found then a message will be returned to the user. In the event that a

match is found within the database, the output would be a list of desired characteristics or

other relevant information.

A good example of identification occurs in law enforcement. A fingerprint, for example,



Figure 3: Add users page

could be captured digitally and compared against the database. The characteristics of the

image will be compared against similar characteristics of other images within the database.

If a match were found, then important information would be returned to the law enforcement

officer, including background information of the person whose fingerprint matches the target

fingerprint.

4.2 Verification

When verification is requested, both an image file and a label must be submitted. This label

could be a person’s name accompanying a signature file, or simply a descriptive keyword

accompanying an image. Once the image and label are submitted for verification, the

database is then searched for an appropriate match. The searching process is accelerated



Figure 4: Compare page

in this case because it first searches for a matching label/keyword, before it compares the

image characteristics. This works faster than the identification function because it takes

only data from a smaller number of image files. Since images take more time to compare

than a basic text query for a label, the result is a faster query. Because the purpose here is

verification, once this match is found the given output is a simple yes/no answer. Although,

additional information may also be passed on to the user, it would likely be in the form of

instructions for the end user (such as a request for more identification or a prompt to contact

a store manager).

A good example is provided by the credit card industry. An increasing amount of

commercial transactions are completed by using credit cards. This means that retailers

must make an effort to ensure that the purchases are being made legally by the true credit

card owner. Many large retail stores obtain the signatures required for a credit card purchase

digitally. However, as of yet, there is no consistency check with the captured digital signature

to ascertain authenticity. Our digital signature database solution would work well in this



situation. First, a database of authentic credit card customer signatures would need to reside

on the company’s server. Then, when a credit card is being used as payment, the retailer’s

computer would issue a request to the database server for signature authentication. Within

this request, the retail computer would supply the cardholder’s attributes (e.g. a credit

card number) and the newly obtained digital signature to the database for comparison.

The database would then compare the two signatures. If the classification returns a low

correlation between the signatures, then the database server would send a message to the

retailer computer stating that further identification should be requested. Another (and a

similar example) is offered by the increased use of electronic documents for legal purposes.

It is possible to sign electronically a legally binding document. For obvious reasons, the

authenticity of this captured signature should be verified. The process required here is the

verification step outlined above which will work exactly as shown for the case of the credit

card company.

It is also helpful to note that although our approach was outlined to be a database

identification and verification tool for signatures, other images will work as well.

5 Concluding remarks

This paper outlines the idea of enabling content driven searching for multimedia databases.

A simple signature database has been developed with a user-friendly interface and a

comprehensive comparison engine. The database is robust and easily scalable. We also

listed some applications where this solution may become marketable.

References

[1] MySQL, http://www.mysql.com.

[2] PHP, http://www.php.net.

[3] L. Ullman. PHP and MySQL for dynamic web sites. Berkeley: Peachpit Press, 2003.

Acknowledgements

We express our sincere appreciation to Robert Fraga (Baker Universiy) and Alexei V Nikitin
(AvaTekh LLC) for valuable comments.


