
INITIAL ANALYSIS OF USING TREE HISTORIES TO
SPEED UP TREE SPACE EXPLORATION

Julie Albrecht
Math and Computer Science Department

Bemidji State University
Julie.Albrecht@st.bemidjistate.edu

Reshmi Nath
Math and Computer Science Department

Bemidji State University
reshmi.nath@st.bemidjistate.edu

Abstract
TrExML is a computer program that does maximum-likelihood analysis of nucleotide
sequence to infer phylogenetic relationships among species. TrExML generates the
likelihood of all trees up to a given number of sequences and then adds another sequence
to the list of most likely trees. Each new tree is computed and then it is added to the list
of best trees containing the additional sequence. The maximum size of the best list is
fixed. Thus, as each new sequence is added, many of the trees considered are thrown out
and not used. We have identified that under certain conditions it is not possible to
terminate computation of the new best list early without sacrificing the quality of the
results.

mailto:Julie.Albrecht@st.bemidjistate.edu
mailto:reshmi.nath@st.bemidjistate.edu

Introduction
Maximum-likelihood analysis of nucleotide sequence data (DNA or RNA) is one of a
number of techniques used to infer phylogenetic relationships among species.
Maximum-likelihood programs typically begin by taking a small subset of the nucleotide
sequences and arranging them in the most likely way. Then, each of the remaining
sequences is added one by one until all of the sequences have been added. A final tree
represents an evolutionary hypothesis and each tree generated along the way belongs to a
history of the final tree. This project involves analyzing the histories of trees in a
maximum-likelihood based program (called TrExML) for generating evolutionary trees
in order to increase its efficiency.

Statement of problem
TrExML performs its computation by generating all trees up to a given number of
sequences (given by the A switch in the datafile) and keeping a certain number in the
current list of best trees (given by the K switch). Then another sequence is added in
every possible way to each tree on the best list. Each new tree is evaluated in terms of its
likelihood and then added to a new best list of trees containing the one additional
sequence. Since maximum size of the best list is fixed, many of the trees considered are
thrown out and not retained. As the K value is increased and the number of sequences
increases, these computations take a long time to complete--sometimes in the order of
days or weeks. Through this project we have begun to identify techniques to terminate
computation of the new best list early without significantly sacrificing the quality of the
results. Ideally, these techniques will offer the user of the program the opportunity to
trade off the thoroughness of the tree-space exploration for the efficiency of the search.

Description of solution
As indicated earlier, each tree in the final best list has a collection of precursor trees that
constitute its history. We began this project by modifying the program to track the
position of each precursor tree in its best list. Furthermore, only some of the trees in the
final best list are of interest. The tree at the start of the best list is the most likely. The
rest of the trees are evaluated and tested to ascertain whether they are statistically
significantly different than the best tree. We are only interested in those that are not. We
call those trees good trees.

At this point, we have ran the program on various datafiles with different K values and
have come up with some interesting observations, suggesting that for fairly large runs of
the program (K>50000) at least for the last few (which is a function of the number of
sequences in the input file) cycles of the computation the best list, no good trees would be
eliminated. This observation suggested that it might be feasible to stop the computation
at a certain point, say half way through, for the last few runs of the computation.

Description of ongoing work
We are collecting and analyzing more data in order to be certain about the cutoffs. The
following is a table of sample data acquired by running the same input file with different
K values. We then eliminated all trees from the best list after the last good tree. The first
row of each two-row group starts with the K value. Column two in the first row is the

rank of the last good tree in the final best list. The third column gives us the highest rank
this tree’s precursors reached at any point through the computation cycle. The rest of the
columns are the ranks that this tree’s precursors reached in each computation lifecycle.
For constructing the second row we found out the highest rank that each tree’s precursors
reached for each computation cycle. This gives us an idea of what should be the cutoff
for each computation cycle. As we can see from the data only the last three columns (in
this case) are worth considering for a cutoff since all the other ones are too near to K
value.

rank of last good highest number rank Number of Sequences
K tree in best list this tree reached 8 9 10 11 12 13 14 15 16

100000 9024 99150 9726 99150 99116 99115 95881 94074 13440 8342 9024
10394 99999 99999 99999 99992 99977 49683 43918 9024

90000 9024 89485 9809 89485 89452 89460 81902 82280 36105 31875 9024
10394 89999 89999 89999 89994 89985 60636 70787 9024

80000 9024 79686 10090 79675 79686 79662 76257 76847 13605 18079 9024
10394 79999 79999 79999 79999 79996 51513 62571 9024

70000 9024 69839 10769 69743 69803 69839 67692 67310 19143 17652 9024
10394 69999 69999 69999 69999 69999 45698 55980 9024

60000 9024 59875 10173 59875 59818 59792 59017 58366 1538 9699 9024
10394 59999 59999 59999 59980 59999 39821 46902 7404

50000 9024 49762 10308 49625 49755 49762 48569 48850 9084 9732 9024
10394 49999 49999 49999 49988 49965 44632 43490 9024

40000 9024 39777 10319 39617 39757 39777 37386 37742 21543 21200 9024
10394 39999 39999 39999 39995 39986 36107 36155 9024

30000 9024 29876 10216 29876 29810 29768 29162 28544 18216 17497 9024
10394 29999 29999 29999 29999 29996 29824 29813 9024

20000 9024 19972 10391 19914 19971 19972 19047 19381 10216 8573 9024
10394 19999 19999 19999 19999 19999 19954 19946 9024

*2

Unfortunately, some of the data we have collected suggests that the ordering in which the
sequences are considered can have a significant impact on the pattern of the output. The
following is a table of data acquired from running the same file as the table before with K

= 100000. The only difference between these files is that they had an extra switch added
to them in order to randomize the order in which sequences are considered. Each two-
row group represents a different randomized order.

rank of last good highest number rank Number of Sequences
J tree in best list this tree reached 8 9 10 11 12 13 14 15 16

675675 9024 99945 10380 99945 98655 98513 98705 98767 92295 10843 9024
10394 99999 99999 99999 99998 99998 99997 61404 9024

987845 9024 99903 10374 99903 98919 94881 95150 95007 92272 29289 9024
10394 99999 99999 99999 99999 99998 99997 99999 9024

35895 9024 99921 10325 99921 99095 98939 97855 89080 88451 87467 9024
10394 99999 99999 99999 99998 99991 99985 94255 9024

756891 9024 99983 10378 99983 99964 98051 95334 66702 55184 29937 9024
10394 99999 99999 99999 99999 99999 99998 96210 9024

100000 9024 93965 4630 93665 93965 93107 93392 95301 92262 18252 9024
10394 99999 99999 99999 99999 99999 99998 99999 9024

423789 9024 99946 10348 99946 99053 98972 90121 88941 3497 5864 9024

10394 99999 99999 99994 99976 99992 63277 59089 9024

It is evident from the above output that as we change the J values the pattern of the output
i.e. the possible cutoff point seems to change. For the last two rows (i.e. with J= 423789)
the cutoff is somewhere in the 60000, while for the other J values it is way up in the
99000 range. This might seem strange at first since apparently there is nothing special
about the number 432789, neither is it the smallest or largest or different from the other
numbers in any other obvious way. So only logical answer seems to be that it must be the
most intelligent way the taxa for this particular file could be considered, compared to the
other orderings (i.e. the other J values).

Conclusion
Our initial analysis indicates that it is not possible to effectively speed up
computation of the final collection of good trees by selectively stopping computation
in early rounds (early cutoff). However, further analysis may yield insight into the
percentage of good trees omitted from the final collection of good trees when using
early cutoff. We will continue our data collection and analysis to determine these
relationships. Clearly, it is important to consider reordering the input files as our data
has shown that a bad ordering does not make early cutoff a good choice if we intend
to collect all of the good trees. However, our reordering data has also shown that that
intelligent ordering of taxa in the input file may allow the use of the early cutoff
methodology. Perhaps a small initial run may suggest an ordering to use in a large run
(i.e., a large K value). Another avenue for exploration involves testing statistical
significance after computing each best list (i.e., finding good trees among the
precursors) and using that information to help decide the early cutoff points.

	Description of solution
	Description of ongoing work

