
An Assessment of Design and Implementation Trade-Offs and
Their Impact on Mobile Applications

Nicholas Rogness

Department of Computer & Information Sciences
Minnesota State University, Mankato

nicholas.rogness@mnsu.edu
(507) 271-8136

Steven Case

Department of Computer & Information Sciences
Minnesota State University, Mankato

steven.case@mnsu.edu
(507) 389-5310

Abstract

When building an application for a mobile platform, there are many aspects to consider;
portability, speed, and the user interface are just a few. Because there are several mobile
devices that are capable of running custom applications and the costs associated with
software development continue to increase, software portability is often a desired
attribute of mobile applications. In addition, mobile devices are typically constrained
with respect to memory and processor performance. Unfortunately, the effect of design
and implementation decisions relative to these limitations will often conflict with the
portability and usability of the software.

If an application is easy to move from one device to another, the application is considered
portable and less time is needed to create releases for new devices as well as maintaining
updates for all devices. However, the design and implementation requirements associ-
ated with portability often create conflicts with other desirable attributes of the applica-
tion. Mobile devices tend to have limited computing power and memory relative to a
conventional desktop, which requires developers to become more conscious of the proc-
essing and memory efficiency of their application. While limited memory and processing
power can be viewed as similar problems between many of the mobile platforms, the user
interface creates a new problem for developers. Whereas desktop environments generally
have the same de facto layout, user interfaces for mobile devices vary significantly and
impose additional constraints on software design and implementation

Leveraging from recent experience developing a commercial prototype of a language
translation application, this paper will explore options the developer has to choose from
in terms of programming languages and user interface design. The choice of implemen-
tation language can affect the way the application looks and performs. For instance, a
Java application can be run under several different virtual machines, each making its own
options and styles available to the developer. Although there is not one perfect design,
techniques exist that make the development of a mobile application more efficient.

Introduction

Mobile devices have become increasingly popular over the last few years. Along with
popularity, the variety of devices available to the general public has also grown
significantly. Pocket PC, Palm Pilot, Smart Phone and Blackberry are a few names that
have emerged in the mobile computer market. Each device has its own size, shape and
style.

With a growing number of devices to support and an expanding consumer base, a
problem that has challenged developers for years again comes into view. Software
portability, a characteristic that allows an application to move from one platform to
another with few, if any, changes, is becoming increasingly valuable. The motivation
behind supporting software portability is lower cost of development. As the price of
software development rises, it is becoming more and more valuable to reuse as much
code as possible. This is not a trivial task for any software, but when one deals with
mobile applications, there are more elements to consider than just differences in
architecture and APIs.

Aside from the architectural aspect, having a wide variety of mobile devices brings
another new twist to an old subject. Several designs of portable computers have evolved
over the years. Some devices have a pen that takes place of a mouse with a virtual
keyboard or some sort of hand-writing recognition, some have a full keyboard and touch
screen, while others, such as the Smart Phones, have neither a pen nor a full keyboard.
Just as the diversity of platforms creates issues with software portability on mobile
devices, making an efficient and productive user interface for any particular device has its
own challenges.

Performance is yet another key area that must be considered when developing for a
limited resource environment. These considerations must not be taken lightly. Most
users employ their devices during some other activity, such as a meeting. Most people
are not willing to wait very long for an application to load. For a developer, this kind of
programming does not come naturally, but if they remain in a state of mind that is ever
watchful for wasted processing power, optimization will be easier to manage later on.

Portability and interface style are complicated enough problems to solve in their own
right, and adding the strict performance requirements necessary for limited resource
devices removes many solutions typically available to the developer. Decisions will have
to be made about what to sacrifice. The most portable options generally have poor
performance or irregular interfaces. Options that meet the conventional practices of the
initial device, although they may meet performance requirements, may be complicated to
move to another platform. These decisions need to be made based on the goal of the
application, the typical users, and the resources available to the development team.
Along with the analysis, extensive design is required to ensure the application is
developed in such a way that the maximum amount of code can be reused. In some
situations, the number of lines of code reused can serve as a metric to analyze the
development process itself.

This paper will examine the different options a developer has to choose from when
designing and coding an application targeted to a mobile platform along with the
tradeoffs that come with each option. There is no one option that is inherently better than
another, but a sample application will be used to show that in a particular instance, some
coding methods are not feasible.

Other Research

There has been much research in the areas of portability and usability. The majority of
this research has been centered on computers that are more powerful and more similar
than the devices this paper will focus on. This information is provided as a background
for details mentioned later on. Much of the outlined strategies can be applied to mobile
applications and are useful in identifying complications that may occur during
development.

Application Portability

James D. Mooney has written several pieces on the topic of software portability. In one
such paper (1992), he outlines a course whose object was to instruct the students on how
to write code that is to run on several different platforms. The class used a simple
interactive quiz application written for one platform. The goal was to identify the
obstacles they would encounter when porting the application and make changes to it that
would make converting it for another platform simpler. Functional enhancements were
added to the program later on to create even more portability issues. Even though it was
a command line interface, not every system had the same conventions for entering
parameters. One of the issues discovered was that an application that is portable doesn’t
necessarily have to behave in the exact same way for every platform. Such issues are
clearly evident in mobile devices where each platform has developed its own look and
feel. Any changes in appearance and behavior are easily noticeable to the user. Not only
are the changes noticeable, but they also may give the user a negative view of the
application.

In 1995, Mooney wrote a paper that discusses issues concerning software portability.
Along with that topic, he compares software portability to software reusability. Both of
these are interesting ideas when developing mobile applications. Mooney states, “The
goal of research in software portability is to facilitate reuse of existing applications in
new environments.” Reuse has a similar goal, but has a different scope in terms of the
project. Reuse is more concerned with reusing components in several applications, but
not as concerned with which platform the software is running on. Mooney goes on to
describe concepts unique to each school of thought.

The general term, portability, is used to describe a characteristic that allows an
application to be ported. This can be achieved in two ways. Binary portability is the

ability to move the binary executable file to another platform. This is by far the optimum
choice, but is only possible in a few situations. The other is source portability, which
describes code that must be moved to the other environment and rebuilt, which is more
forgiving to the developer. With this as an acceptable means, developers have the
freedom to make changes to the code depending on what environment a particular
version will be running on. Even though source portability allows some code to be
changed, the goal remains to change as little code as possible. In an earlier article,
Mooney (1990) mentions a third, and least optimal solution: experience portability. This
does not concern moving code from one environment to another, but instead focuses on
the porting of ideas and algorithms. If the source code for a component has to be
rewritten, the developers can use the same design and implementation techniques as the
original. This may not save actual coding time, but doesn’t require the developers to start
from scratch either. UML and code generation tools could be used to aid the developers
in rewriting certain functions.

Reuse has a separate focus from portability. Instead of moving an application from one
environment to the other, reuse concentrates on modularizing applications so the pieces
developed for one project can be used in another. From a management perspective, much
is gained from having a repository of reusable components (Mooney refers to them as
artifacts). When a new project is being designed, developers can turn to such a repository
to find functions, data structures, and other segments that can be plugged in.

Mooney compares and contrasts these two concepts in such a way that one can be
described in the terms of the other. There us much common ground between these, but
he does point out that portability has benefits that may not be seen immediately, while
reusability has its advantages during the early stages of development. There are ways in
which to incorporate reusability techniques to make porting an application easier. When
dealing with the variety of styles in the mobile device market, modularity of code may
become useful for creating a suite of products to cover each device.

Interface Design

Although most of the topics involved in Human Computer Interaction are beyond the
scope of this paper, it is beneficial to look at a few of the concepts which help us make
decisions on what elements are necessary in a user interface and which ones can be
sacrificed for other benefits.

Most developers learn to write code for either a personal computer or mainframe,
depending on the time and place where they start. Because of this, it is not always easy
to shift one’s thoughts on what a portable application should look like. Mark Dunlop
gives a good overview of the design considerations for mobile applications that do not
come naturally for most developers (2002). First, application developers must consider
the typical environment the user will be in when accessing the software. If it resides on a
PDA, the user could be almost anywhere and not have access to normal office items, such
as a desk. Generally, mobile applications will be used by a wide variety of people who

may not have any formal training. Most of these small devices have cumbersome, if any,
input devices; therefore, it becomes ideal to let the user type as little as possible. Finally,
due to the quick and easy nature of mobile devices, frequent interruptions must be
expected. The user may want to turn the device on, extract a small piece of data, and turn
it off without spending much time waiting for a process to finish.

Findings

As with many lessons, some are learned as they are needed. Based on the recent
development of a language translation application for mobile devices, several concerns
have become apparent along with their possible solutions. The problems found vary from
performance to behavioral. For the application, some short-term solutions have been
implemented, but they are far from optimal.

From research gathered and experience gained from development, better solutions are
available. None of these are perfect, so both benefits and trade-offs will be examined.

Goals of portability for mobile devices

Aside from goals of a specific software application, there are some characteristics that are
important to all portable, mobile applications. Just as with any portable application, it
becomes vitally important to maximize the amount of movable code. Somewhat unique
to limited platforms is the emphasis on the conservation of memory and processing
power. Behavior is a factor that most developers would not normally consider when
writing an application for one device. When targeting a wide range, it is important to
note that different user interfaces may be required for each device.

Maximize movable code

Mooney described three types of portability that can be used to minimize the amount of
rewritten code. Although he may not have been considering mobile applications, his
concepts can still be applied.

Binary portability is certainly the most efficient method of portability. If it is possible to
move an executable program from one platform to another, porting becomes a non-issue.
Unfortunately, it is also the most difficult, and many times impossible, to achieve. Even
when limiting the scope of target devices to one manufacturer and processor, factors such
as screen size and input devices cause the need for separate versions of the software.

Source portability comes closer to the realm of possibility; however there are some issues
that can make porting source code a difficult process. Some standard functions, such as
string functions, are included in most development tools, but are represented by different
names. There are several ways by which adapting the code can be made easier. Macros

and other compiler directives can be used to substitute function names. For standard
functions and basic file access or calculation functions, these strategies may work well,
but when calls to the operating system or graphical user interface are required, much of
the code may not be directly portable. In these cases, a better way to think of portability
is in terms of experience portability.

Even though it is likely that individual user interfaces will be needed for each device,
most of the ideas can be reused. The overall design of the interface can remain, for the
most part, unchanged. Interfaces to other components or the application that were more
portable should remain the same as well.

Performance

Performance is another aspect that can be a considerable factor in the in the success of a
portable application. Mobile devices are commonly used for very short-term functions,
such as storing a phone number or adding a calendar entry. This adds a requirement that
the application be able to load as soon as the user needs it, and execute just as quickly. If
the user becomes annoyed by the time it takes to run the application, they will stop using
it.

Memory can create similar problems on mobile devices. Because several applications
can be running in the background at the same time without the user realizing it, if one
program is consuming the majority of the system’s resources, other applications will
suffer. The easiest solution for the user is to no longer run the program that is slowing
everything else down.

Behavior

Finally, behavior can have just as much effect on the user’s experience as performance.
Over the years, mobile devices have created their own styles that most applications
conform to. Noticeable deviations from such conventions can make the program seem
out of place and cumbersome. Some designers may desire to stray from these, but for
this paper, the assumption is that the program isn’t meant to break down any usability
barriers. Even though this consideration may contradict portability, making a usable and
robust application may be a higher priority.

The very nature of these goals does not allow them to be implemented perfectly however.
Due to this fact, decisions have to be made early on, about which goals are more
important. These decisions should be based on the intended use of the application.

Case Project

Many of these lessons concerning portability of mobile applications came from the actual
development of a commercial language translation application. Because the details of
this specific application are not relevant, it will be referred to as Ignotus. Several goals
were laid out during the initial design stages. From these goals, the design team decided
on an opening configuration, which was to be developed using the Pocket PC platform.
This decision was made because of the resources available and initial users had most
interest in the Pocket PC platform. During development, several problems arose which
required the development team to make changes to the overall plan for the application.

The first and most important goal for Ignotus was portability. The designers wished to
eventually move the application to other mobile devices. Secondly, the software must be
easy to use by a typical owner of the device. The target users for Ignotus were people
who are familiar with the device and are looking for new applications. It was believed
that most people would purchase the product as an impulse and continue using it based
on its functionality.

Implementation Options

When developing mobile applications, there are essentially three choices for languages,
C++, Visual Basic, and Java. Visual Basic is not an option in this case since the only
platforms that support VB are Microsoft based. Using VB in an application would
extremely complicate the porting process so it is safe to remove it from the list of options.
Depending on the device and available tools, others may be available, but for porting
purposes, C++ and Java are the most widely available. Using these languages, there are
three options available to developers of an application such as Ignotus. The program can
be written completely in Java, completely in C++, or certain techniques can be used to
combine the two languages.

All Java

The obvious advantage to developing in Java is also its main selling point, portability.
Ideally, developers can write code for one platform and the same code will work on any
other device that has a JVM. This quality makes for faster development time since little
or no code needs to be modified when porting the application.

Java adds another category of portability. It cannot be correctly labeled as binary
portable because it is not compiled down to a binary format; instead it uses interpreted
byte code. It is also different from source portable in that code should not have to be
changed and only needs to be compiled once. Even though it does not fit within a class
described by Mooney, there are some situations that would make it fit better in certain
groups.

Theoretically, changes to the application shouldn’t be needed to move it from one
platform to another. Even with Java, this is not always the case. The first problem comes
from the JVM itself. Unlike the desktop versions, Sun does not have one set JVM
specification for standard mobile applications. There are several different specifications
that a JVM can conform to (i.e. J2ME CDC, J2ME CLDC and Personal Java). Since the
same virtual machine may not be available on every device, the developer is either forced
to use only classes that are shared between the different platforms, or develop the
application for one specification, and then port it to another. Fortunately, the highly
object-oriented design of Java makes it easier for developers to write code this way using
modularization. If designed well, components should have the ability to be added and
removed without disrupting the program’s logic. Certain classes such as those in
windowing toolkits may not be universally supported. To make porting simpler, the
developer can use abstract classes and interfaces to minimize the amount of code that
needs to be changed when a different toolkit is used.

Adding some extra steps in the design stage, and researching what classes will and won’t
be supported can result in minimal code changes when moving the application from one
environment to another. When designing an application to be developed in Java, more
about the target environments must be known to make full use of Java’s advantages.

One of the constant issues with these small devices is execution time and memory
consumption. Performance has been a considerable complaint about Java. This is an
inherent problem since Java byte-code needs to be interpreted each time the application is
executed. This can consume precious clock cycles on a machine that is not very powerful
to begin with. Certain functions can especially cause a decrease in the performance of an
application. String concatenation, along with other string functions, has been known to
be a complex operation in Java. Limiting calls to these kinds of functions can increase
the overall speed of the application.

Memory usage is also a topic that developers need to keep in mind while writing code.
Even though Java has a garbage collector, the programmer must stay vigilant against
memory leaks. Static objects and data structures can take up much of the limited
resources. For the most part, these issues can be addressed by good programming skills
and techniques. It is far more difficult to address memory usage after the application has
been developed than for the developers to constantly consider how they can use fewer
resources while writing the application code.

An issue that is dependent on the JVM itself is window design and behavior.
Unfortunately, the Java specification defines what classes and methods must be
implemented, not how they are implemented.

The developers of Ignotus ran into these types of problems when developing their
application. The software required numerous accesses to a file, which was discovered,
could also be a costly operation. After some testing and experimentation, they found that
the implementation of the file input/output classes was not sufficient for their needs.
Instead of using the standard classes supplied with the JVM, the developers began to

write their own classes to optimize the functions they were most interested in. This was
added effort, but in the end, improved their performance considerably. In such a limited
environment, creative programming techniques are often required. Programming in Java
for a mobile device is significantly different from developing such an application for a
desktop machine.

When researching a JVM for Ignotus, the developers found that no two virtual machines
displayed a window in the same manor, nor was one virtual machine available for all of
the target platforms. Of these window styles, none matched the conventions that have
developed in the Pocket PC market. The designers of Ignotus felt that this would be a
strong disadvantage for the application. A program that does not look like it belongs on a
Pocket PC may give the user a negative impression before they even start using any of
the functions.

Figures 1 and 2 display applications running on a Compaq iPaq. The screenshots were
obtained using Remote Display Control available from Microsoft. Figure 1 was
generated using Microsoft Embedded C++ and shows the common layout of a Pocket PC
application written in C++. Figure 2 was written using Java and run with a JVM
compliant with Sun’s PersonalJava Specification. Several differences can be seen. First,
the Start Menu has moved from the upper left, to lower left. Second, the keyboard button
has moved from the right side to the center. In this case, the Java application in Figure 2
acts more like a Windows application than its counterpart. The round ‘X’ button in
Figure 1 does not actually exit the application. Instead, it remains running in the
background. The next time the application is executed, the window manager merely
brings it to the front of the screen. The buttons in the upper right corner of Figure 2 act
similarly to a Windows application, although functions such as minimize and maximize
loose their usefulness in such a small screen space. One distinct advantage Java has over
C++ is the amount of code required to develop such and application. The source code
generated for Figure 1 is about 200 lines. Figure 2 required a tenth of that.

Figure 2: Java Application Figure 1: C++ Application

Due to the problems with Java, the Ignotus team decided to discontinue their
development of the application using Java. A functional prototype was developed using
Java, but was far from ideal in both performance and behavior. However, for some
applications that are more concerned with portability and fast deployment, Java may be
the best option.

All Native

Almost a complete opposite from the Java approach to building an application is to
develop the program using C or C++. Developing with C++ can have many advantages
to Java, but there are some issues which can make it much more difficult to work with.

Where Java is built to be completely portable, C++ is not. Almost any compiler you find
for each device will support standard C and C++ libraries, but that does not necessarily
mean you can just recompile the source code and it will work. One of the issues
concerning portability is the difference in function names. Some of the functions in the
Palm OS standard C libraries have been changed to match the Palm OS function-naming
scheme. These kinds of issues can be solved by macros, or work-around functions.
Adding functions just to redirect calls to the correct names can increase the size of the
executable. This is not desirable when dealing with limited storage spaces.

The subject of function names only applies to the standard C libraries. Other libraries
used for windowing and OS functions will not be common between devices. A
discussion of these differences is beyond the scope of this paper, but such information is
readily attainable. The fact that there is a significant difference between mobile operating
systems limits the degree to which the applications can be portable. One possible
solution to this problem would be to use one of the reusability techniques mentioned by
Mooney, modularization. This was mentioned early when discussing Java programming,
but can be applied here as well. In this case, it would need to be used to a greater degree,
but the purpose is still the same. Although it is a large amount of code, the idea is to
share code between versions so that the amount of code that is rewritten is kept to a
minimum. This can be implemented by using standard C libraries for logic and algorithm
functions that will perform the same task throughout each version. User interface and OS
specific functions should have a standard interface with other components to facilitate
easy removal when needed.

Performance is one of the first reasons to develop an application in C or C++. Because
the code is compiled down to machine language, it will be able to run without the need
for an interpreter. This also gives the programmer the ability to use operating system
functions to gain access to system resources, such as files and hardware. Because the
functions don’t require generality to work in any environment, they will be optimized to
work specifically for the target device.

Along with performance, behavior is another advantage that C++ has over interpreted
languages. The purpose of portability is not necessarily to make an application look and
act exactly the same on every platform (Mooney, 1992). Due to conventions used by
applications written for a specific device, a program written in a native language would
have an advantage over a program meant to be universal. With an interface that follows
the de facto standards or a device, the user will not be distracted by an uncommon style.
Instead, the user can focus on functions of the application and its usefulness.

Even though native languages have their advantages over interpreted languages, it is not
always the right choice. Depending on the application, the performance and behavior
differences may not be significant enough to sacrifice portability.

The Ignotus team was hesitant to accept this option as the final one. Due to increased
development time and inexperience on the part of the programmers, other options were
explored before C++.

Combination

If the design obligations do not lend themselves to developing the application in all native
code, or all interpreted, such as Java, a combination of each could be used. Using Java’s
JNI technology, it is possible to combine the portability of Java with the performance and
behavior characteristics of ++. The Java Native Interface is well documented, but does
increase the programming complexity significantly.

The idea behind this concept is to combine the advantages of each technology. This
should create an application that is both fast and relatively portable. To make all of this
work, the developer is required to maintain an interface that is consistent between native
and Java code.

The Java must be developed first. Any function that will be implemented using a native
language must be declared in Java using the native keyword.

 public native void HelloWorld();

After it is compiled, the developer uses the javah tool with a –JNI option to create a
header file for the class. This will notify the native compiler about the functions
available to be called. The native code is then compiled into a DLL or some other
library, depending on the platform. When the Java application is executed, the JVM
loads the library specified. Execution begins in Java. Any time a Java method calls a
native function, the execution path is shifted to the native library. When the native
function returns, execution continues in Java.

When dealing with such a complex technology, it becomes more difficult to maintain
continuity between languages. Calling Java methods from a native function requires the
exact name and class that describes it along with the correct type and number of

parameters. Java data types are consistent from one platform to another, but the size of
native data type can vary depending on the device. These complications make using JNI
much more problematic than developing the entire application in one language.

Because of performance problems with Java, the Ignotus team briefly explored the
possibility of using JNI to achieve their goals. However, the team eventually decided to
forgo this route. Problems arose due to the JVM that was being used for development.
Being that it is a commercial product, it was not easy for the developers to obtain specific
information concerning how some features were implemented. For a C++ function to
display a user interface on a Pocket PC device, it must have certain variables normally
passed to the initial function when the operating system executes the program. These
variables are note available when the functions are called from Java. Conversely, library
files are needed for a native function to initialize the JVM and begin using Java classes
and methods. Unfortunately, these libraries were not attainable by the developers.

Depending on the nature of the interface, this process can become very involved. Strict
attention by the programmer must be maintained when modifying code on either side of
the JNI functions. To determine whether all of this added work and complexity is
acceptable, performance testing should be done to aid the designers in making the
decision.

One More Solution

Similar to combining Java technology with native programming languages is the option
of creating a custom JVM. This would require a large amount of work for the initial
project, but will decrease the amount of time needed for future projects. JVMs developed
by third-party vendors are developed with the idea that it should be used for any
application any Java developer decides they want to write. If a company were to develop
its own JVM, this universal use requirement would no longer apply. Each class could be
developed with the specific project in mind. Each of the functions could be optimized to
meet the performance requirements specified by the designers. Instead of creating a JVM
that implements every function for every class laid out by the JVM specification from
Sun, only the classes and functions necessary for the project need to be implemented.
Although, this mini JVM will not be compliant with Sun’s documentation and therefore
could not be officially referred to as a JVM. As a future goal of the company, a JVM that
does meet Sun’s requirements could be developed and distributed.

All of this, of course, is not easily accomplished. This kind of technique requires the
developers to have resources and ability to create such a tool. Sun has reference
implementations and the corresponding source code available for two of its J2ME
specifications for mobile devices. The Connected Limited Device Configuration (CLDC)
specification is meant for devices with limited memory capacities such as cell phones and
some pagers. Connected Device Configuration (CDC) applies to devices with more than
2MB of memory. Either of these could be ported from their reference implementation to
the target platform.

If the company has already developed a JVM, it can be modified where needed for future
projects. Some modifications may be necessary and functions may need to be added. A
larger task would be porting the JVM when another platform is added to the company’s
repertoire. Since several teams working on several projects may use the program, a
developer or team of developers may be needed to maintain the JVM and oversee any
changes made to it.

Conclusion

The options available to developers of mobile applications go far beyond those outlined
in this paper. The creativity of programmers and software designers opens a door to
infinitely many possibilities. Standards for development of mobile applications have
been delayed for this very reason. Limiting what developers can invent by making them
conform to guidelines can only harm the result. There is no way to tell what future
programs will look like or how they will be developed. For now, programming
methodologies that have been proven in the desktop work are being applied to mobile
applications despite the enormous differences in performance and requirements. When
developing a mobile application, an alternate mindset is required. Thinking as a desktop
programmer produces code that works perfectly on a desktop, but when executed on a
mobile device will not produce a desirable application.

Creating a robust and complete mobile application requires a clear understanding of the
application itself, and what is required of it. As with other software applications,
spending time in the design phase to determine the correct options for a program will
decrease the amount of time needed to write the actual code. Viewing the application as
a combination of its requirements and functionality will give the design team information
and insight to make decisions about the product that will save development time and
maximize usability.

References

1. Mooney, James D. (1990). Strategies for Supporting Application Portability. IEEE
Computer, 23, 59-70.

2. Mooney, James D. (1992). A Course in Software Portability. ACM SIGSCE Bulletin,
24, 53-56.

3. Mooney, James D. (1995). Portability and Reusability: Common Issues and
Differences. Proceedings of the 1995 ACM 23rd annual conference on Computer
science, 150-156.

4. Dunlop, Mark, & Brewster, Stephen. (2002). The Challenge of Mobile Devices for
Human Computer Interaction. Personal and Ubiquitous Computing, 6, 235-236.

	Other Research
	Application Portability
	Interface Design

	Findings
	Goals of portability for mobile devices
	Maximize movable code
	Performance
	Behavior

	Case Project
	Many of these lessons concerning portability of mobile applications came from the actual development of a commercial language translation application. Because the details of this specific application are not relevant, it will be referred to as Ignotus.
	The first and most important goal for Ignotus was portability. The designers wished to eventually move the application to other mobile devices. Secondly, the software must be easy to use by a typical owner of the device. The target users for Ignotus w
	Implementation Options
	All Java
	All Native
	Combination

	One More Solution

	Conclusion

